Graphs of Functions.

Czesław Byliński ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The graph of a function is defined in [1]. In this paper the graph of a function is redefined as a Relation. Operations on functions are interpreted as the corresponding operations on relations. Some theorems about graphs of functions are proved.

The terminology and notation used in this paper have been introduced in the following papers: [2], [3], [1], and [4]. For simplicity we adopt the following convention: $X, X 1$, $X 2, Y, Y 1, Y 2$ denote objects of the type set; $x, x 1, x 2, y, y 1, y 2, z$ denote objects of the type Any; $f, f 1, f 2, g, g 1, g 2, h, h 1$ denote objects of the type Function. Let us consider f. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\text { graph } f \quad \text { is } \quad \text { Relation. }
$$

Next we state a number of propositions:

for R being Relation st

for $x, y 1, y 2$ st $\langle x, y 1\rangle \in R \&\langle x, y 2\rangle \in R$ holds $y 1=y 2$ ex f st graph $f=R$,

$$
\begin{equation*}
y \in \operatorname{rng} f \mathbf{i f f} \mathbf{e x} x \text { st }\langle x, y\rangle \in \operatorname{graph} f, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{dom} \operatorname{graph} f=\operatorname{dom} f \& \operatorname{rng} \operatorname{graph} f=\operatorname{rng} f \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{graph} f \subseteq[: \operatorname{dom} f, \operatorname{rng} f:], \tag{4}
\end{equation*}
$$

(5) (for x, y holds $\langle x, y\rangle \in \operatorname{graph} f 1$ iff $\langle x, y\rangle \in \operatorname{graph} f 2)$ implies $f 1=f 2$,
(6) for G being set st $G \subseteq \operatorname{graph} f$ ex g st graph $g=G$,
graph $f \subseteq$ graph g implies $\operatorname{dom} f \subseteq \operatorname{dom} g \& \operatorname{rng} f \subseteq \operatorname{rng} g$,

[^0](8) graph $f \subseteq \operatorname{graph} g \operatorname{iff} \operatorname{dom} f \subseteq \operatorname{dom} g \&$ for x st $x \in \operatorname{dom} f$ holds $f . x=g \cdot x$,
\[

$$
\begin{equation*}
\operatorname{dom} f=\operatorname{dom} g \& \operatorname{graph} f \subseteq \operatorname{graph} g \text { implies } f=g, \tag{9}
\end{equation*}
$$

\]

$$
\begin{equation*}
\langle x, z\rangle \in \operatorname{graph}(g \cdot f) \operatorname{iff} \mathbf{e x} y \text { st }\langle x, y\rangle \in \operatorname{graph} f \&\langle y, z\rangle \in \operatorname{graph} g \tag{10}
\end{equation*}
$$

$(\operatorname{graph} f) \cdot(\operatorname{graph} g)=\operatorname{graph}(g \cdot f)$,

$$
\begin{gather*}
\langle x, z\rangle \in \operatorname{graph}(g \cdot f) \operatorname{implies}\langle x, f \cdot x\rangle \in \operatorname{graph} f \&\langle f \cdot x, z\rangle \in \operatorname{graph} g, \tag{12}\\
\operatorname{graph} h \subseteq \operatorname{graph} f \tag{13}\\
\text { implies graph }(g \cdot h) \subseteq \operatorname{graph}(g \cdot f) \& \operatorname{graph}(h \cdot g) \subseteq \operatorname{graph}(f \cdot g), \\
\operatorname{graph} g 2 \subseteq \operatorname{graph} g 1 \& \operatorname{graph} f 2 \subseteq \operatorname{graph} f 1 \\
\text { implies graph }(g 2 \cdot f 2) \subseteq \operatorname{graph}(g 1 \cdot f 1), \\
\operatorname{ex} f \text { st graph } f=\{\langle x, y\rangle\},
\end{gather*}
$$

graph $f=\{\langle x, y\rangle\}$ implies $f \cdot x=y$,
graph $f=\{\langle x, y\rangle\}$ implies $\operatorname{dom} f=\{x\} \& \operatorname{rng} f=\{y\}$,
$\operatorname{dom} f=\{x\}$ implies graph $f=\{\langle x, f . x\rangle\}$,

$$
\begin{gather*}
(\text { ex } f \text { st graph } f=\{\langle x 1, y 1\rangle,\langle x 2, y 2\rangle\}) \text { iff }(x 1=x 2 \text { implies } y 1=y 2), \tag{19}\\
\text { ex } f \text { st graph } f=\emptyset, \tag{20}\\
\operatorname{graph} f=\emptyset \text { implies dom } f=\emptyset \& \operatorname{rng} f=\emptyset, \tag{21}\\
\operatorname{rng} f=\emptyset \text { or dom } f=\emptyset \operatorname{implies} \operatorname{graph} f=\emptyset, \tag{22}\\
\operatorname{rng} f \cap \operatorname{dom} g=\emptyset \operatorname{implies} \operatorname{graph}(g \cdot f)=\emptyset, \tag{23}\\
\text { graph } g=\emptyset \operatorname{implies} \text { graph }(g \cdot f)=\emptyset \& \operatorname{graph}(f \cdot g)=\emptyset, \tag{24}\\
\qquad f \text { is_one-to-one } \tag{25}\\
\text { iff for } x 1, x 2, y \text { st }\langle x 1, y\rangle \in \operatorname{graph} f \&\langle x 2, y\rangle \in \operatorname{graph} f \text { holds } x 1=x 2, \\
\operatorname{graph} g \subseteq \operatorname{graph} f \& f \text { is_one-to-one implies } g \text { is_one-to-one, } \\
(\mathbf{e x} g \text { st graph } g=\operatorname{graph} f \cap X) \& \operatorname{ex} g \text { st graph } g=X \cap \operatorname{graph} f, \\
\operatorname{graph} h=\operatorname{graph} f \cap \operatorname{graph} g \\
\operatorname{implies} \operatorname{dom} h \subseteq \operatorname{dom} f \cap \operatorname{dom} g \& \operatorname{rng} h \subseteq \operatorname{rng} f \cap \operatorname{rng} g,
\end{gather*}
$$

(29) $\quad \operatorname{graph} h=\operatorname{graph} f \cap \operatorname{graph} g \& x \in \operatorname{dom} h \operatorname{implies} h . x=f . x \& h . x=g \cdot x$,
(30)
(36) $\quad x \in \operatorname{dom} h \& \operatorname{graph} h=\operatorname{graph} f \cup \operatorname{graph} g$ implies $h . x=f . x$ or $h . x=g . x$,
$(f$ is_one-to-one or g is_one-to-one) \& graph $h=\operatorname{graph} f \cap \operatorname{graph} g$
implies h is_one-to-one,
dom $f \cap \operatorname{dom} g=\emptyset$ implies ex h st graph $h=\operatorname{graph} f \cup \operatorname{graph} g$,
graph $f \subseteq \operatorname{graph} h \& \operatorname{graph} g \subseteq \operatorname{graph} h$
implies ex $h 1$ st graph $h 1=\operatorname{graph} f \cup \operatorname{graph} g$,

$$
\begin{equation*}
\operatorname{graph} h=\operatorname{graph}(f) \cup \operatorname{graph}(g) \tag{33}
\end{equation*}
$$

implies $\operatorname{dom} h=\operatorname{dom} f \cup \operatorname{dom} g \& \operatorname{rng} h=\operatorname{rng} f \cup \operatorname{rng} g$,
$x \in \operatorname{dom} f \& \operatorname{graph} h=\operatorname{graph} f \cup \operatorname{graph} g$ implies $h . x=f . x$,
$x \in \operatorname{dom} g \& \operatorname{graph} h=\operatorname{graph} f \cup \operatorname{graph} g$ implies $h . x=g . x$,

f is_one-to-one

$\& g$ is_one-to-one \& graph $h=\operatorname{graph} f \cup \operatorname{graph} g \& \operatorname{rng} f \cap \operatorname{rng} g=\emptyset$
implies h is_one-to-one,
ex g st graph $g=\operatorname{graph}(f) \backslash X$,

$$
\begin{equation*}
\langle x, y\rangle \in \operatorname{graph} \operatorname{id}(X) \operatorname{iff} x \in X \& x=y \tag{40}
\end{equation*}
$$

(47) f is_one-to-one implies for x, y holds $\langle y, x\rangle \in \operatorname{graph}\left(f^{-1}\right)$ iff $\langle x, y\rangle \in \operatorname{graph} f$,

$$
\begin{equation*}
f \text { is_one-to-one implies graph }\left(f^{-1}\right)=(\operatorname{graph} f)^{\sim}, \tag{48}
\end{equation*}
$$

$$
\operatorname{graph} f=\emptyset \operatorname{implies} \operatorname{graph}\left(f^{-1}\right)=\emptyset
$$

$$
\begin{equation*}
\langle x, y\rangle \in \operatorname{graph}(f \mid X) \text { iff } x \in X \&\langle x, y\rangle \in \operatorname{graph} f \tag{50}
\end{equation*}
$$

(51)

$$
\begin{gather*}
\operatorname{graph}((f \mid X) \cdot h) \subseteq \operatorname{graph}(f \cdot h) \& \operatorname{graph}(g \cdot(f \mid X)) \subseteq \operatorname{graph}(g \cdot f), \tag{54}\\
\operatorname{graph}(f \mid X)=\operatorname{graph}(f) \cap: X, \operatorname{rng} f:], \tag{55}\\
X \subseteq Y \text { implies } \operatorname{graph}(f \mid X) \subseteq \operatorname{graph}(f \mid Y),
\end{gather*}
$$

graph $f 1 \subseteq$ graph $f 2$ implies graph $(f 1 \mid X) \subseteq \operatorname{graph}(f 2 \mid X)$,
(58) graph $f 1 \subseteq \operatorname{graph} f 2 \& X 1 \subseteq X 2$ implies $\operatorname{graph}(f 1 \mid X 1) \subseteq \operatorname{graph}(f 2 \mid X 2)$,
$\operatorname{graph}(f \mid(X \cup Y))=\operatorname{graph}(f \mid X) \cup \operatorname{graph}(f \mid Y)$,
$\operatorname{graph}(f \mid(X \cap Y))=\operatorname{graph}(f \mid X) \cap \operatorname{graph}(f \mid Y)$, $\operatorname{graph}(f \mid(X \backslash Y))=\operatorname{graph}(f \mid X) \backslash \operatorname{graph}(f \mid Y)$, $\operatorname{graph}(f \mid \emptyset)=\emptyset$, graph $f=\emptyset$ implies graph $(f \mid X)=\emptyset$, graph $g \subseteq$ graph f implies $f \mid \operatorname{dom} g=g$, $\langle x, y\rangle \in \operatorname{graph}(Y \mid f)$ iff $y \in Y \&\langle x, y\rangle \in \operatorname{graph} f$, $\operatorname{graph}(Y \mid f)=Y \mid(\operatorname{graph} f)$, $x \in \operatorname{dom} f \& f . x \in Y$ iff $\langle x, f . x\rangle \in \operatorname{graph}(Y \mid f)$,

$$
\begin{equation*}
\operatorname{graph}(Y \mid f) \subseteq \operatorname{graph}(f) \tag{68}
\end{equation*}
$$

$$
\operatorname{graph}((Y \mid f) \cdot h) \subseteq \operatorname{graph}(f \cdot h) \& \operatorname{graph}(g \cdot(Y \mid f)) \subseteq \operatorname{graph}(g \cdot f)
$$

$$
\operatorname{graph}(Y \mid f)=\operatorname{graph}(f) \cap: \operatorname{dom} f, Y:
$$

$$
X \subseteq Y \text { implies graph }(X \mid f) \subseteq \operatorname{graph}(Y \mid f)
$$

graph $f 1 \subseteq$ graph $f 2$ implies graph $(Y \mid f 1) \subseteq \operatorname{graph}(Y \mid f 2)$,
(73) graph $f 1 \subseteq \operatorname{graph} f 2 \& Y 1 \subseteq Y 2$ implies $\operatorname{graph}(Y 1 \mid f 1) \subseteq \operatorname{graph}(Y 2 \mid f 2)$,
$\operatorname{graph}((X \backslash Y) \mid f)=\operatorname{graph}(X \mid f) \backslash \operatorname{graph}(Y \mid f)$,

$$
\operatorname{graph}(\emptyset \mid f)=\emptyset,
$$

$$
\operatorname{graph} f=\emptyset \text { implies graph }(Y \mid f)=\emptyset
$$

graph $g \subseteq$ graph $f \& f$ is_one-to-one $\operatorname{implies} \operatorname{rng} g \mid f=g$,

$$
y \in f^{\circ} X \text { iff ex } x \text { st }\langle x, y\rangle \in \operatorname{graph} f \& x \in X
$$

$$
f^{\circ} X=(\operatorname{graph} f)^{\circ} X
$$

$$
\text { graph } f=\emptyset \text { implies } f^{\circ} X=\emptyset
$$

graph $f 1 \subseteq$ graph $f 2$ implies $f 1^{\circ} X \subseteq f 2^{\circ} X$,
graph $f 1 \subseteq$ graph $f 2 \& X 1 \subseteq X 2$ implies $f 1^{\circ} X 1 \subseteq f 2^{\circ} X 2$,

$$
x \in f^{-1} Y \text { iff ex } y \text { st }\langle x, y\rangle \in \operatorname{graph} f \& y \in Y
$$

$$
f^{-1} Y=(\operatorname{graph} f)^{-1} Y
$$

$$
x \in f^{-1} Y \operatorname{iff}\langle x, f . x\rangle \in \operatorname{graph} f \& f . x \in Y
$$

graph $f=\emptyset$ implies $f^{-1} Y=\emptyset$,
graph $f 1 \subseteq$ graph $f 2$ implies $f 1^{-1} Y \subseteq f 2^{-1} Y$,
graph $f 1 \subseteq$ graph $f 2 \& Y 1 \subseteq Y 2$ implies $f 1^{-1} Y 1 \subseteq f 2^{-1} Y 2$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[3] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.
[4] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1, 1990.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1.

