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Summary. We define the following mappings: the characteristic function of a
subset of a set, the inclusion function (injection or embedding), the projections from
a Cartesian product onto its arguments and diagonal function (inclusion of a set into
its Cartesian square). Some operations on functions are also defined: the products
of two functions (the complex function and the more general product-function),
the function induced on power sets by the image and inverse-image. Some simple
propositions related to the introduced notions are proved.

The terminology and notation used in this paper are introduced in the following papers:

[3], [4], [1], and [2]. For simplicity we adopt the following convention: x, y, z, z1, z2

denote objects of the type Any; A, B, V , X , X1, X2, Y , Y 1, Y 2, Z denote objects of

the type set; C, C1, C2, D, D1, D2 denote objects of the type DOMAIN. We now

state several propositions:

(1) A ⊆ Y implies id A = (id Y ) | A,

(2) for f,g being Function st X ⊆ dom (g · f) holds f ◦ X ⊆ dom g,

(3) for f,g being Function

st X ⊆ dom f & f ◦ X ⊆ dom g holds X ⊆ dom (g · f),

(4) for f,g being Function

st Y ⊆ rng (g · f) & g is one-to-one holds g -1 Y ⊆ rng f,

(5) for f,g being Function st Y ⊆ rng g & g -1 Y ⊆ rng f holds Y ⊆ rng (g · f).

1Supported by RPBP.III-24.C1.
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In the article we present several logical schemes. The scheme FuncEx 3 concerns a

constant A that has the type set, a constant B that has the type set and a ternary

predicate P and states that the following holds

ex f being Function

st dom f = [:A,B:] & forx,y st x ∈ A & y ∈ B holds P [x, y, f .〈x, y〉]

provided the parameters satisfy the following conditions:

• forx,y,z1,z2 st x ∈ A & y ∈ B & P [x, y, z1] & P [x, y, z2] holds z1 = z2,

• forx,y st x ∈ A & y ∈ B ex z st P [x, y, z].

The scheme Lambda 3 concerns a constant A that has the type set, a constant B

that has the type set and a binary functor F and states that the following holds

ex f being Function

st dom f = [:A,B:] & forx,y st x ∈ A & y ∈ B holds f .〈x, y〉 = F(x, y)

for all values of the parameters.

We now state a proposition

(6) for f,g being Function st

dom f = [:X, Y :]

& dom g = [:X, Y :] & forx,y st x ∈ X & y ∈ Y holds f .〈x, y〉 = g.〈x, y〉

holds f = g.

Let f have the type Function. The functor

◦ f,

yields the type Function and is defined by

dom it = bool dom f & forX st X ∈ bool dom f holds it.X = f ◦ X.

The following propositions are true:

(7) for f,g being Function holds g = ◦ f

iff dom g = bool dom f & forX st X ∈ bool dom f holds g.X = f ◦ X,

(8) for f being Function st X ∈ dom (◦ f) holds (◦ f).X = f ◦ X,

(9) for f being Function holds (◦ f).∅ = ∅,

(10) for f being Function holds rng (◦ f) ⊆ bool rng f,

(11) for f being Function

holds Y ∈ (◦ f) ◦ A iff exX st X ∈ dom (◦ f) & X ∈ A & Y = (◦ f).X,
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(12) for f being Function holds (◦ f) ◦ A ⊆ bool rng f,

(13) for f being Function holds (◦ f) -1 B ⊆ bool dom f,

(14) for f being Function of X, D holds (◦ f) -1 B ⊆ bool X,

(15) for f being Function holds
⋃

((◦ f) ◦ A) ⊆ f ◦ (
⋃

A),

(16) for f being Function st A ⊆ bool dom f holds f ◦ (
⋃

A) =
⋃

((◦ f) ◦ A),

(17) for f being Function of X, D st A ⊆ bool X holds f ◦ (
⋃

A) =
⋃

((◦ f) ◦ A),

(18) for f being Function holds
⋃

((◦ f) -1 B) ⊆ f -1 (
⋃

B),

(19) for f being Function st B ⊆ bool rng f holds f -1 (
⋃

B) =
⋃

((◦ f) -1 B),

(20) for f,g being Function holds ◦ (g · f) = ◦ g · ◦ f,

(21) for f being Function holds ◦ f is Function of bool dom f,bool rng f,

(22) for f being Function of X, Y

st Y = ∅ implies X = ∅ holds ◦ f is Function of bool X,bool Y.

The arguments of the notions defined below are the following: X , D which are

objects of the type reserved above; f which is an object of the type Function of X , D.

Let us note that it makes sense to consider the following functor on a restricted area.

Then
◦ f is Function of bool X,bool D.

Let f have the type Function. The functor

-1 f,

yields the type Function and is defined by

dom it = bool rng f & forY st Y ∈ bool rng f holds it.Y = f -1 Y.

We now state a number of propositions:

(23) for g,f being Function holds

g = -1 f iff dom g = bool rng f & forY st Y ∈ bool rng f holds g.Y = f -1 Y,

(24) for f being Function st Y ∈ dom (-1 f) holds (-1 f).Y = f -1 Y,

(25) for f being Function holds rng (-1 f) ⊆ bool dom f,

(26) for f being Function

holds X ∈ (-1 f) ◦ A iff exY st Y ∈ dom (-1 f) & Y ∈ A & X = (-1 f).Y,
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(27) for f being Function holds (-1 f) ◦ B ⊆ bool dom f,

(28) for f being Function holds (-1 f) -1 A ⊆ bool rng f,

(29) for f being Function holds
⋃

((-1 f) ◦ B) ⊆ f -1 (
⋃

B),

(30) for f being Function st B ⊆ bool rng f holds
⋃

((-1 f) ◦ B) = f -1 (
⋃

B),

(31) for f being Function holds
⋃

((-1 f) -1 A) ⊆ f ◦ (
⋃

A),

(32) for f being Function

st A ⊆ bool dom f & f is one-to-one holds
⋃

((-1 f) -1 A) = f ◦ (
⋃

A),

(33) for f being Function holds (-1 f) ◦ B ⊆ (◦ f) -1 B,

(34) for f being Function st f is one-to-one holds (-1 f) ◦ B = (◦ f) -1 B,

(35) for f being Function, A being set

st A ⊆ bool dom f holds (-1 f) -1 A ⊆ (◦ f) ◦ A,

(36) for f being Function, A being set

st f is one-to-one holds (◦ f) ◦ A ⊆ (-1 f) -1 A,

(37) for f being Function, A being set

st f is one-to-one & A ⊆ bool dom f holds (-1 f) -1 A = (◦ f) ◦ A,

(38) for f,g being Function st g is one-to-one holds -1 (g · f) = -1 f · -1 g,

(39) for f being Function holds -1 f is Function of bool rng f,bool dom f.

Let us consider A, X . The functor

χ (A, X),

yields the type Function and is defined by

dom it = X

& forx st x ∈ X holds (x ∈ A implies it.x = 1) & (notx ∈ A implies it.x = 0).

We now state a number of propositions:

(40) for f being Function holds f = χ (A, X) iff dom f = X & forx

st x ∈ X holds (x ∈ A implies f .x = 1) & (notx ∈ A implies f .x = 0),

(41) A ⊆ X & x ∈ A implies χ (A, X).x = 1,

(42) x ∈ X & χ (A, X).x = 1 implies x ∈ A,
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(43) x ∈ X \ A implies χ (A, X).x = 0,

(44) x ∈ X & χ (A, X).x = 0 implies notx ∈ A,

(45) x ∈ X implies χ (∅,X).x = 0,

(46) x ∈ X implies χ (X, X).x = 1,

(47) A ⊆ X & B ⊆ X & χ (A, X) = χ (B, X) implies A = B,

(48) rng χ (A, X) ⊆ {0,1},

(49) for f being Function of X, {0,1} holds f = χ (f -1 {1},X).

Let us consider A, X . Let us note that it makes sense to consider the following

functor on a restricted area. Then

χ (A, X) is Function of X, {0,1}.

One can prove the following propositions:

(50) for d being Element of D holds χ (A, D).d = 1 iff d ∈ A,

(51) for d being Element of D holds χ (A, D).d = 0 iff not d ∈ A.

The arguments of the notions defined below are the following: Y which is an object

of the type reserved above; A which is an object of the type Subset of Y . The functor

incl A,

yields the type Function of A, Y and is defined by

it = id A.

We now state several propositions:

(52) forA being Subset of Y holds incl A = id A,

(53) forA being Subset of Y holds incl A = (id Y ) | A,

(54) forA being Subset of Y holds dom incl A = A & rng incl A = A,

(55) forA being Subset of Y st x ∈ A holds (incl A).x = x,

(56) forA being Subset of Y st x ∈ A holds incl (A).x ∈ Y.

We now define two new functors. Let us consider X , Y . The functor

π1 (X, Y ),
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with values of the type Function, is defined by

dom it = [:X, Y :] & forx,y st x ∈ X & y ∈ Y holds it.〈x, y〉 = x.

The functor

π2 (X, Y ),

yields the type Function and is defined by

dom it = [:X, Y :] & forx,y st x ∈ X & y ∈ Y holds it.〈x, y〉 = y.

Next we state several propositions:

(57) for f being Function holds f = π1 (X, Y )

iff dom f = [:X, Y :] & forx,y st x ∈ X & y ∈ Y holds f .〈x, y〉 = x,

(58) for f being Function holds f = π2 (X, Y )

iff dom f = [:X, Y :] & forx,y st x ∈ X & y ∈ Y holds f .〈x, y〉 = y,

(59) rng π1 (X, Y ) ⊆ X,

(60) Y 6= ∅ implies rngπ1 (X, Y ) = X,

(61) rng π2 (X, Y ) ⊆ Y,

(62) X 6= ∅ implies rng π2 (X, Y ) = Y.

Let us consider X , Y . Let us note that it makes sense to consider the following

functors on restricted areas. Then

π1 (X, Y ) is Function of [:X, Y :],X,

π2 (X, Y ) is Function of [:X, Y :],Y.

We now state two propositions:

(63) for d1 being Element of D1

for d2 being Element of D2 holds π1 (D1,D2).〈d1,d2〉 = d1,

(64) for d1 being Element of D1

for d2 being Element of D2 holds π2 (D1,D2).〈d1,d2〉 = d2.

Let us consider X . The functor

δ X,

with values of the type Function, is defined by

dom it = X & forx st x ∈ X holds it.x = 〈x, x〉.
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The following two propositions are true:

(65) for f being Function

holds f = δ X iff dom f = X & forx st x ∈ X holds f .x = 〈x, x〉,

(66) rng δ X ⊆ [:X, X :].

Let us consider X . Let us note that it makes sense to consider the following functor

on a restricted area. Then

δ X is Function of X, [:X, X :].

Let f , g have the type Function. The functor

[(f, g)],

with values of the type Function, is defined by

dom it = dom f ∩ dom g & forx st x ∈ dom it holds it.x = 〈f .x,g.x〉.

We now state a number of propositions:

(67) for f,g,fg being Function holds fg = [(f, g)]

iff dom fg = dom f ∩ dom g & forx st x ∈ dom fg holds fg.x = 〈f .x,g.x〉,

(68) for f,g being Function st x ∈ dom f ∩ dom g holds [(f, g)].x = 〈f .x,g.x〉,

(69) for f,g being Function

st dom f = X & dom g = X & x ∈ X holds [(f, g)].x = 〈f .x,g.x〉,

(70) for f,g being Function st dom f = X & dom g = X holds dom [(f, g)] = X,

(71) for f,g being Function holds rng [(f, g)] ⊆ [:rng f,rng g:],

(72) for f,g being Function st dom f = dom g & rng f ⊆ Y & rng g ⊆ Z

holds π1 (Y, Z) · [(f, g)] = f & π2 (Y, Z) · [(f, g)] = g,

(73) [(π1 (X, Y ),π2 (X, Y ))] = id [:X, Y :],

(74) for f,g,h,k being Function

st dom f = dom g & dom k = dom h & [(f, g)] = [(k, h)] holds f = k & g = h,

(75) for f,g,h being Function holds [(f · h,g · h)] = [(f, g)] · h,

(76) for f,g being Function holds [(f, g)] ◦ A ⊆ [:f ◦ A,g ◦ A:],

(77) for f,g being Function holds [(f, g)] -1 [:B, C:] = f -1 B ∩ g -1 C,
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(78) for f being Function of X, Y for g being Function of X, Z st

(Y = ∅ implies X = ∅) & (Z = ∅ implies X = ∅)

holds [(f, g)] is Function of X, [:Y, Z:].

The arguments of the notions defined below are the following: X , D1, D2 which are

objects of the type reserved above; f1 which is an object of the type Function of X ,

D1; f2 which is an object of the type Function of X , D2. Let us note that it makes

sense to consider the following functor on a restricted area. Then

[(f1,f2)] is Function of X, [:D1,D2:].

We now state several propositions:

(79) for f1 being Function of C, D1 for f2 being Function of C, D2

for c being Element of C holds [(f1,f2)].c = 〈f1.c,f2.c〉,

(80) for f being Function of X, Y for g being Function of X, Z st

(Y = ∅ implies X = ∅) & (Z = ∅ implies X = ∅) holds rng [(f, g)] ⊆ [:Y, Z:],

(81) for f being Function of X, Y for g being Function of X, Z st

(Y = ∅ implies X = ∅) & (Z = ∅ implies X = ∅)

holds π1 (Y, Z) · [(f, g)] = f & π2 (Y, Z) · [(f, g)] = g,

(82) for f being Function of X, D1 for g being Function of X, D2

holds π1 (D1,D2) · [(f, g)] = f & π2 (D1,D2) · [(f, g)] = g,

(83) for f1,f2 being Function of X, Y for g1,g2 being Function of X, Z st

(Y = ∅ implies X = ∅) & (Z = ∅ implies X = ∅) & [(f1,g1)] = [(f2,g2)]

holds f1 = f2 & g1 = g2,

(84) for f1,f2 being Function of X, D1 for g1,g2 being Function of X, D2

st [(f1,g1)] = [(f2,g2)] holds f1 = f2 & g1 = g2.

Let f , g have the type Function. The functor

[:f, g:],

yields the type Function and is defined by

dom it = [:dom f,dom g:]

& forx,y st x ∈ dom f & y ∈ dom g holds it.〈x, y〉 = 〈f .x,g.y〉.

The following propositions are true:

(85) for f,g,fg being Function holds fg = [:f, g:] iff dom fg = [:dom f,dom g:]

& forx,y st x ∈ dom f & y ∈ dom g holds fg.〈x, y〉 = 〈f .x,g.y〉,
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(86) for f,g being Function, x,y

st 〈x, y〉 ∈ [:dom f,dom g:] holds [:f, g:].〈x, y〉 = 〈f .x,g.y〉,

(87) for f,g being Function

holds [:f, g:] = [(f · π1 (dom f,dom g),g · π2 (dom f,dom g))],

(88) for f,g being Function holds rng [:f, g:] = [:rng f,rng g:],

(89) for f,g being Function

st dom f = X & dom g = X holds [(f, g)] = [:f, g:] · (δ X),

(90) [:id X,id Y :] = id [:X, Y :],

(91) for f,g,h,k being Function holds [:f, h:] · [(g, k)] = [(f · g,h · k)],

(92) for f,g,h,k being Function holds [:f, h:] · [:g, k:] = [:f · g,h · k:],

(93) for f,g being Function holds [:f, g:] ◦ [:B, C:] = [:f ◦ B,g ◦ C:],

(94) for f,g being Function holds [:f, g:] -1 [:B, C:] = [:f -1 B,g -1 C:],

(95) for f being Function of X, Y for g being Function of V, Z st

(Y = ∅ implies X = ∅) & (Z = ∅ implies V = ∅)

holds [:f, g:] is Function of [:X, V :],[:Y, Z:].

The arguments of the notions defined below are the following: X1, X2, D1, D2 which

are objects of the type reserved above; f1 which is an object of the type Function of

X1, D1; f2 which is an object of the type Function of X2, D2. Let us note that it

makes sense to consider the following functor on a restricted area. Then

[:f1,f2:] is Function of [:X1,X2:],[:D1,D2:].

One can prove the following propositions:

(96) for f1 being Function of C1,D1 for f2 being Function of C2,D2

for c1 being Element of C1

for c2 being Element of C2 holds [:f1,f2:].〈c1,c2〉 = 〈f1.c1,f2.c2〉,

(97) for f1 being Function of X1,Y 1 for f2 being Function of X2,Y 2 st

(Y 1 = ∅ implies X1 = ∅) & (Y 2 = ∅ implies X2 = ∅)

holds [:f1,f2:] = [(f1 · π1 (X1,X2),f2 · π2 (X1,X2))],

(98) for f1 being Function of X1,D1 for f2 being Function of X2,D2

holds [:f1,f2:] = [(f1 · π1 (X1,X2),f2 · π2 (X1,X2))],
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(99) for f1 being Function of X, Y 1 for f2 being Function of X, Y 2 st

(Y 1 = ∅ implies X = ∅) & (Y 2 = ∅ implies X = ∅)

holds [(f1,f2)] = [:f1,f2:] · (δ X),

(100) for f1 being Function of X, D1

for f2 being Function of X, D2 holds [(f1,f2)] = [:f1,f2:] · (δ X).
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[1] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1,

1990.
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