Graphs of Functions.

Czesław Byliński¹ Warsaw University Białystok

Summary. The graph of a function is defined in [1]. In this paper the graph of a function is redefined as a Relation. Operations on functions are interpreted as the corresponding operations on relations. Some theorems about graphs of functions are proved.

The terminology and notation used in this paper have been introduced in the following papers: [2], [3], [1], and [4]. For simplicity we adopt the following convention: X, X1, X2, Y, Y1, Y2 denote objects of the type set; x, x1, x2, y, y1, y2, z denote objects of the type Any; f, f1, f2, g, g1, g2, h, h1 denote objects of the type Function. Let us consider f. Let us note that it makes sense to consider the following functor on a restricted area. Then

graph f is Relation.

Next we state a number of propositions:

for R being Relation st

for x,y1,y2 st $\langle x,y1 \rangle \in R \& \langle x,y2 \rangle \in R$ holds y1 = y2 ex f st graph f = R,

(2)
$$y \in \operatorname{rng} f \text{ iff } ex x \text{ st } \langle x, y \rangle \in \operatorname{graph} f,$$

(3) $\operatorname{dom}\operatorname{graph} f = \operatorname{dom} f \& \operatorname{rng}\operatorname{graph} f = \operatorname{rng} f,$

(4)
$$\operatorname{graph} f \subseteq [\operatorname{dom} f, \operatorname{rng} f],$$

(5) (for
$$x, y$$
 holds $\langle x, y \rangle \in \operatorname{graph} f1$ iff $\langle x, y \rangle \in \operatorname{graph} f2$) implies $f1 = f2$,

(6) for G being set st
$$G \subseteq \operatorname{graph} f \operatorname{ex} g \operatorname{st} \operatorname{graph} g = G$$
,

(7)
$$\operatorname{graph} f \subseteq \operatorname{graph} g \operatorname{\mathbf{implies}} \operatorname{dom} f \subseteq \operatorname{dom} g \& \operatorname{rng} f \subseteq \operatorname{rng} g,$$

¹Supported by RPBP.III-24.C1.

© 1990 Fondation Philippe le Hodey ISSN 0777-4028

CZESŁAW BYLIŃSKI

(8)	$\operatorname{graph} f \subseteq \operatorname{graph} g \text{ iff } \operatorname{dom} f \subseteq \operatorname{dom} g \And \operatorname{for} x \text{ st } x \in \operatorname{dom} f \text{ holds } f.x = g.x,$
(9)	dom $f = \operatorname{dom} g$ & graph $f \subseteq \operatorname{graph} g$ implies $f = g$,
(10)	$\langle x,z\rangle\in {\rm graph}(g\cdot f)\;{\rm iff}{\rm ex}y{\rm st}\;\langle x,y\rangle\in {\rm graph}f\&\langle y,z\rangle\in {\rm graph}g,$
(11)	$(\operatorname{graph} f) \cdot (\operatorname{graph} g) = \operatorname{graph} (g \cdot f),$
(12)	$\langle x, z \rangle \in \operatorname{graph}(g \cdot f)$ implies $\langle x, f.x \rangle \in \operatorname{graph} f \& \langle f.x, z \rangle \in \operatorname{graph} g$,
(13)	$\operatorname{graph} h\subseteq \operatorname{graph} f$
	implies graph $(g \cdot h) \subseteq$ graph $(g \cdot f)$ & graph $(h \cdot g) \subseteq$ graph $(f \cdot g)$,
(14)	$\operatorname{graph} g2\subseteq \operatorname{graph} g1\ \&\ \operatorname{graph} f2\subseteq \operatorname{graph} f1$
	implies graph $(g2 \cdot f2) \subseteq \text{graph} (g1 \cdot f1),$
(15)	$\mathbf{ex} f \mathbf{st} \operatorname{graph} f = \{ \langle x, y \rangle \},\$
(16)	graph $f = \{\langle x, y \rangle\}$ implies $f \cdot x = y$,
(17)	graph $f = \{\langle x, y \rangle\}$ implies dom $f = \{x\}$ & rng $f = \{y\}$,
(18)	dom $f = \{x\}$ implies graph $f = \{\langle x, f.x \rangle\},\$
(19)	$(\mathbf{ex} f \mathbf{st} \operatorname{graph} f = \{ \langle x1, y1 \rangle, \langle x2, y2 \rangle \})$ iff $(x1 = x2 \mathbf{implies} y1 = y2),$
(20)	$\mathbf{ex} f \mathbf{st} \operatorname{graph} f = \emptyset,$
(21)	graph $f = \emptyset$ implies dom $f = \emptyset$ & rng $f = \emptyset$,
(22)	rng $f = \emptyset$ or dom $f = \emptyset$ implies graph $f = \emptyset$,
(23)	$\operatorname{rng} f \cap \operatorname{dom} g = \emptyset \text{ implies } \operatorname{graph} (g \cdot f) = \emptyset,$
(24)	$\operatorname{graph} g = \emptyset \text{ implies } \operatorname{graph} (g \cdot f) = \emptyset \And \operatorname{graph} (f \cdot g) = \emptyset,$
(25)	f is_one-to-one
	iff for $x1, x2, y$ st $\langle x1, y \rangle \in \operatorname{graph} f \& \langle x2, y \rangle \in \operatorname{graph} f$ holds $x1 = x2$,
(26)	$\operatorname{graph} g \subseteq \operatorname{graph} f \& f $ is_one-to-one implies $g $ is_one-to-one,
(27)	$(\mathbf{ex} g \mathbf{st} \operatorname{graph} g = \operatorname{graph} f \cap X) \& \mathbf{ex} g \mathbf{st} \operatorname{graph} g = X \cap \operatorname{graph} f,$
(28)	$\operatorname{graph} h = \operatorname{graph} f \cap \operatorname{graph} g$
	implies dom $h \subseteq$ dom $f \cap$ dom $g \& \operatorname{rng} h \subseteq \operatorname{rng} f \cap \operatorname{rng} g$,
(29)	$\operatorname{graph} h = \operatorname{graph} f \cap \operatorname{graph} g \& x \in \operatorname{dom} h \operatorname{\mathbf{implies}} h.x = f.x \& h.x = g.x,$

170

(30)	$(f \text{ is_one-to-one } \mathbf{or} \ g \text{ is_one-to-one}) \& \operatorname{graph} h = \operatorname{graph} f \cap \operatorname{graph} g$ implies $h \text{ is_one-to-one}$,
(31)	$\operatorname{dom} f \cap \operatorname{dom} g = \emptyset$ implies ex h st graph $h = \operatorname{graph} f \cup \operatorname{graph} g$,
(32)	$\operatorname{graph} f \subseteq \operatorname{graph} h \& \operatorname{graph} g \subseteq \operatorname{graph} h$ implies ex $h1$ st $\operatorname{graph} h1 = \operatorname{graph} f \cup \operatorname{graph} g$,
(33)	$\operatorname{graph} h = \operatorname{graph} (f) \cup \operatorname{graph} (g)$ implies dom $h = \operatorname{dom} f \cup \operatorname{dom} g \& \operatorname{rng} h = \operatorname{rng} f \cup \operatorname{rng} g$,
(34)	$x \in \operatorname{dom} f \& \operatorname{graph} h = \operatorname{graph} f \cup \operatorname{graph} g$ implies $h \cdot x = f \cdot x$,
(35)	$x \in \operatorname{dom} g \& \operatorname{graph} h = \operatorname{graph} f \cup \operatorname{graph} g \operatorname{\mathbf{implies}} h.x = g.x,$
(36)	$x \in \operatorname{dom} h \& \operatorname{graph} h = \operatorname{graph} f \cup \operatorname{graph} g$ implies $h \cdot x = f \cdot x$ or $h \cdot x = g \cdot x$,
(37)	$f \text{ is_one-to-one}$ & g is_one-to-one & graph $h = \operatorname{graph} f \cup \operatorname{graph} g$ & rng $f \cap \operatorname{rng} g = \emptyset$ implies h is_one-to-one,
(38)	$\mathbf{ex}g\mathbf{st}\mathrm{graph}g=\mathrm{graph}(f)\setminus X,$
(39)	$\langle x, y \rangle \in \operatorname{graph} \operatorname{id} (X) \operatorname{iff} x \in X \& x = y,$
(40)	$\operatorname{graph} \operatorname{id} X = \bigtriangleup X,$
(41)	$x \in X ext{ iff } \langle x, x \rangle \in ext{graph} ext{ id } (X),$
(42)	$\langle x, y \rangle \in \operatorname{graph} (f \cdot \operatorname{id} (X)) \operatorname{iff} x \in X \& \langle x, y \rangle \in \operatorname{graph} f,$
(43)	$\langle x, y \rangle \in \operatorname{graph} (\operatorname{id} (Y) \cdot f) \operatorname{iff} \langle x, y \rangle \in \operatorname{graph} f \& y \in Y,$
(44)	$\operatorname{graph}(f \cdot \operatorname{id}(X)) \subseteq \operatorname{graph} f \& \operatorname{graph}(\operatorname{id}(X) \cdot f) \subseteq \operatorname{graph}(f),$
(45)	$\operatorname{graph}\operatorname{id}\emptyset=\emptyset,$
(46)	graph $f = \emptyset$ implies f is_one-to-one,
(47)	f is_one-to-one implies for x, y holds $\langle y, x \rangle \in \text{graph}(f^{-1})$ iff $\langle x, y \rangle \in \text{graph} f$,
(48)	f is_one-to-one implies graph $(f^{-1}) = (\operatorname{graph} f)^{\sim}$,
(49)	graph $f = \emptyset$ implies graph $(f^{-1}) = \emptyset$,
(50)	$\langle x, y \rangle \in \operatorname{graph} (f \mid X) \operatorname{iff} x \in X \& \langle x, y \rangle \in \operatorname{graph} f,$

$$\begin{aligned} &(51) & \text{graph}\left(f \mid X\right) = (\text{graph}\,f) \mid X, \\ &(52) & x \in \text{dom}\,f \&\, x \in X \text{ iff } \langle x, f, x \rangle \in \text{graph}\left(f \mid X\right), \\ &(53) & \text{graph}\left(f \mid X\right) \subseteq \text{graph}\,f, \\ &(54) & \text{graph}\left((f \mid X) \cdot h\right) \subseteq \text{graph}\left(f \cdot h\right) \&\, \text{graph}\left(g \cdot (f \mid X)\right)) \subseteq \text{graph}\left(g \cdot f\right), \\ &(55) & \text{graph}\left(f \mid X\right) = \text{graph}\left(f\right) \cap [X, \text{rng}\,f], \\ &(56) & X \subseteq Y \text{ implies graph}\left(f \mid X\right) \subseteq \text{graph}\left(f \mid Y\right), \\ &(57) & \text{graph}\,f1 \subseteq \text{graph}\,f2 \, \text{implies graph}\left(f1\mid X\right) \subseteq \text{graph}\left(f2\mid X2\right), \\ &(58) & \text{graph}\,f1 \subseteq \text{graph}\,f2 \&\, X1 \subseteq X2 \text{ implies graph}\left(f1\mid X1\right) \subseteq \text{graph}\left(f2\mid X2\right), \\ &(59) & \text{graph}\left(f \mid (X \cup Y)\right) = \text{graph}\left(f\mid X\right) \cup \text{graph}\left(f\mid Y\right), \\ &(60) & \text{graph}\left(f \mid (X \cup Y)\right) = \text{graph}\left(f\mid X\right) \cup \text{graph}\left(f\mid Y\right), \\ &(61) & \text{graph}\left(f \mid (X \setminus Y)\right) = \text{graph}\left(f\mid X\right) \setminus \text{graph}\left(f\mid Y\right), \\ &(62) & \text{graph}\left(f \mid X\right) \setminus \text{graph}\left(f\mid X\right) = \emptyset, \\ &(63) & \text{graph}\,f = \emptyset \text{ implies graph}\left(f\mid X\right) = \emptyset, \\ &(64) & \text{graph}\,g \subseteq \text{graph}\,f \text{ implies } f \mid \text{dom}\,g = g, \\ &(65) & \langle x, y \rangle \in \text{graph}\left(Y \mid f\right) \text{ if } y \in Y \& \langle x, y \rangle \in \text{graph}\,f, \\ &(66) & \text{graph}\left(Y \mid f\right) = Y \mid (\text{graph}\,f), \\ &(67) & x \in \text{dom}\,f \& f.x \in Y \text{ iff} \langle x, f.x \rangle \in \text{graph}\left(Y \mid f\right), \\ &(68) & \text{graph}\left(Y \mid f\right) \subseteq \text{graph}\left(f\right) \cap [\text{dom}\,f,Y], \\ &(71) & X \subseteq Y \text{ implies graph}\left(X \mid f\right) \subseteq \text{graph}\left(Y \mid f\right), \\ &(72) & \text{graph}\,f1 \subseteq \text{graph}\,f2 \text{ implies graph}\left(Y \mid f_1\right) \subseteq \text{graph}\left(Y \mid f_2\right), \\ &(73) & \text{graph}\,f1 \subseteq \text{graph}\,f2 \& Y1 \subseteq Y2 \text{ implies graph}\left(Y \mid f_1\right) \subseteq \text{graph}\left(Y \mid f_2\right), \\ &(74) & \text{graph}\left(\left(X \cup Y\right) \mid f\right) = \text{graph}\left(X \mid f\right) \cup \text{graph}\left(Y \mid f\right), \\ &(75) & \text{graph}\left(\left(X \cap Y\right) \mid f\right) = \text{graph}\left(X \mid f\right) \cap \text{graph}\left(Y \mid f\right), \\ &(75) & \text{graph}\left(\left(X \cap Y\right) \mid f\right) = \text{graph}\left(X \mid f\right) \cap \text{graph}\left(Y \mid f\right), \\ &(75) & \text{graph}\left(\left(X \cap Y\right) \mid f\right) = \text{graph}\left(X \mid f\right) \cap \text{graph}\left(Y \mid f\right), \\ &(75) & \text{graph}\left(\left(X \cap Y\right) \mid f\right) = \text{graph}\left(X \mid f\right) \cap \text{graph}\left(Y \mid f\right), \\ &(75) & \text{graph}\left(\left(X \cap Y\right) \mid f\right) = \text{graph}\left(X \mid f\right) \cap \text{graph}\left(Y \mid f\right), \\ &(75) & \text{graph}\left(\left(X \cap Y\right) \mid f\right) = \text{graph}\left(X \mid f\right) \cap \text{graph}\left(Y \mid f\right), \\ &(75) & \text{graph}\left(\left(X \cap Y\right$$

(76)
$$\operatorname{graph}((X \setminus Y) \mid f) = \operatorname{graph}(X \mid f) \setminus \operatorname{graph}(Y \mid f),$$

(77) $\operatorname{graph}(\emptyset \mid f) = \emptyset,$

(78)
$$\operatorname{graph} f = \emptyset \operatorname{implies} \operatorname{graph} (Y \mid f) = \emptyset,$$

- (79) $\operatorname{graph} g \subseteq \operatorname{graph} f \& f \text{ is_one-to-one implies } \operatorname{rng} g \mid f = g,$
- (80) $y \in f^{\circ} X$ iff ex x st $\langle x, y \rangle \in \operatorname{graph} f \& x \in X$,

(81)
$$f^{\circ} X = (\operatorname{graph} f)^{\circ} X,$$

(82)
$$\operatorname{graph} f = \emptyset \text{ implies } f \circ X = \emptyset$$

(83) graph $f1 \subseteq \operatorname{graph} f2$ implies $f1 \circ X \subseteq f2 \circ X$,

(84) graph
$$f1 \subseteq$$
 graph $f2 \& X1 \subseteq X2$ implies $f1 \circ X1 \subseteq f2 \circ X2$,

(85)
$$x \in f^{-1} Y \text{ iff } \mathbf{ex} y \text{ st } \langle x, y \rangle \in \operatorname{graph} f \& y \in Y,$$

(86)
$$f^{-1}Y = (\operatorname{graph} f)^{-1}Y,$$

(87)
$$x \in f^{-1} Y \text{ iff } \langle x, f . x \rangle \in \operatorname{graph} f \& f . x \in Y,$$

(88) graph
$$f = \emptyset$$
 implies $f^{-1} Y = \emptyset$,

(89) graph
$$f1 \subseteq$$
 graph $f2$ implies $f1^{-1} Y \subseteq f2^{-1} Y$,

(90) graph
$$f1 \subseteq \operatorname{graph} f2 \& Y1 \subseteq Y2$$
 implies $f1^{-1} Y1 \subseteq f2^{-1} Y2$.

References

- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
- [3] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.
- [4] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1, 1990.

Received April 14, 1989