Functions from a Set to a Set

Czesław Byliński¹ Warsaw University Białystok

Summary. The article is a continuation of [1]. We define the following concepts: a function from a set X into a set Y, denoted by "Function of X,Y", the set of all functions from a set X into a set Y, denoted by Funcs(X,Y), and the permutation of a set (mode Permutation of X, where X is a set). Theorems and schemes included in the article are reformulations of the theorems of [1] in the new terminology. Also some basic facts about functions of two variables are proved.

The notation and terminology used in this paper are introduced in the following articles: [2], [3], and [1]. For simplicity we adopt the following convention: P, Q, X, Y, Y1, Y2, Z will denote objects of the type set; x, x1, x2, y, y1, y2, z, z1, z2 will denote objects of the type Any. Let us consider X, Y. Assume that the following holds

$$Y = \emptyset$$
 implies $X = \emptyset$.

The mode

Function of X, Y,

which widens to the type Function, is defined by

$$X = \operatorname{dom} \mathbf{it} \& \operatorname{rng} \mathbf{it} \subseteq Y.$$

Next we state several propositions:

(1)
$$(Y = \emptyset \text{ implies } X = \emptyset) \text{ implies for } f \text{ being Function}$$

holds f is Function of X, Y iff $X = \text{dom } f \& \text{rng } f \subseteq Y$,

(2) for
$$f$$
 being Function of X, Y

st
$$Y = \emptyset$$
 implies $X = \emptyset$ holds $X = \text{dom } f \& \operatorname{rng} f \subseteq Y$,

(3) for f being Function holds f is Function of dom $f, \operatorname{rng} f$,

¹Supported by RPBP.III-24.C1.

© 1990 Fondation Philippe le Hodey ISSN 0777-4028

CZESŁAW BYLIŃSKI

(4) for f being Function st rng $f \subseteq Y$ holds f is Function of dom f, Y,

(5) for
$$f$$
 being Function

st dom f = X & for x st $x \in X$ holds $f \cdot x \in Y$ holds f is Function of X, Y,

- (6) **for** f **being** Function of X, Y **st** $Y \neq \emptyset$ & $x \in X$ holds $f.x \in \operatorname{rng} f$,
- (7) for f being Function of X, Y st $Y \neq \emptyset \& x \in X$ holds $f . x \in Y$,

(8) for
$$f$$
 being Function of X, Y

```
st (Y = \emptyset implies X = \emptyset) & rng f \subseteq Z holds f is Function of X, Z,
```

```
(9) for f being Function of X, Y
```

st
$$(Y = \emptyset$$
 implies $X = \emptyset)$ & $Y \subseteq Z$ holds f is Function of X, Z .

In the article we present several logical schemes. The scheme FuncEx1 deals with a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set and a binary predicate \mathcal{P} and states that the following holds

```
ex f being Function of \mathcal{A}, \mathcal{B} st for x st x \in \mathcal{A} holds \mathcal{P}[x, f.x]
```

provided the parameters satisfy the following conditions:

- for x st $x \in \mathcal{A}$ ex y st $y \in \mathcal{B}$ & $\mathcal{P}[x, y]$,
- for x, y1, y2 st $x \in \mathcal{A} \& \mathcal{P}[x, y1] \& \mathcal{P}[x, y2]$ holds y1 = y2.

The scheme Lambda1 concerns a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set and a unary functor \mathcal{F} and states that the following holds

ex f being Function of \mathcal{A}, \mathcal{B} st for x st $x \in \mathcal{A}$ holds $f \cdot x = \mathcal{F}(x)$

provided the parameters satisfy the following condition:

• for x st $x \in \mathcal{A}$ holds $\mathcal{F}(x) \in \mathcal{B}$.

Let us consider X, Y. The functor

Funcs (X, Y),

yields the type set and is defined by

 $x \in \mathbf{it} \mathbf{iff} \mathbf{ex} f \mathbf{being}$ Function $\mathbf{st} x = f \& \operatorname{dom} f = X \& \operatorname{rng} f \subseteq Y$.

We now state a number of propositions:

(10) for F being set holds
$$F = Funcs(X, Y)$$
 iff for x

holds $x \in F$ iff ex f being Function st $x = f \& \text{dom } f = X \& \text{rng } f \subseteq Y$,

(11) for f being Function of X, Y
st
$$Y = \emptyset$$
 implies $X = \emptyset$ holds $f \in Funcs (X, Y)$,
(12) for f being Function of \emptyset , X holds $f \in Funcs (\emptyset, X)$,
(13) for f being Function of \emptyset , X holds $f \in Funcs (\emptyset, X)$,
(14) $X \neq \emptyset$ implies Funcs $(X, \emptyset) = \emptyset$,
(15) Funcs $(X, Y) = \emptyset$ implies $X \neq \emptyset \& Y = \emptyset$,
(16) for f being Function of X, Y
st $Y \neq \emptyset \&$ for y st $y \in Y$ ex x st $x \in X \& y = f.x$ holds rng $f = Y$,
(17) for f being Function of X, Y st $y \in Y \& rng f = Y \& x x st x \in X \& f.x = y$,
(18) for $f.1,f2$ being Function of X, Y
st $Y \neq \emptyset \&$ for x st $x \in X$ holds $f.x = f2.x$ holds $f1 = f2$,
(19) for f being Function of X, Y for g being Function of Y, Z st
 $(Z = \emptyset$ implies $Y = \emptyset) \& (Y = \emptyset$ implies $X = \emptyset$)
holds $g \cdot f$ is Function of X, Z,
(20) for f being Function of X, Y for g being Function of Y, Z
st $Y \neq \emptyset \& Z \neq \emptyset \&$ rng $f = Y \&$ rng $g = Z$ holds rng $(g \cdot f) = Z$,
(21) for f being Function of X, Y for g being Function of Y, Z
st $Y \neq \emptyset \& Z \neq \emptyset \& x \in X$ holds $(g \cdot f).x = g.(f.x)$,
(22) for f being Function of X, Y st $Y \neq \emptyset$ holds rng $f = Y$
iff for Z st $Z \neq \emptyset$ for g, h being Function of X, Y
st $Y = \emptyset$ implies $X = \emptyset$ holds $f \cdot (id X) = f \& (idY) \cdot f = f$,
(23) for f being Function of X, Y the $Y = \emptyset$ ind Y holds rng $f = Y$,
(24) for f being Function of X, Y the $\emptyset \& f \cdot g = idY$ holds rng $f = Y$,
(25) for f being Function of X, Y st $Y \neq \emptyset \& f \cdot g = idY$ holds rng $f = Y$,
(26) for f being Function of X, Y the \emptyset implies $X = \emptyset$ holds f is.one-to-one
iff for $x_1.x_2$ st $x_1 \in X \& x_2 \in X \& f.x_1 = f.x_2$ holds $x_1 = x_2$,
(26) for f being Function of X, Y for g being Function of Y, Z st
 $(Z = \emptyset$ implies $Y = \emptyset) \& (Y = \emptyset$ implies $X = \emptyset) \& g \cdot f$ is.one-to-one
holds f is.one-to-one,

CZESŁAW BYLIŃSKI

(27)	for f being Function of X, Y st $X \neq \emptyset$ & $Y \neq \emptyset$ holds f is_one-to-one iff for Z for g,h being Function of Z, X st $f \cdot g = f \cdot h$ holds $g = h$,
(28)	for f being Function of X, Y for g being Function of Y, Z st $Z \neq \emptyset \& Y \neq \emptyset \& \operatorname{rng}(g \cdot f) = Z \& g$ is_one-to-one holds $\operatorname{rng} f = Y$,
(29)	for f being Function of X, Y for g being Function of Y, X st $X \neq \emptyset \& Y \neq \emptyset \& g \cdot f = \operatorname{id} X$ holds f is_one-to-one $\&$ rng $g = X$,
(30)	for f being Function of X, Y for g being Function of Y, Z st $(Z = \emptyset \text{ implies } Y = \emptyset) \& g \cdot f \text{ is_one-to-one } \& \operatorname{rng} f = Y$ holds f is_one-to-one $\& g \text{ is_one-to-one}$,
(31)	for f being Function of X, Y st f is_one-to-one & $(X = \emptyset \text{ iff } Y = \emptyset)$ & rng $f = Y$ holds f^{-1} is Function of Y, X,
(32)	for f being Function of X, Y st $Y \neq \emptyset$ & f is one-to-one & $x \in X$ holds $(f^{-1}).(f.x) = x$,
(33)	for f being Function of X, Y st rng $f = Y$ & f is_one-to-one & $y \in Y$ holds $f.((f^{-1}).y) = y$,
(34)	for f being Function of X, Y for g being Function of Y, X st $X \neq \emptyset \& Y \neq \emptyset \& \operatorname{rng} f = Y$ & f is_one-to-one & for y, x holds $y \in Y \& g. y = x$ iff $x \in X \& f. x = y$ holds $g = f^{-1}$,
(35) for f being Function of X, Y st $Y \neq \emptyset$ & rng $f = Y$ & f is_one-to-one holds $f^{-1} \cdot f = \operatorname{id} X$ & $f \cdot f^{-1} = \operatorname{id} Y$,	
(36)	for f being Function of X, Y for g being Function of Y, X st $X \neq \emptyset \& Y \neq \emptyset \& \operatorname{rng} f = Y \& g \cdot f = \operatorname{id} X \& f$ is_one-to-one holds $g = f^{-1}$,
(37)	for f being Function of X, Y st $Y \neq \emptyset \& \mathbf{ex} g$ being Function of Y, X st $g \cdot f = \operatorname{id} X$ holds f is_one-to-one,
(38)	for f being Function of X, Y st $(Y = \emptyset$ implies $X = \emptyset)$ & $Z \subseteq X$ holds $f \mid Z$ is Function of Z, Y,
(39)	for f being Function of X, Y st $Y \neq \emptyset \& x \in X \& x \in Z$ holds $(f \mid Z).x = f.x$,

(40) for f being Function of X, Y
st
$$(Y = \emptyset$$
 implies $X = \emptyset)$ & $X \subseteq Z$ holds $f | Z = f$,
(41) for f being Function of X, Y
st $Y \neq \emptyset$ & $x \in X$ & $f . x \in Z$ holds $(Z | f) . x = f . x$,
(42) for f being Function of X, Y
st $(Y = \emptyset$ implies $X = \emptyset)$ & $Y \subseteq Z$ holds $Z | f = f$,
(43) for f being Function of X, Y
st $Y \neq \emptyset$ for y holds $y \in f \circ P$ iff ex x st $x \in X$ & $x \in P$ & $y = f . x$,
(44) for f being Function of X, Y st $Y = \emptyset$ implies $X = \emptyset$ holds $f \circ X = \operatorname{rng} f$,
(45) for f being Function of X, Y st $Y = \emptyset$ implies $X = \emptyset$ holds $f \circ X = \operatorname{rng} f$,
(46) for f being Function of X, Y st $Y = \emptyset$ implies $X = \emptyset$ holds $f^{-1} Q \subseteq X$,
(47) for f being Function of X, Y st $Y = \emptyset$ implies $X = \emptyset$ holds $f^{-1} Y = X$,
(48) for f being Function of X, Y st $Y = \emptyset$ implies $X = \emptyset$ holds $f^{-1} Y = X$,
(49) for f being Function of X, Y st $Y = \emptyset$ implies $X = \emptyset$ holds $f^{-1} Y = X$,
(50) for f being Function of X, Y st $Y = \emptyset$ implies $X = \emptyset$ holds $f^{-1} Y = X$,
(51) for f being Function of X, Y st $Y = \emptyset$ implies $X = \emptyset$ holds $f^{-1} Y = X$,
(52) for f being Function of X, Y
st $(Y = \emptyset$ implies $X = \emptyset)$ & $P \subseteq X$ holds $P \subseteq f^{-1}(f \circ P)$,
(53) for f being Function of X, Y
st $(Y = \emptyset$ implies $X = \emptyset)$ bolds $f^{-1} (f \circ X) = X$,
(54) for f being Function of X, Y for g being Function of Y, Z st
 $(Z = \emptyset$ implies $X = \emptyset)$ & $(Y = \emptyset$ implies $X = \emptyset)$
holds $f^{-1} Q \subseteq (g \cdot f)^{-1} (g \circ Q)$,
(54) for f being Function of \emptyset, Y holds dom $f = \emptyset$ & rng $f = \emptyset$,
(55) for f being Function of \emptyset, Y holds dom $f = \emptyset$ & rng $f = \emptyset$,
(56) for f being Function of \emptyset, Y for f being Function of \emptyset, Y , holds f is Function of \emptyset, Y .

CZESŁAW BYLIŃSKI

(57) for f being Function of
$$\emptyset, Y$$
 for g being Function of Y, Z
st $Z = \emptyset$ implies $Y = \emptyset$ holds $g \cdot f$ is Function of \emptyset, Z ,

- (58) for f being Function of \emptyset, Y holds f is_one-to-one,
- (59) for f being Function of \emptyset, Y holds $f \circ P = \emptyset$,

(60) for
$$f$$
 being Function of \emptyset, Y holds $f^{-1}Q = \emptyset$,

- (61) for f being Function of $\{x\}, Y$ st $Y \neq \emptyset$ holds $f \cdot x \in Y$,
- (62) for f being Function of $\{x\}, Y$ st $Y \neq \emptyset$ holds rng $f = \{f.x\}, f \in \mathbb{R}$
- (63) for f being Function of $\{x\}, Y$ st $Y \neq \emptyset$ holds f is_one-to-one,
- (64) for f being Function of $\{x\}, Y$ st $Y \neq \emptyset$ holds $f^{\circ} P \subseteq \{f.x\}, f^{\circ} P \subseteq \{f.x\},$

(65) for
$$f$$
 being Function of $X, \{y\}$ st $x \in X$ holds $f \cdot x = y$,

(66) for
$$f1, f2$$
 being Function of $X, \{y\}$ holds $f1 = f2$

The arguments of the notions defined below are the following: X which is an object of the type reserved above; f, g which are objects of the type Function of X, X. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$g \cdot f$$
 is Function of X, X .

Let us consider X. Let us note that it makes sense to consider the following functor on a restricted area. Then

id
$$X$$
 is Function of X, X .

The following propositions are true:

- (67) for f being Function of X, X holds dom $f = X \& \operatorname{rng} f \subseteq X$,
- (68) for f being Function

st dom f = X & rng $f \subseteq X$ holds f is Function of X, X,

(69) for
$$f$$
 being Function of X, X st $x \in X$ holds $f \cdot x \in X$.

(70) for
$$f,g$$
 being Function of X, X st $x \in X$ holds $(g \cdot f).x = g.(f.x)$,

(71) for
$$f$$
 being Function of X, X

for g being Function of X, Y st $Y \neq \emptyset$ & $x \in X$ holds $(g \cdot f) \cdot x = g \cdot (f \cdot x)$,

(72) **for**
$$f$$
 being Function **of** X, Y

for g being Function of Y, Y st $Y \neq \emptyset$ & $x \in X$ holds $(g \cdot f) \cdot x = g \cdot (f \cdot x)$,

FUNCTIONS FROM A SET TO A SET

(73) for
$$f,g$$
 being Function of X, X
st rng $f = X$ & rng $g = X$ holds rng $(g \cdot f) = X$,

(74) for f being Function of X, X holds
$$f \cdot (\operatorname{id} X) = f \& (\operatorname{id} X) \cdot f = f$$
,

(75) for
$$f,g$$
 being Function of X, X st $g \cdot f = f$ & rng $f = X$ holds $g = \operatorname{id} X$,

(76) for f,g being Function of X, X st $f \cdot g = f \& f$ is_one-to-one holds $g = \operatorname{id} X$,

(77) for
$$f$$
 being Function of X, X holds f is_one-to-one
iff for $x1, x2$ st $x1 \in X \& x2 \in X \& f.x1 = f.x2$ holds $x1 = x2$,

(78) for
$$f$$
 being Function of X, X holds $f \circ P \subseteq X$.

The arguments of the notions defined below are the following: X which is an object of the type reserved above; f which is an object of the type Function of X, X; P which is an object of the type reserved above. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$f \circ P$$
 is Subset of X.

One can prove the following propositions:

(79) for
$$f$$
 being Function of X, X holds $f \circ X = \operatorname{rng} f$,

(80) for
$$f$$
 being Function of X, X holds $f^{-1} Q \subseteq X$.

The arguments of the notions defined below are the following: X which is an object of the type reserved above; f which is an object of the type Function of X, X; Q which is an object of the type reserved above. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$f^{-1}Q$$
 is Subset of X.

Next we state two propositions:

(81) for f being Function of X, X st rng
$$f = X$$
 holds $f^{\circ}(f^{-1}X) = X$,

(82) for f being Function of X, X holds
$$f^{-1}(f^{\circ}X) = X$$
.

Let us consider X. The mode

Permutation of X,

which widens to the type Function of X, X, is defined by

it is_one-to-one & rng it = X.

Next we state three propositions:

(83) for
$$f$$
 being Function of X, X
holds f is Permutation of X iff f is one-to-one & rng $f = X$,

(84) for
$$f$$
 being Permutation of X holds f is one-to-one & rng $f = X$,

(85) for
$$f$$
 being Permutation of X

for
$$x1.x2$$
 st $x1 \in X \& x2 \in X \& f.x1 = f.x2$ holds $x1 = x2$.

The arguments of the notions defined below are the following: X which is an object of the type reserved above; f, g which are objects of the type Permutation of X. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$g \cdot f$$
 is Permutation of X.

Let us consider X. Let us note that it makes sense to consider the following functor on a restricted area. Then

id
$$X$$
 is Permutation of X .

The arguments of the notions defined below are the following: X which is an object of the type reserved above; f which is an object of the type Permutation of X. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$f^{-1}$$
 is Permutation of X.

The following propositions are true:

(86) for
$$f,g$$
 being Permutation of X st $g \cdot f = g$ holds $f = \operatorname{id} X$,

(87) for f,g being Permutation of X st $g \cdot f = \operatorname{id} X$ holds $g = f^{-1}$,

(88) for f being Permutation of X holds $(f^{-1}) \cdot f = \operatorname{id} X \& f \cdot (f^{-1}) = \operatorname{id} X$,

(89) for f being Permutation of X holds
$$(f^{-1})^{-1} = f$$
,

(90) for
$$f,g$$
 being Permutation of X holds $(g \cdot f)^{-1} = f^{-1} \cdot g^{-1}$.

(91) for
$$f$$
 being Permutation of X st $P \cap Q = \emptyset$ holds $f \circ P \cap f \circ Q = \emptyset$,

(92) for
$$f$$
 being Permutation of X

$$\mathbf{st}\; P \subseteq X \; \mathbf{holds}\; f \mathrel{^{\circ}} (f \mathrel{^{-1}} P) = P \; \& \; f \mathrel{^{-1}} (f \mathrel{^{\circ}} P) = P,$$

(93) for f being Permutation of X holds $f \circ P = (f^{-1})^{-1} P \& f^{-1} P = (f^{-1}) \circ P$.

In the sequel C, D, E denote objects of the type DOMAIN. The arguments of the notions defined below are the following: X, D, E which are objects of the type

reserved above; f which is an object of the type Function of X, D; g which is an object of the type Function of D, E. Let us note that it makes sense to consider the following functor on a restricted area. Then

 $g \cdot f$ is Function of X, E.

Let us consider X, D. Let us note that one can characterize the mode

Function of X, D

by the following (equivalent) condition:

$$X = \operatorname{dom} \mathbf{it} \& \operatorname{rng} \mathbf{it} \subseteq D.$$

We now state a number of propositions:

(94)	for f being Function of X, D holds dom $f = X$ & rng $f \subseteq D$,
(95)	for f being Function
	st dom $f = X \& \operatorname{rng} f \subseteq D$ holds f is Function of X, D ,
(96)	for f being Function of X, D st $x \in X$ holds $f.x \in D$,
(97)	for f being Function of $\{x\}, D$ holds $f.x \in D$,
(98)	for $f1, f2$ being Function of X, D
	st for x st $x \in X$ holds $f1.x = f2.x$ holds $f1 = f2$,
(99)	for f being Function of X, D
	for g being Function of D, E st $x \in X$ holds $(g \cdot f) \cdot x = g \cdot (f \cdot x)$,
(100)	for f being Function of X, D holds $f \cdot (\operatorname{id} X) = f \& (\operatorname{id} D) \cdot f = f$,
(101)	for f being Function of X, D holds f is_one-to-one
	iff for $x1, x2$ st $x1 \in X \& x2 \in X \& f.x1 = f.x2$ holds $x1 = x2$,
(102)	for f being Function of X, D
	for y holds $y \in f^{\circ} P$ iff ex x st $x \in X \& x \in P \& y = f.x$,
(103)	for f being Function of X, D holds $f \circ P \subseteq D$.

The arguments of the notions defined below are the following: X, D which are objects of the type reserved above; f which is an object of the type Function of X, D; P which is an object of the type reserved above. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$f \circ P$$
 is Subset of D.

One can prove the following propositions:

(104) for
$$f$$
 being Function of X, D holds $f \circ X = \operatorname{rng} f$

- (105) for f being Function of X, D st $f \circ X = D$ holds $\operatorname{rng}(f) = D$,
- (106) for f being Function of X, D for x holds $x \in f^{-1}Q$ iff $x \in X \& f . x \in Q$,

(107) for
$$f$$
 being Function of X, D holds $f^{-1} Q \subseteq X$.

The arguments of the notions defined below are the following: X, D which are objects of the type reserved above; f which is an object of the type Function of X, D; Q which is an object of the type reserved above. Let us note that it makes sense to consider the following functor on a restricted area. Then

 $f^{-1}Q$ is Subset of X.

One can prove the following propositions:

(108) for
$$f$$
 being Function of X, D holds $f^{-1} D = X$,

(109) for
$$f$$
 being Function of X, D

holds (for y st $y \in D$ holds $f^{-1} \{y\} \neq \emptyset$) iff rng f = D,

(110) for
$$f$$
 being Function of X, D holds $f^{-1} (f^{\circ} X) = X$,

(111) for f being Function of X, D st rng f = D holds $f^{\circ}(f^{-1}D) = D$,

(112) for
$$f$$
 being Function of X, D

for g being Function of D, E holds $f^{-1} Q \subseteq (g \cdot f)^{-1} (g^{\circ} Q)$.

In the sequel c denotes an object of the type Element of C; d denotes an object of the type Element of D. The arguments of the notions defined below are the following: C, D which are objects of the type reserved above; f which is an object of the type Function of C, D; c which is an object of the type reserved above. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$f.c$$
 is Element of D .

Now we present two schemes. The scheme FuncExD concerns a constant \mathcal{A} that has the type DOMAIN, a constant \mathcal{B} that has the type DOMAIN and a binary predicate \mathcal{P} and states that the following holds

ex f being Function of
$$\mathcal{A}, \mathcal{B}$$
 st for x being Element of \mathcal{A} holds $\mathcal{P}[x, f, x]$

provided the parameters satisfy the following conditions:

• for x being Element of $\mathcal{A} ex y$ being Element of $\mathcal{B} st \mathcal{P}[x, y]$,

for x being Element of $\mathcal{A}, y1, y2$ being Element of \mathcal{B} st $\mathcal{P}[x, y1] \& \mathcal{P}[x, y2]$ holds y1 = y2.

The scheme LambdaD concerns a constant \mathcal{A} that has the type DOMAIN, a constant \mathcal{B} that has the type DOMAIN and a unary functor \mathcal{F} yielding values of the type Element of \mathcal{B} and states that the following holds

ex f being Function of \mathcal{A}, \mathcal{B} st for x being Element of \mathcal{A} holds $f.x = \mathcal{F}(x)$

for all values of the parameters.

One can prove the following propositions:

- (113) for f1, f2 being Function of C, D st for c holds f1.c = f2.c holds f1 = f2,
- $(114) \qquad (\mathrm{id}\,C).c = c,$

(115) for
$$f$$
 being Function of C, D

for g being Function of D, E holds $(g \cdot f).c = g.(f.c),$

(116) for
$$f$$
 being Function of C, D

for
$$d$$
 holds $d \in f^{\circ} P$ iff $\mathbf{ex} c$ st $c \in P \& d = f.c$,

(117) for
$$f$$
 being Function of C, D for c holds $c \in f^{-1} Q$ iff $f.c \in Q$,

(118) for
$$f1, f2$$
 being Function of $[X, Y], Z$ st

 $Z \neq \emptyset \& \text{ for } x, y \text{ st } x \in X \& y \in Y \text{ holds } f1.\langle x, y \rangle = f2.\langle x, y \rangle \text{ holds } f1 = f2,$

(119) for
$$f$$
 being Function of $[X, Y], Z$
st $x \in X \& y \in Y \& Z \neq \emptyset$ holds $f . \langle x, y \rangle \in Z$.

Now we present two schemes. The scheme FuncEx2 concerns a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set, a constant \mathcal{C} that has the type set and a ternary predicate \mathcal{P} and states that the following holds

ex f being Function of $[\mathcal{A},\mathcal{B}],\mathcal{C}$ st for x,y st $x \in \mathcal{A} \& y \in \mathcal{B}$ holds $\mathcal{P}[x,y,f,\langle x,y \rangle]$

provided the parameters satisfy the following conditions:

• for
$$x, y$$
 st $x \in \mathcal{A}$ & $y \in \mathcal{B}$ ex z st $z \in \mathcal{C}$ & $\mathcal{P}[x, y, z]$,

• for x, y, z1, z2 st $x \in \mathcal{A}$ & $y \in \mathcal{B}$ & $\mathcal{P}[x, y, z1]$ & $\mathcal{P}[x, y, z2]$ holds z1 = z2.

The scheme Lambda2 concerns a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set, a constant \mathcal{C} that has the type set and a binary functor \mathcal{F} and states that the following holds

ex f being Function of $[\mathcal{A},\mathcal{B}],\mathcal{C}$ st for x,y st $x \in \mathcal{A}$ & $y \in \mathcal{B}$ holds $f.\langle x,y \rangle = \mathcal{F}(x,y)$

provided the parameters satisfy the following condition:

• for
$$x, y$$
 st $x \in \mathcal{A}$ & $y \in \mathcal{B}$ holds $\mathcal{F}(x, y) \in \mathcal{C}$

We now state a proposition

(120) for
$$f1, f2$$
 being Function of $[C, D], E$
st for c, d holds $f1.\langle c, d \rangle = f2.\langle c, d \rangle$ holds $f1 = f2$.

Now we present two schemes. The scheme *FuncEx2D* deals with a constant \mathcal{A} that has the type DOMAIN, a constant \mathcal{B} that has the type DOMAIN, a constant \mathcal{C} that has the type DOMAIN and a ternary predicate \mathcal{P} and states that the following holds

ex f being Function of $[\mathcal{A}, \mathcal{B}], \mathcal{C}$

st for x being Element of \mathcal{A} for y being Element of \mathcal{B} holds $\mathcal{P}[x, y, f. \langle x, y \rangle]$

provided the parameters satisfy the following conditions:

for x being Element of \mathcal{A}

for y being Element of \mathcal{B} ex z being Element of \mathcal{C} st $\mathcal{P}[x, y, z]$,

for x being Element of \mathcal{A} for y being Element of \mathcal{B}

for z1, z2 being Element of C st $\mathcal{P}[x, y, z1] \& \mathcal{P}[x, y, z2]$ holds z1 = z2.

The scheme Lambda2D concerns a constant \mathcal{A} that has the type DOMAIN, a constant \mathcal{B} that has the type DOMAIN, a constant \mathcal{C} that has the type DOMAIN and a binary functor \mathcal{F} yielding values of the type Element of \mathcal{C} and states that the following holds

```
ex f being Function of [\mathcal{A},\mathcal{B}],\mathcal{C}
```

```
st for x being Element of \mathcal{A} for y being Element of \mathcal{B} holds f \cdot \langle x, y \rangle = \mathcal{F}(x, y)
```

for all values of the parameters.

References

.

- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
- [2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
- [3] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Received April 6, 1989