# Basic Functions and Operations on Functions 

Czesław Byliński ${ }^{1}$<br>Warsaw University<br>Białystok


#### Abstract

Summary. We define the following mappings: the characteristic function of a subset of a set, the inclusion function (injection or embedding), the projections from a Cartesian product onto its arguments and diagonal function (inclusion of a set into its Cartesian square). Some operations on functions are also defined: the products of two functions (the complex function and the more general product-function), the function induced on power sets by the image and inverse-image. Some simple propositions related to the introduced notions are proved.


The terminology and notation used in this paper are introduced in the following papers: [3], [4], [1], and [2]. For simplicity we adopt the following convention: $x, y, z, z 1, z 2$ denote objects of the type Any; $A, B, V, X, X 1, X 2, Y, Y 1, Y 2, Z$ denote objects of the type set; $C, C 1, C 2, D, D 1, D 2$ denote objects of the type DOMAIN. We now state several propositions:
$A \subseteq Y$ implies id $A=(\operatorname{id} Y) \mid A$,
for $f, g$ being Function st $X \subseteq \operatorname{dom}(g \cdot f)$ holds $f^{\circ} X \subseteq \operatorname{dom} g$,
for $f, g$ being Function
st $X \subseteq \operatorname{dom} f \& f^{\circ} X \subseteq \operatorname{dom} g$ holds $X \subseteq \operatorname{dom}(g \cdot f)$,
(4)
for $f, g$ being Function
st $Y \subseteq \operatorname{rng}(g \cdot f) \& g$ is_one-to-one holds $g^{-1} Y \subseteq \operatorname{rng} f$,
(5) for $f, g$ being Function st $Y \subseteq \operatorname{rng} g \& g^{-1} Y \subseteq \operatorname{rng} f$ holds $Y \subseteq \operatorname{rng}(g \cdot f)$.

[^0]In the article we present several logical schemes. The scheme FuncEx_3 concerns a constant $\mathcal{A}$ that has the type set, a constant $\mathcal{B}$ that has the type set and a ternary predicate $\mathcal{P}$ and states that the following holds
ex $f$ being Function
st $\operatorname{dom} f=[: \mathcal{A}, \mathcal{B}: \&$ for $x, y$ st $x \in \mathcal{A} \& y \in \mathcal{B}$ holds $\mathcal{P}[x, y, f .\langle x, y\rangle]$
provided the parameters satisfy the following conditions:

- $\quad$ for $x, y, z 1, z 2$ st $x \in \mathcal{A} \& y \in \mathcal{B} \& \mathcal{P}[x, y, z 1] \& \mathcal{P}[x, y, z 2]$ holds $z 1=z 2$,
- for $x, y$ st $x \in \mathcal{A} \& y \in \mathcal{B}$ ex $z$ st $\mathcal{P}[x, y, z]$.

The scheme Lambda_3 concerns a constant $\mathcal{A}$ that has the type set, a constant $\mathcal{B}$ that has the type set and a binary functor $\mathcal{F}$ and states that the following holds

$$
\text { ex } f \text { being Function }
$$

$$
\text { st } \operatorname{dom} f=[: \mathcal{A}, \mathcal{B}:] \& \text { for } x, y \text { st } x \in \mathcal{A} \& y \in \mathcal{B} \text { holds } f .\langle x, y\rangle=\mathcal{F}(x, y)
$$

for all values of the parameters.
We now state a proposition

> for $f, g$ being Function st
> $\operatorname{dom} f=[: X, Y:$
$\& \operatorname{dom} g=[: X, Y: \&$ for $x, y$ st $x \in X \& y \in Y$ holds $f .\langle x, y\rangle=g .\langle x, y\rangle$
holds $f=g$.
Let $f$ have the type Function. The functor

$$
{ }^{\circ} f
$$

yields the type Function and is defined by
domit $=$ bool dom $f \&$ for $X$ st $X \in$ bool dom $f$ holds it. $X=f^{\circ} X$.
The following propositions are true:

$$
\begin{equation*}
\text { for } f, g \text { being Function holds } g={ }^{\circ} f \tag{7}
\end{equation*}
$$

iff $\operatorname{dom} g=$ bool dom $f \&$ for $X$ st $X \in \operatorname{bool} \operatorname{dom} f$ holds $g \cdot X=f^{\circ} X$,

$$
\begin{equation*}
\text { for } f \text { being Function st } X \in \operatorname{dom}\left({ }^{\circ} f\right) \text { holds }\left({ }^{\circ} f\right) \cdot X=f^{\circ} X, \tag{8}
\end{equation*}
$$ for $f$ being Function holds $\left({ }^{\circ} f\right) . \emptyset=\emptyset$, for $f$ being Function holds $\operatorname{rng}\left({ }^{\circ} f\right) \subseteq$ bool rng $f$, for $f$ being Function

holds $Y \in\left({ }^{\circ} f\right)^{\circ} A$ iff ex $X$ st $X \in \operatorname{dom}\left({ }^{\circ} f\right) \& X \in A \& Y=\left({ }^{\circ} f\right) . X$,
(17) for $f$ being Function of $X, D$ st $A \subseteq \operatorname{bool} X$ holds $\left.f^{\circ}(\bigcup A)=\bigcup\left({ }^{\circ} f\right)^{\circ} A\right)$,
for $f$ being Function st $B \subseteq$ bool rng $f$ holds $f^{-1}(\bigcup B)=\bigcup\left(\left(^{\circ} f\right)^{-1} B\right)$, for $f, g$ being Function holds ${ }^{\circ}(g \cdot f)={ }^{\circ} g \cdot{ }^{\circ} f$,
for $f$ being Function holds ${ }^{\circ} f$ is Function of bool $\operatorname{dom} f, \operatorname{bool} \operatorname{rng} f$,
for $f$ being Function of $X, Y$
st $Y=\emptyset$ implies $X=\emptyset$ holds ${ }^{\circ} f$ is Function of bool $X$, bool $Y$.
The arguments of the notions defined below are the following: $\quad X, D$ which are objects of the type reserved above; $f$ which is an object of the type Function of $X, D$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
{ }^{\circ} f \quad \text { is } \quad \text { Function of bool } X, \text { bool } D .
$$

Let $f$ have the type Function. The functor

$$
{ }^{-1} f
$$

yields the type Function and is defined by

$$
\text { dom it }=\operatorname{bool} \operatorname{rng} f \& \text { for } Y \text { st } Y \in \operatorname{bool} \operatorname{rng} f \text { holds it. } Y=f^{-1} Y
$$

We now state a number of propositions:

## for $g, f$ being Function holds

 $g={ }^{-1} f$ iff dom $g=\operatorname{bool} \operatorname{rng} f \&$ for $Y$ st $Y \in \operatorname{bool} \operatorname{rng} f$ holds $g . Y=f^{-1} Y$,for $f$ being Function st $Y \in \operatorname{dom}\left({ }^{-1} f\right)$ holds $\left({ }^{-1} f\right) . Y=f^{-1} Y$,
for $f$ being Function holds $\operatorname{rng}\left(\left(^{-1} f\right) \subseteq \operatorname{bool} \operatorname{dom} f\right.$,
for $f$ being Function
holds $X \in\left({ }^{-1} f\right)^{\circ} A$ iff ex $Y$ st $Y \in \operatorname{dom}\left({ }^{-1} f\right) \& Y \in A \& X=\left({ }^{-1} f\right) . Y$,
for $f$ being Function holds $\left(-^{-1} f\right)^{\circ} B \subseteq \operatorname{bool} \operatorname{dom} f$, for $f$ being Function holds $\left(\left(^{-1} f\right)^{-1} A \subseteq\right.$ bool rng $f$, for $f$ being Function holds $\bigcup\left(\left(\left(^{-1} f\right)^{\circ} B\right) \subseteq f^{-1}(\bigcup B)\right.$,
(30) for $f$ being Function st $B \subseteq$ bool rng $f$ holds $\bigcup\left(\left(\left(^{-1} f\right)^{\circ} B\right)=f^{-1}(\bigcup B)\right.$, for $f$ being Function holds $\bigcup\left(\left(\left(^{-1} f\right)^{-1} A\right) \subseteq f^{\circ}(\bigcup A)\right.$, for $f$ being Function
st $A \subseteq$ bool dom $f \& f$ is_one-to-one holds $\bigcup\left(\left(\left(^{-1} f\right)^{-1} A\right)=f^{\circ}(\bigcup A)\right.$, for $f$ being Function holds $\left({ }^{-1} f\right)^{\circ} B \subseteq\left({ }^{\circ} f\right)^{-1} B$, for $f$ being Function st $f$ is_one-to-one holds $\left({ }^{-1} f\right)^{\circ} B=\left({ }^{\circ} f\right)^{-1} B$, for $f$ being Function, $A$ being set st $A \subseteq$ bool dom $f$ holds $\left(\left(^{-1} f\right)^{-1} A \subseteq\left({ }^{\circ} f\right)^{\circ} A\right.$, for $f$ being Function, $A$ being set st $f$ is_one-to-one holds $\left({ }^{\circ} f\right)^{\circ} A \subseteq\left({ }^{-1} f\right)^{-1} A$, for $f$ being Function, $A$ being set st $f$ is_one-to-one \& $A \subseteq$ bool dom $f$ holds $\left({ }^{-1} f\right)^{-1} A=\left({ }^{\circ} f\right)^{\circ} A$, for $f, g$ being Function st $g$ is_one-to-one holds ${ }^{-1}(g \cdot f)=^{-1} f \cdot \cdot^{-1} g$, for $f$ being Function holds ${ }^{-1} f$ is Function of bool rng $f, \operatorname{bool} \operatorname{dom} f$.

Let us consider $A, X$. The functor

$$
\chi(A, X),
$$

yields the type Function and is defined by

$$
\operatorname{dom} \mathbf{i t}=X
$$

$\&$ for $x$ st $x \in X$ holds $(x \in A$ implies it. $x=1) \&(\operatorname{not} x \in A$ implies it. $x=0)$.
We now state a number of propositions:
(40) for $f$ being Function holds $f=\chi(A, X)$ iff $\operatorname{dom} f=X$ \& for $x$ st $x \in X$ holds $(x \in A$ implies $f . x=1) \&(\operatorname{not} x \in A$ implies $f . x=0)$,

$$
\begin{equation*}
A \subseteq X \& x \in A \text { implies } \chi(A, X) \cdot x=1 \tag{41}
\end{equation*}
$$

$$
\begin{equation*}
x \in X \& \chi(A, X) \cdot x=1 \text { implies } x \in A \tag{42}
\end{equation*}
$$

Let us consider $A, X$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\chi(A, X) \quad \text { is } \quad \text { Function of } X,\{0,1\} .
$$

One can prove the following propositions:

$$
\begin{equation*}
\text { for } d \text { being Element of } D \text { holds } \chi(A, D) . d=1 \text { iff } d \in A, \tag{50}
\end{equation*}
$$

for $d$ being Element of $D$ holds $\chi(A, D) . d=0$ iff not $d \in A$.
The arguments of the notions defined below are the following: $Y$ which is an object of the type reserved above; $A$ which is an object of the type Subset of $Y$. The functor

$$
\operatorname{incl} A,
$$

yields the type Function of $A, Y$ and is defined by

$$
\mathbf{i t}=\operatorname{id} A .
$$

We now state several propositions:

> for $A$ being Subset of $Y$ holds incl $A=\operatorname{id} A$,
> for $A$ being Subset of $Y$ holds $\operatorname{incl} A=(\operatorname{id} Y) \mid A$,
> for $A$ being Subset of $Y$ holds dom incl $A=A \& \operatorname{rng} \operatorname{incl} A=A$,
> for $A$ being Subset of $Y$ st $x \in A$ holds $(\operatorname{incl} A) \cdot x=x$,
> for $A$ being Subset of $Y$ st $x \in A \operatorname{holds} \operatorname{incl}(A) \cdot x \in Y$.

We now define two new functors. Let us consider $X, Y$. The functor

$$
\pi_{1}(X, Y)
$$

with values of the type Function, is defined by

$$
\operatorname{dom} \mathbf{i t}=[: X, Y:] \& \text { for } x, y \text { st } x \in X \& y \in Y \text { holds it. }\langle x, y\rangle=x
$$

The functor

$$
\pi_{2}(X, Y)
$$

yields the type Function and is defined by

$$
\text { dom it }=[: X, Y:] \& \text { for } x, y \text { st } x \in X \& y \in Y \text { holds it. }\langle x, y\rangle=y
$$

Next we state several propositions:

$$
\begin{equation*}
\text { for } f \text { being Function holds } f=\pi_{1}(X, Y) \tag{57}
\end{equation*}
$$

iff $\operatorname{dom} f=[: X, Y: \&$ for $x, y$ st $x \in X \& y \in Y$ holds $f .\langle x, y\rangle=x$,

$$
\begin{equation*}
\text { for } f \text { being Function holds } f=\pi_{2}(X, Y) \tag{58}
\end{equation*}
$$

$$
\text { iff dom } f=[: X, Y: \& \text { for } x, y \text { st } x \in X \& y \in Y \text { holds } f .\langle x, y\rangle=y
$$

$$
\begin{equation*}
\operatorname{rng} \pi_{1}(X, Y) \subseteq X \tag{59}
\end{equation*}
$$

$$
\begin{equation*}
Y \neq \emptyset \text { implies } \operatorname{rng} \pi_{1}(X, Y)=X \tag{60}
\end{equation*}
$$

$$
\operatorname{rng} \pi_{2}(X, Y) \subseteq Y
$$

$$
\begin{equation*}
X \neq \emptyset \text { implies rng } \pi_{2}(X, Y)=Y \tag{62}
\end{equation*}
$$

Let us consider $X, Y$. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
\begin{array}{lll}
\pi_{1}(X, Y) & \text { is } & \text { Function of }: X, Y:, X, \\
\pi_{2}(X, Y) & \text { is } & \text { Function of }[: X, Y:], Y .
\end{array}
$$

We now state two propositions:
for $d 1$ being Element of $D 1$
for $d 2$ being Element of $D 2$ holds $\pi_{1}(D 1, D 2) .\langle d 1, d 2\rangle=d 1$,
for $d 1$ being Element of $D 1$
for $d 2$ being Element of $D 2$ holds $\pi_{2}(D 1, D 2) .\langle d 1, d 2\rangle=d 2$.
Let us consider $X$. The functor

$$
\delta X
$$

with values of the type Function, is defined by

$$
\operatorname{dom} \text { it }=X \& \text { for } x \text { st } x \in X \text { holds it. } x=\langle x, x\rangle
$$

The following two propositions are true:

## for $f$ being Function

$$
\begin{equation*}
\text { holds } f=\delta X \text { iff } \operatorname{dom} f=X \& \text { for } x \text { st } x \in X \text { holds } f . x=\langle x, x\rangle \tag{65}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{rng} \delta X \subseteq[: X, X] \tag{66}
\end{equation*}
$$

Let us consider $X$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\delta X \quad \text { is } \quad \text { Function of } X,[: X, X]
$$

Let $f, g$ have the type Function. The functor

$$
[(f, g)]
$$

with values of the type Function, is defined by

$$
\operatorname{dom} \text { it }=\operatorname{dom} f \cap \operatorname{dom} g \& \text { for } x \text { st } x \in \operatorname{dom} \text { it holds it. } x=\langle f . x, g . x\rangle
$$

We now state a number of propositions:
for $f, g, f g$ being Function holds $f g=[(f, g)]$
iff dom $f g=\operatorname{dom} f \cap \operatorname{dom} g \&$ for $x$ st $x \in \operatorname{dom} f g$ holds $f g \cdot x=\langle f . x, g \cdot x\rangle$,
(68) for $f, g$ being Function st $x \in \operatorname{dom} f \cap \operatorname{dom} g$ holds $[(f, g)] \cdot x=\langle f \cdot x, g \cdot x\rangle$,
for $f, g$ being Function
st $\operatorname{dom} f=X \& \operatorname{dom} g=X \& x \in X$ holds $[(f, g)] \cdot x=\langle f \cdot x, g \cdot x\rangle$,
(70) for $f, g$ being Function st $\operatorname{dom} f=X \& \operatorname{dom} g=X$ holds $\operatorname{dom}[(f, g)]=X$, for $f, g$ being Function holds $\operatorname{rng}[(f, g)] \subseteq[\operatorname{rng} f, \operatorname{rng} g:]$,
for $f, g$ being Function st $\operatorname{dom} f=\operatorname{dom} g \& \operatorname{rng} f \subseteq Y \& \operatorname{rng} g \subseteq Z$

$$
\begin{equation*}
\text { holds } \pi_{1}(Y, Z) \cdot[(f, g)]=f \& \pi_{2}(Y, Z) \cdot[(f, g)]=g \tag{72}
\end{equation*}
$$

$$
\begin{gather*}
{\left[\left(\pi_{1}(X, Y), \pi_{2}(X, Y)\right)\right]=\operatorname{id}[: X, Y:]}  \tag{73}\\
\quad \text { for } f, g, h, k \text { being Function } \tag{74}
\end{gather*}
$$

st $\operatorname{dom} f=\operatorname{dom} g \& \operatorname{dom} k=\operatorname{dom} h \&[(f, g)]=[(k, h)]$ holds $f=k \& g=h$,

> for $f, g, h$ being Function holds $[(f \cdot h, g \cdot h)]=[(f, g)] \cdot h$,
> for $f, g$ being Function holds $[(f, g)]^{\circ} A \subseteq\left[: f^{\circ} A, g^{\circ} A\right]$,
> for $f, g$ being Function holds $[(f, g)]^{-1}\left[: B, C:=f^{-1} B \cap g^{-1} C\right.$,
for $f$ being Function of $X, Y$ for $g$ being Function of $X, Z$ st $(Y=\emptyset$ implies $X=\emptyset) \&(Z=\emptyset$ implies $X=\emptyset)$
holds $[(f, g)]$ is Function of $X,[Y, Z]$.
The arguments of the notions defined below are the following: $X, D 1, D 2$ which are objects of the type reserved above; $f 1$ which is an object of the type Function of $X$, $D 1 ; f 2$ which is an object of the type Function of $X, D 2$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
[(f 1, f 2)] \quad \text { is } \quad \text { Function of } X,:: D 1, D 2] .
$$

We now state several propositions:
(79) for $f 1$ being Function of $C, D 1$ for $f 2$ being Function of $C, D 2$

$$
\text { for } c \text { being Element of } C \text { holds }[(f 1, f 2)] . c=\langle f 1 . c, f 2 . c\rangle
$$

(80) $\quad$ for $f$ being Function of $X, Y$ for $g$ being Function of $X, Z$ st $(Y=\emptyset$ implies $X=\emptyset) \&(Z=\emptyset$ implies $X=\emptyset)$ holds rng $[(f, g)] \subseteq[: Y, Z]$,
(81) for $f$ being Function of $X, Y$ for $g$ being Function of $X, Z$ st

$$
(Y=\emptyset \text { implies } X=\emptyset) \&(Z=\emptyset \text { implies } X=\emptyset)
$$

holds $\pi_{1}(Y, Z) \cdot[(f, g)]=f \& \pi_{2}(Y, Z) \cdot[(f, g)]=g$,
for $f$ being Function of $X, D 1$ for $g$ being Function of $X, D 2$
holds $\pi_{1}(D 1, D 2) \cdot[(f, g)]=f \& \pi_{2}(D 1, D 2) \cdot[(f, g)]=g$,
(83) for $f 1, f 2$ being Function of $X, Y$ for $g 1, g 2$ being Function of $X, Z$ st $(Y=\emptyset$ implies $X=\emptyset) \&(Z=\emptyset$ implies $X=\emptyset) \&[(f 1, g 1)]=[(f 2, g 2)]$ holds $f 1=f 2 \& g 1=g 2$,
(84) for $f 1, f 2$ being Function of $X, D 1$ for $g 1, g 2$ being Function of $X, D 2$ st $[(f 1, g 1)]=[(f 2, g 2)]$ holds $f 1=f 2 \& g 1=g 2$.

Let $f, g$ have the type Function. The functor

$$
[: f, g:],
$$

yields the type Function and is defined by

$$
\begin{gathered}
\operatorname{dom} \mathbf{i t}=[\operatorname{dom} f, \operatorname{dom} g] \\
\& \text { for } x, y \text { st } x \in \operatorname{dom} f \& y \in \operatorname{dom} g \text { holds it. }\langle x, y\rangle=\langle f . x, g . y\rangle .
\end{gathered}
$$

The following propositions are true:
(85) for $f, g, f g$ being Function holds $f g=[: f, g]$ iff $\operatorname{dom} f g=[\operatorname{dom} f, \operatorname{dom} g$ : $\&$ for $x, y$ st $x \in \operatorname{dom} f \& y \in \operatorname{dom} g$ holds $f g .\langle x, y\rangle=\langle f . x, g . y\rangle$,
for $f, g$ being Function, $x, y$

$$
\text { st }\langle x, y\rangle \in[: \operatorname{dom} f, \operatorname{dom} g] \text { holds }: f, g: \cdot\langle x, y\rangle=\langle f \cdot x, g . y\rangle,
$$

for $f, g$ being Function
holds $: f, g:=\left[\left(f \cdot \pi_{1}(\operatorname{dom} f, \operatorname{dom} g), g \cdot \pi_{2}(\operatorname{dom} f, \operatorname{dom} g)\right)\right]$, for $f, g$ being Function holds $\operatorname{rng}:: f, g ;=[: \operatorname{rng} f, \operatorname{rng} g:]$,
for $f, g$ being Function st $\operatorname{dom} f=X \& \operatorname{dom} g=X$ holds $[(f, g)]=[: f, g:] \cdot(\delta X)$,

$$
[\operatorname{id} X, \operatorname{id} Y:=\operatorname{id}[: X, Y:]
$$

for $f, g, h, k$ being Function holds $: f, h:] \cdot[(g, k)]=[(f \cdot g, h \cdot k)]$, for $f, g, h, k$ being Function holds $: f, h:] \cdot: g, k:]=: f \cdot g, h \cdot k:$, for $f, g$ being Function holds $\left.: f, g:]^{\circ}: B, C:\right]=\left[: f^{\circ} B, g^{\circ} C:\right]$, for $f, g$ being Function holds $\left.: f, g]^{-1}: B, C:\right]=\left[: f^{-1} B, g^{-1} C:\right]$,
for $f$ being Function of $X, Y$ for $g$ being Function of $V, Z$ st $(Y=\emptyset$ implies $X=\emptyset) \&(Z=\emptyset$ implies $V=\emptyset)$ holds $: f, g:]$ is Function of $: X, V],: Y, Z:]$.

The arguments of the notions defined below are the following: $X 1, X 2, D 1, D 2$ which are objects of the type reserved above; $f 1$ which is an object of the type Function of $X 1, D 1 ; f 2$ which is an object of the type Function of $X 2, D 2$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
[: f 1, f 2: \quad \text { is } \quad \text { Function of }[: X 1, X 2],:[D 1, D 2] .
$$

One can prove the following propositions:
(96) for $f 1$ being Function of $C 1, D 1$ for $f 2$ being Function of $C 2, D 2$
for $c 1$ being Element of $C 1$
for $c 2$ being Element of $C 2$ holds : $f 1, f 2\rceil \cdot\langle c 1, c 2\rangle=\langle f 1 . c 1, f 2 . c 2\rangle$,
(97) for $f 1$ being Function of $X 1, Y 1$ for $f 2$ being Function of $X 2, Y 2$ st $(Y 1=\emptyset$ implies $X 1=\emptyset) \&(Y 2=\emptyset$ implies $X 2=\emptyset)$

$$
\text { holds : } f 1, f 2 \mathrm{f}]=\left[\left(f 1 \cdot \pi_{1}(X 1, X 2), f 2 \cdot \pi_{2}(X 1, X 2)\right)\right],
$$

(98) for $f 1$ being Function of $X 1, D 1$ for $f 2$ being Function of $X 2, D 2$

$$
\text { holds }: f 1, f 2:]=\left[\left(f 1 \cdot \pi_{1}(X 1, X 2), f 2 \cdot \pi_{2}(X 1, X 2)\right)\right],
$$

(99) for $f 1$ being Function of $X, Y 1$ for $f 2$ being Function of $X, Y 2$ st $(Y 1=\emptyset$ implies $X=\emptyset) \&(Y 2=\emptyset$ implies $X=\emptyset)$ holds $[(f 1, f 2)]=[: f 1, f 2] \cdot(\delta X)$, for $f 1$ being Function of $X, D 1$ for $f 2$ being Function of $X, D 2$ holds $[(f 1, f 2)]=\lceil: f 1, f 2] \cdot(\delta X)$.

## References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1, 1990.
[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[4] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.


[^0]:    ${ }^{1}$ Supported by RPBP.III-24.C1.

