Basic Functions and Operations on Functions

Czesław Byliński¹ Warsaw University Białystok

Summary. We define the following mappings: the characteristic function of a subset of a set, the inclusion function (injection or embedding), the projections from a Cartesian product onto its arguments and diagonal function (inclusion of a set into its Cartesian square). Some operations on functions are also defined: the products of two functions (the complex function and the more general product-function), the function induced on power sets by the image and inverse-image. Some simple propositions related to the introduced notions are proved.

The terminology and notation used in this paper are introduced in the following papers: [3], [4], [1], and [2]. For simplicity we adopt the following convention: x, y, z, z1, z2 denote objects of the type Any; A, B, V, X, X1, X2, Y, Y1, Y2, Z denote objects of the type set; C, C1, C2, D, D1, D2 denote objects of the type DOMAIN. We now state several propositions:

(1)
$$A \subseteq Y$$
 implies $\operatorname{id} A = (\operatorname{id} Y) \mid A$,

(2) for
$$f,g$$
 being Function st $X \subseteq \text{dom}(g \cdot f)$ holds $f \circ X \subseteq \text{dom} g$,

(3) for
$$f,g$$
 being Function

st
$$X \subseteq \operatorname{dom} f \& f \circ X \subseteq \operatorname{dom} g$$
 holds $X \subseteq \operatorname{dom} (g \cdot f)$,

(4) for
$$f,g$$
 being Function

st
$$Y \subseteq \operatorname{rng}(g \cdot f)$$
 & g is_one-to-one holds $g^{-1} Y \subseteq \operatorname{rng} f$,

(5) for
$$f,g$$
 being Function st $Y \subseteq \operatorname{rng} g \& g^{-1} Y \subseteq \operatorname{rng} f$ holds $Y \subseteq \operatorname{rng} (g \cdot f)$.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

¹Supported by RPBP.III-24.C1.

CZESŁAW BYLIŃSKI

In the article we present several logical schemes. The scheme $FuncEx_3$ concerns a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set and a ternary predicate \mathcal{P} and states that the following holds

$\mathbf{ex} f$ being Function

st dom
$$f = [\mathcal{A}, \mathcal{B}]$$
 & for x, y st $x \in \mathcal{A}$ & $y \in \mathcal{B}$ holds $\mathcal{P}[x, y, f. \langle x, y \rangle]$

provided the parameters satisfy the following conditions:

• for x, y, z1, z2 st $x \in \mathcal{A}$ & $y \in \mathcal{B}$ & $\mathcal{P}[x, y, z1]$ & $\mathcal{P}[x, y, z2]$ holds z1 = z2,

• for
$$x, y$$
 st $x \in \mathcal{A}$ & $y \in \mathcal{B}$ ex z st $\mathcal{P}[x, y, z]$.

The scheme Lambda_3 concerns a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set and a binary functor \mathcal{F} and states that the following holds

$\mathbf{ex} f$ being Function

st dom
$$f = [\mathcal{A}, \mathcal{B}]$$
 & for x, y st $x \in \mathcal{A}$ & $y \in \mathcal{B}$ holds $f \cdot \langle x, y \rangle = \mathcal{F}(x, y)$

for all values of the parameters.

We now state a proposition

(6) for
$$f,g$$
 being Function st

$$\operatorname{dom} f = [X, Y]$$
& dom $g = [X, Y]$ & for x, y st $x \in X$ & $y \in Y$ holds $f \cdot \langle x, y \rangle = g \cdot \langle x, y \rangle$
holds $f = g$.

Let f have the type Function. The functor

$$^{\circ}f,$$

yields the type Function and is defined by

dom it = bool dom
$$f$$
 & for X st $X \in$ bool dom f holds it $X = f \circ X$.

The following propositions are true:

(7) **for**
$$f, g$$
 being Function holds $g = {}^{\circ} f$

iff dom $g = \text{bool dom } f \& \text{ for } X \text{ st } X \in \text{bool dom } f \text{ holds } g.X = f^{\circ} X$,

(8) for
$$f$$
 being Function st $X \in \operatorname{dom}({}^{\circ} f)$ holds $({}^{\circ} f).X = f {}^{\circ} X$,

(9) **for**
$$f$$
 being Function holds (${}^{\circ} f$). $\emptyset = \emptyset$,

(10) for
$$f$$
 being Function holds $\operatorname{rng}(^{\circ} f) \subseteq \operatorname{boolrng} f$,

(11) for f being Function

holds $Y \in ({}^{\circ} f) {}^{\circ} A$ iff ex X st $X \in \text{dom}({}^{\circ} f) \& X \in A \& Y = ({}^{\circ} f).X$,

246

BASIC FUNCTIONS AND OPERATIONS ON ...

- (12) for f being Function holds (° f) ° $A \subseteq$ boolrng f,
- (13) for f being Function holds (° f) ⁻¹ $B \subseteq$ bool dom f,
- (14) for f being Function of X, D holds $(^{\circ} f)^{-1} B \subseteq \text{bool } X$,
- (15) **for** f **being** Function holds $\bigcup (({}^{\circ} f) {}^{\circ} A) \subseteq f {}^{\circ} (\bigcup A),$
- (16) for f being Function st $A \subseteq \text{bool dom } f$ holds $f^{\circ} (\bigcup A) = \bigcup ((\circ f) \circ A),$
- (17) for f being Function of X, D st $A \subseteq \text{bool } X$ holds $f^{\circ} (\bigcup A) = \bigcup ((\circ f) \circ A),$
- (18) for f being Function holds $\bigcup (({}^{\circ} f) {}^{-1} B) \subseteq f {}^{-1} (\bigcup B),$
- (19) for f being Function st $B \subseteq \text{boolrng } f$ holds $f^{-1}(\bigcup B) = \bigcup ((\circ f)^{-1} B),$

(20) **for**
$$f,g$$
 being Function holds $\circ (g \cdot f) = \circ g \cdot \circ f$

- (21) for f being Function holds $^{\circ} f$ is Function of bool dom f, bool rng f,
- (22) for f being Function of X, Y

st $Y = \emptyset$ implies $X = \emptyset$ holds ^o f is Function of bool X, bool Y.

The arguments of the notions defined below are the following: X, D which are objects of the type reserved above; f which is an object of the type Function of X, D. Let us note that it makes sense to consider the following functor on a restricted area. Then

^o f is Function of bool X, bool D.

Let f have the type Function. The functor

 $^{-1}f,$

yields the type Function and is defined by

(26)

dom it = bool rng f & for Y st $Y \in$ bool rng f holds it $Y = f^{-1} Y$.

We now state a number of propositions:

(23) for g, f being Function holds

$$g = {}^{-1} f$$
 iff dom $g = \text{bool rng } f \& \text{ for } Y \text{ st } Y \in \text{bool rng } f \text{ holds } g.Y = f {}^{-1} Y$

(24) for
$$f$$
 being Function st $Y \in \operatorname{dom}({}^{-1}f)$ holds $({}^{-1}f).Y = f{}^{-1}Y$,

(25) for
$$f$$
 being Function holds $\operatorname{rng}({}^{-1}f) \subseteq \operatorname{bool} \operatorname{dom} f$,

for f being Function

holds $X \in ({}^{-1} f) \circ A$ iff ex Y st $Y \in \text{dom}({}^{-1} f) \& Y \in A \& X = ({}^{-1} f).Y$,

CZESŁAW BYLIŃSKI

(27) for f being Function holds
$$({}^{-1}f) {}^{\circ} B \subseteq \text{booldom} f$$
,
(28) for f being Function holds $({}^{-1}f) {}^{-1}A \subseteq \text{boolrng} f$,
(29) for f being Function holds $\bigcup (({}^{-1}f) {}^{\circ}B) \subseteq f {}^{-1}(\bigcup B)$,
(30) for f being Function st $B \subseteq \text{boolrng} f$ holds $\bigcup (({}^{-1}f) {}^{\circ}B) = f {}^{-1}(\bigcup B)$,
(31) for f being Function holds $\bigcup (({}^{-1}f) {}^{-1}A) \subseteq f {}^{\circ}(\bigcup A)$,
(32) for f being Function holds $\bigcup (({}^{-1}f) {}^{-1}A) = f {}^{\circ}(\bigcup A)$,
(33) for f being Function holds $({}^{-1}f) {}^{\circ}B \subseteq ({}^{\circ}f) {}^{-1}B$,
(34) for f being Function st f is_one-to-one holds $({}^{-1}f) {}^{\circ}B = ({}^{\circ}f) {}^{-1}B$,
(35) for f being Function, A being set
st $A \subseteq \text{bool dom } f$ holds $({}^{-1}f) {}^{-1}A \subseteq ({}^{\circ}f) {}^{\circ}A$,
(36) for f being Function, A being set
st f is_one-to-one holds $({}^{\circ}f) {}^{\circ}A \subseteq ({}^{-1}f) {}^{-1}A$,
(37) for f being Function, A being set
st f is_one-to-one & $A \subseteq \text{bool dom } f$ holds $({}^{-1}f) {}^{-1}A = ({}^{\circ}f) {}^{\circ}A$,
(38) for f,g being Function st g is_one-to-one holds ${}^{-1}(g {}^{\circ}f) {}^{\circ}A$,

(39) for f being Function holds $^{-1} f$ is Function of boolrng f, bool dom f.

Let us consider A, X. The functor

$$\chi(A,X),$$

yields the type Function and is defined by

$$\operatorname{dom} \mathbf{it} = X$$

& for x st $x \in X$ holds ($x \in A$ implies it x = 1) & (not $x \in A$ implies it x = 0).

We now state a number of propositions:

(40) for f being Function holds
$$f = \chi(A, X)$$
 iff dom $f = X$ & for x
st $x \in X$ holds $(x \in A \text{ implies } f.x = 1)$ & $(\text{not } x \in A \text{ implies } f.x = 0)$,

(41) $A \subseteq X \& x \in A \text{ implies } \chi(A, X).x = 1,$

(42)
$$x \in X \& \chi(A, X) . x = 1 \text{ implies } x \in A,$$

248

(43)
$$x \in X \setminus A \text{ implies } \chi(A, X). x = 0,$$

(44) $x \in X \& \chi(A, X) . x = 0 \text{ implies not } x \in A,$

(45)
$$x \in X$$
 implies $\chi(\emptyset, X) \cdot x = 0$,

(46)
$$x \in X$$
 implies $\chi(X, X).x = 1$,

(47)
$$A \subseteq X \& B \subseteq X \& \chi(A, X) = \chi(B, X) \text{ implies } A = B,$$

(48)
$$\operatorname{rng} \chi \left(A, X \right) \subseteq \{ 0, 1 \},$$

(49) for f being Function of X,
$$\{0,1\}$$
 holds $f = \chi(f^{-1}\{1\},X)$.

Let us consider A, X. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$\chi(A, X)$$
 is Function of $X, \{0,1\}$.

One can prove the following propositions:

(50) for d being Element of D holds $\chi(A, D).d = 1$ iff $d \in A$,

(51) for d being Element of D holds $\chi(A, D).d = 0$ iff not $d \in A$.

The arguments of the notions defined below are the following: Y which is an object of the type reserved above; A which is an object of the type Subset of Y. The functor

 $\operatorname{incl} A$,

yields the type Function of A, Y and is defined by

$$\mathbf{it} = \mathrm{id} A.$$

We now state several propositions:

- (52) for A being Subset of Y holds $\operatorname{incl} A = \operatorname{id} A$,
- (53) for A being Subset of Y holds $\operatorname{incl} A = (\operatorname{id} Y) \mid A$,
- (54) for A being Subset of Y holds domincl A = A & rng incl A = A,

(55) for A being Subset of Y st
$$x \in A$$
 holds (incl A). $x = x$,

(56) for A being Subset of Y st
$$x \in A$$
 holds $incl(A) \cdot x \in Y$.

We now define two new functors. Let us consider X, Y. The functor

 $\pi_1(X,Y),$

with values of the type Function, is defined by

dom
$$\mathbf{it} = [X, Y]$$
 & for x, y st $x \in X$ & $y \in Y$ holds $\mathbf{it} \cdot \langle x, y \rangle = x$.

The functor

 $\pi_2(X,Y),$

yields the type Function and is defined by

dom it =
$$[X, Y]$$
 & for x, y st $x \in X$ & $y \in Y$ holds it $\langle x, y \rangle = y$.

Next we state several propositions:

(57) for f being Function holds
$$f = \pi_1(X, Y)$$

iff dom $f = [X, Y]$ & for x, y st $x \in X$ & $y \in Y$ holds $f \cdot \langle x, y \rangle = x$,

(58) for
$$f$$
 being Function holds $f = \pi_2(X, Y)$
iff dom $f = [X, Y]$ & for x, y st $x \in X$ & $y \in Y$ holds $f \cdot \langle x, y \rangle = y$,

(59)
$$\operatorname{rng} \pi_1(X, Y) \subseteq X,$$

(60)
$$Y \neq \emptyset$$
 implies $\operatorname{rng} \pi_1(X, Y) = X$,

(61)
$$\operatorname{rng} \pi_2(X, Y) \subseteq Y,$$

(62)
$$X \neq \emptyset$$
 implies $\operatorname{rng} \pi_2(X, Y) = Y$.

Let us consider X, Y. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$\pi_1(X, Y)$$
 is Function of $[X, Y], X$,
 $\pi_2(X, Y)$ is Function of $[X, Y], Y$.

We now state two propositions:

(63) for
$$d1$$
 being Element of $D1$

for d2 being Element of D2 holds $\pi_1(D1,D2).\langle d1,d2\rangle = d1$,

(64) for
$$d1$$
 being Element of $D1$

for d2 being Element of D2 holds $\pi_2(D1,D2).\langle d1,d2 \rangle = d2.$

Let us consider X. The functor

 δX ,

with values of the type Function, is defined by

dom it = X & for x st
$$x \in X$$
 holds it $x = \langle x, x \rangle$.

The following two propositions are true:

(65) for f being Function
holds
$$f = \delta X$$
 iff dom $f = X$ & for x st $x \in X$ holds $f \cdot x = \langle x, x \rangle$,

(66)
$$\operatorname{rng} \delta X \subseteq [X, X].$$

Let us consider X. Let us note that it makes sense to consider the following functor on a restricted area. Then

 δX is Function of X, [X, X].

Let f, g have the type Function. The functor

[[f,g]],

with values of the type Function, is defined by

dom it = dom
$$f \cap$$
 dom g & for x st $x \in$ dom it holds it $x = \langle f . x, g . x \rangle$.

We now state a number of propositions:

(67) for
$$f,g,fg$$
 being Function holds $fg = [(f,g)]$
iff dom $fg = \text{dom } f \cap \text{dom } g$ & for x st $x \in \text{dom } fg$ holds $fg.x = \langle f.x,g.x \rangle$,

(68) for
$$f,g$$
 being Function st $x \in \text{dom } f \cap \text{dom } g$ holds $[(f,g)].x = \langle f.x,g.x \rangle$,

(69) for
$$f,g$$
 being Function

st dom
$$f = X$$
 & dom $g = X$ & $x \in X$ holds $[(f, g)] \cdot x = \langle f \cdot x, g \cdot x \rangle$,

(70) for
$$f,g$$
 being Function st dom $f = X \& \text{dom } g = X$ holds dom $[(f,g)] = X$,

(71) **for**
$$f,g$$
 being Function holds $\operatorname{rng}[(f,g)] \subseteq [\operatorname{rng} f,\operatorname{rng} g],$

(72) **for**
$$f,g$$
 being Function **st** dom $f = \text{dom } g \& \text{rng } f \subseteq Y \& \text{rng } g \subseteq Z$
holds $\pi_1(Y,Z) \cdot [(f,g)] = f \& \pi_2(Y,Z) \cdot [(f,g)] = g,$

(73)
$$[[\pi_1(X,Y),\pi_2(X,Y)]] = \mathrm{id} [X,Y],$$

(74) for
$$f,g,h,k$$
 being Function

st dom
$$f = \text{dom } g \& \text{dom } k = \text{dom } h \& [[f, g]] = [[k, h]]$$
 holds $f = k \& g = h$,

(75) **for**
$$f,g,h$$
 being Function holds $[[f \cdot h,g \cdot h]] = [[f,g]] \cdot h$,

(76) for
$$f,g$$
 being Function holds $[(f,g)] \circ A \subseteq [f \circ A, g \circ A],$

(77) **for**
$$f,g$$
 being Function **holds** $[[f,g]]^{-1} [B,C] = f^{-1} B \cap g^{-1} C$,

CZESŁAW BYLIŃSKI

(78) for f being Function of X, Y for g being Function of X, Z st

$$(Y = \emptyset \text{ implies } X = \emptyset) \& (Z = \emptyset \text{ implies } X = \emptyset)$$

holds $[(f, g)]$ is Function of X, $[Y, Z]$.

The arguments of the notions defined below are the following: X, D1, D2 which are objects of the type reserved above; f1 which is an object of the type Function of X, D1; f^2 which is an object of the type Function of X, D2. Let us note that it makes sense to consider the following functor on a restricted area. Then

> [(f1, f2)]is Function of X, [D1, D2].

We now state several propositions:

(79) for
$$f1$$
 being Function of C , $D1$ for $f2$ being Function of C , $D2$
for c being Element of C holds $[(f1,f2)] \cdot c = \langle f1.c, f2.c \rangle$,

(80) for
$$f$$
 being Function of X, Y for g being Function of X, Z st
 $(Y = \emptyset \text{ implies } X = \emptyset) \& (Z = \emptyset \text{ implies } X = \emptyset) \text{ holds } \operatorname{rng} [[f, g]] \subseteq [Y, Z],$

(81) for f being Function of X, Y for g being Function of X, Z st

$$(Y = \emptyset \text{ implies } X = \emptyset) \& (Z = \emptyset \text{ implies } X = \emptyset)$$
holds $\pi_1(Y, Z) \cdot [(f, g)] = f \& \pi_2(Y, Z) \cdot [(f, g)] = g$,

(82) for f being Function of X, D1 for g being Function of X, D2
holds
$$\pi_1 (D1, D2) \cdot [(f, g)] = f \& \pi_2 (D1, D2) \cdot [(f, g)] = g,$$

(83) for
$$f1, f2$$
 being Function of X, Y for $g1, g2$ being Function of X, Z st
 $(Y = \emptyset \text{ implies } X = \emptyset) \& (Z = \emptyset \text{ implies } X = \emptyset) \& [[f1, g1]] = [[f2, g2]]$
holds $f1 = f2 \& g1 = g2$,

(84) for
$$f1, f2$$
 being Function of $X, D1$ for $g1, g2$ being Function of $X, D2$
st $[(f1, g1)] = [(f2, g2)]$ holds $f1 = f2 \& g1 = g2$.

Let f, g have the type Function. The functor

[f, g],

yields the type Function and is defined by

$$\operatorname{dom} \mathbf{it} = [\operatorname{dom} f, \operatorname{dom} g]$$

$$\operatorname{dom} \mathbf{it} = [\operatorname{dom} f, \operatorname{dom} g]$$
& for x,y st $x \in \operatorname{dom} f$ & $y \in \operatorname{dom} g$ holds $\mathbf{it} . \langle x, y \rangle = \langle f . x, g . y \rangle$.

The following propositions are true:

(85) **for**
$$f,g,fg$$
 being Function holds $fg = [f,g]$ **iff** dom $fg = [\text{dom } f,\text{dom } g]$
& **for** x,y **st** $x \in \text{dom } f$ & $y \in \text{dom } g$ **holds** $fg.\langle x,y \rangle = \langle f.x,g.y \rangle$,

252

(86) **for**
$$f,g$$
 being Function, x,y
st $\langle x, y \rangle \in [\text{dom } f \text{ dom } g]$ **bolds** $[f, g] \langle x, y \rangle = \langle f, x, g \rangle$

$$\mathbf{st} \langle x, y \rangle \in [\operatorname{dom} f, \operatorname{dom} g] \text{ holds } [f, g]. \langle x, y \rangle = \langle f. x, g. y \rangle,$$

for f,g being Function

$$\mathbf{holds} \ [f,g] = [(f \cdot \pi_1 \ (\mathrm{dom} \ f, \mathrm{dom} \ g), g \cdot \pi_2 \ (\mathrm{dom} \ f, \mathrm{dom} \ g))].$$

(88) **for**
$$f,g$$
 being Function **holds** rng $[f,g] = [rng f, rng g]$

for
$$f,g$$
 being Function

st dom
$$f = X$$
 & dom $g = X$ holds $\llbracket (f,g) \rrbracket = \llbracket f,g \rrbracket \cdot (\delta X),$

(90)
$$[\operatorname{id} X, \operatorname{id} Y] = \operatorname{id} [X, Y],$$

(87)

(89)

- (91) for f,g,h,k being Function holds $[f,h] \cdot [[g,k]] = [[f \cdot g,h \cdot k]],$
- (92) **for** f,g,h,k **being** Function holds $[f,h] \cdot [g,k] = [f \cdot g,h \cdot k],$

(93) for
$$f,g$$
 being Function holds $[f,g] \circ [B,C] = [f \circ B,g \circ C],$

(94) for
$$f,g$$
 being Function holds $[f,g]^{-1}[B,C] = [f^{-1}B,g^{-1}C],$

(95) for
$$f$$
 being Function of X, Y for g being Function of V, Z st
 $(Y = \emptyset \text{ implies } X = \emptyset) \& (Z = \emptyset \text{ implies } V = \emptyset)$
holds $[f, g]$ is Function of $[X, V], [Y, Z]$.

The arguments of the notions defined below are the following: X1, X2, D1, D2 which are objects of the type reserved above; f1 which is an object of the type Function of X1, D1; f2 which is an object of the type Function of X2, D2. Let us note that it makes sense to consider the following functor on a restricted area. Then

[f1, f2] is Function of [X1, X2], [D1, D2].

One can prove the following propositions:

```
(96) for f1 being Function of C1, D1 for f2 being Function of C2, D2
for c1 being Element of C1
for c2 being Element of C2 holds [f1, f2], \langle c1, c2 \rangle = \langle f1.c1, f2.c2 \rangle,
```

(97) for
$$f1$$
 being Function of $X1,Y1$ for $f2$ being Function of $X2,Y2$ st
 $(Y1 = \emptyset \text{ implies } X1 = \emptyset) \& (Y2 = \emptyset \text{ implies } X2 = \emptyset)$
holds $[f1,f2] = [(f1 \cdot \pi_1 (X1,X2), f2 \cdot \pi_2 (X1,X2))],$

(98) for f1 being Function of X1,D1 for f2 being Function of X2,D2 holds $[f1,f2] = [(f1 \cdot \pi_1 (X1,X2), f2 \cdot \pi_2 (X1,X2))],$

```
CZESŁAW BYLIŃSKI
```

(99) for f1 being Function of X, Y1 for f2 being Function of X, Y2 st

$$(Y1 = \emptyset \text{ implies } X = \emptyset) \& (Y2 = \emptyset \text{ implies } X = \emptyset)$$

holds $[[f1, f2]] = [f1, f2] \cdot (\delta X),$

(100) for f1 being Function of X, D1

for f2 being Function of X, D2 holds $[[f1, f2]] = [f1, f2] \cdot (\delta X)$.

References

- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
- [2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1, 1990.
- [3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
- [4] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Received May 9, 1989