Functions from a Set to a Set

Czesław Byliński ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The article is a continuation of [1]. We define the following concepts: a function from a set X into a set Y, denoted by "Function of X, Y ", the set of all functions from a set X into a set Y, denoted by $\operatorname{Funcs}(X, Y)$, and the permutation of a set (mode Permutation of X, where X is a set). Theorems and schemes included in the article are reformulations of the theorems of [1] in the new terminology. Also some basic facts about functions of two variables are proved.

The notation and terminology used in this paper are introduced in the following articles: [2], [3], and [1]. For simplicity we adopt the following convention: $P, Q, X, Y, Y 1$, $Y 2, Z$ will denote objects of the type set; $x, x 1, x 2, y, y 1, y 2, z, z 1, z 2$ will denote objects of the type Any. Let us consider X, Y. Assume that the following holds

$$
Y=\emptyset \text { implies } X=\emptyset
$$

The mode

$$
\text { Function of } X, Y \text {, }
$$

which widens to the type Function, is defined by

$$
X=\operatorname{dom} \text { it } \& \mathrm{rng} \text { it } \subseteq Y
$$

Next we state several propositions:
$(Y=\emptyset$ implies $X=\emptyset)$ implies for f being Function
holds f is Function of X, Y iff $X=\operatorname{dom} f \& \operatorname{rng} f \subseteq Y$,
for f being Function of X, Y
st $Y=\emptyset$ implies $X=\emptyset$ holds $X=\operatorname{dom} f \& \operatorname{rng} f \subseteq Y$,
for f being Function holds f is Function of $\operatorname{dom} f, \operatorname{rng} f$,

[^0](4) for f being Function st $\operatorname{rng} f \subseteq Y$ holds f is Function of $\operatorname{dom} f, Y$,

for f being Function

st $\operatorname{dom} f=X \&$ for x st $x \in X$ holds $f . x \in Y$ holds f is Function of X, Y,
for f being Function of X, Y st $Y \neq \emptyset \& x \in X$ holds $f . x \in \operatorname{rng} f$,
for f being Function of X, Y st $Y \neq \emptyset \& x \in X$ holds $f . x \in Y$, for f being Function of X, Y st $(Y=\emptyset$ implies $X=\emptyset) \& \operatorname{rng} f \subseteq Z$ holds f is Function of X, Z, for f being Function of X, Y st $(Y=\emptyset$ implies $X=\emptyset) \& Y \subseteq Z$ holds f is Function of X, Z.

In the article we present several logical schemes. The scheme FuncEx1 deals with a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set and a binary predicate \mathcal{P} and states that the following holds

$$
\text { ex } f \text { being Function of } \mathcal{A}, \mathcal{B} \text { st for } x \text { st } x \in \mathcal{A} \text { holds } \mathcal{P}[x, f . x]
$$

provided the parameters satisfy the following conditions:

- \quad for x st $x \in \mathcal{A}$ ex y st $y \in \mathcal{B} \& \mathcal{P}[x, y]$,
- \quad for $x, y 1, y 2$ st $x \in \mathcal{A} \& \mathcal{P}[x, y 1] \& \mathcal{P}[x, y 2]$ holds $y 1=y 2$.

The scheme Lambda1 concerns a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set and a unary functor \mathcal{F} and states that the following holds

$$
\text { ex } f \text { being Function of } \mathcal{A}, \mathcal{B} \text { st for } x \text { st } x \in \mathcal{A} \text { holds } f . x=\mathcal{F}(x)
$$

provided the parameters satisfy the following condition:

$$
\text { for } x \text { st } x \in \mathcal{A} \text { holds } \mathcal{F}(x) \in \mathcal{B} .
$$

Let us consider X, Y. The functor

$$
\text { Funcs }(X, Y) \text {, }
$$

yields the type set and is defined by

$$
x \in \text { it iff ex } f \text { being Function st } x=f \& \operatorname{dom} f=X \& \operatorname{rng} f \subseteq Y
$$

We now state a number of propositions:
for F being set holds $F=$ Funcs (X, Y) iff for x
holds $x \in F$ iff ex f being Function st $x=f \& \operatorname{dom} f=X \& \operatorname{rng} f \subseteq Y$,
iff for Z st $Z \neq \emptyset$ for g, h being Function of Y, Z st $g \cdot f=h \cdot f$ holds $g=h$,
st $Y=\emptyset$ implies $X=\emptyset$ holds $f \cdot(\mathrm{id} X)=f \&(\mathrm{id} Y) \cdot f=f$,
for f being Function of X, Y
for g being Function of Y, X st $Y \neq \emptyset \& f \cdot g=\operatorname{id} Y$ holds $\operatorname{rng} f=Y$,
(25) for f being Function of X, Y st $Y=\emptyset$ implies $X=\emptyset$ holds f is_one-to-one
iff for $x 1, x 2$ st $x 1 \in X \& x 2 \in X \& f . x 1=f . x 2$ holds $x 1=x 2$,
for f being Function of X, Y
st $Y=\emptyset$ implies $X=\emptyset$ holds $f \in \operatorname{Funcs}(X, Y)$,
for f being Function of X, X holds $f \in \operatorname{Funcs}(X, X)$, for f being Function of \emptyset, X holds $f \in \operatorname{Funcs}(\emptyset, X)$, $X \neq \emptyset$ implies Funcs $(X, \emptyset)=\emptyset$, Funcs $(X, Y)=\emptyset$ implies $X \neq \emptyset \& Y=\emptyset$,
for f being Function of X, Y
st $Y \neq \emptyset \&$ for y st $y \in Y$ ex x st $x \in X \& y=f . x$ holds $\operatorname{rng} f=Y$,
for f being Function of X, Y st $y \in Y \& \operatorname{rng} f=Y$ ex x st $x \in X \& f . x=y$, for $f 1, f 2$ being Function of X, Y st $Y \neq \emptyset \&$ for x st $x \in X$ holds $f 1 . x=f 2 . x$ holds $f 1=f 2$, for f being Function of X, Y for g being Function of Y, Z st $(Z=\emptyset$ implies $Y=\emptyset) \&(Y=\emptyset$ implies $X=\emptyset)$ holds $g \cdot f$ is Function of X, Z,
for f being Function of X, Y for g being Function of Y, Z st $Y \neq \emptyset \& Z \neq \emptyset \& \operatorname{rng} f=Y \& \operatorname{rng} g=Z$ holds $\operatorname{rng}(g \cdot f)=Z$,
for f being Function of X, Y for g being Function of Y, Z st $Y \neq \emptyset \& Z \neq \emptyset \& x \in X$ holds $(g \cdot f) \cdot x=g \cdot(f \cdot x)$,
for f being Function of X, Y st $Y \neq \emptyset$ holds $\operatorname{rng} f=Y$ for f being Function of X, Y
for f being Function of X, Y for g being Function of Y, Z st $(Z=\emptyset$ implies $Y=\emptyset) \&(Y=\emptyset$ implies $X=\emptyset) \& g \cdot f$ is_one-to-one holds f is_one-to-one,
st $Y \neq \emptyset \& \operatorname{rng} f=Y \& f$ is_one-to-one holds $f^{-1} \cdot f=\operatorname{id} X \& f \cdot f^{-1}=\operatorname{id} Y$,
for f being Function of X, Y st $X \neq \emptyset \& Y \neq \emptyset$ holds f is_one-to-one iff for Z for g, h being Function of Z, X st $f \cdot g=f \cdot h$ holds $g=h$,
for f being Function of X, Y for g being Function of Y, Z st $Z \neq \emptyset \& Y \neq \emptyset \& \operatorname{rng}(g \cdot f)=Z \& g$ is_one-to-one holds $\operatorname{rng} f=Y$,
for f being Function of X, Y for g being Function of Y, X st $X \neq \emptyset \& Y \neq \emptyset \& g \cdot f=\operatorname{id} X$ holds f is_one-to-one $\& \operatorname{rng} g=X$,
for f being Function of X, Y for g being Function of Y, Z st $(Z=\emptyset \operatorname{implies} Y=\emptyset) \& g \cdot f$ is_one-to-one $\& \operatorname{rng} f=Y$ holds f is_one-to-one \& g is_one-to-one, for f being Function of X, Y st f is_one-to-one $\&(X=\emptyset$ iff $Y=\emptyset) \& \operatorname{rng} f=Y$
holds f^{-1} is Function of Y, X, for f being Function of X, Y st $Y \neq \emptyset \& f$ is_one-to-one $\& x \in X$ holds $\left(f^{-1}\right) \cdot(f \cdot x)=x$,
for f being Function of X, Y st $\operatorname{rng} f=Y \& f$ is_one-to-one $\& y \in Y$ holds $f .\left(\left(f^{-1}\right) \cdot y\right)=y$, for f being Function of X, Y for g being Function of Y, X st

$$
\begin{equation*}
X \neq \emptyset \& Y \neq \emptyset \& \operatorname{rng} f=Y \tag{34}
\end{equation*}
$$

$\& f$ is_one-to-one \& for y, x holds $y \in Y \& g . y=x$ iff $x \in X \& f . x=y$ holds $g=f^{-1}$,
for f being Function of X, Y
for f being Function of X, Y for g being Function of Y, X st $X \neq \emptyset \& Y \neq \emptyset \& \operatorname{rng} f=Y \& g \cdot f=\operatorname{id} X \& f$ is_one-to-one holds $g=f^{-1}$,
for f being Function of X, Y st
$Y \neq \emptyset \& \operatorname{ex} g$ being Function of Y, X st $g \cdot f=\operatorname{id} X$ holds f is_one-to-one,
for f being Function of X, Y
st $(Y=\emptyset$ implies $X=\emptyset) \& Z \subseteq X$ holds $f \mid Z$ is Function of Z, Y,
for f being Function of X, Y
st $Y \neq \emptyset \& x \in X \& x \in Z$ holds $(f \mid Z) . x=f . x$,
(56) for $f 1$ being Function of $\emptyset, Y 1$ for $f 2$ being Function of $\emptyset, Y 2$ holds $f 1=f 2$,

$$
\begin{gathered}
\text { for } f \text { being Function of } \emptyset, Y \text { for } g \text { being Function of } Y, Z \\
\text { st } Z=\emptyset \text { implies } Y=\emptyset \text { holds } g \cdot f \text { is Function of } \emptyset, Z, \\
\text { for } f \text { being Function of } \emptyset, Y \text { holds } f \text { is_one-to-one, } \\
\text { for } f \text { being Function of } \emptyset, Y \text { holds } f^{\circ} P=\emptyset, \\
\text { for } f \text { being Function of } \emptyset, Y \text { holds } f^{-1} Q=\emptyset, \\
\text { for } f \text { being Function of }\{x\}, Y \text { st } Y \neq \emptyset \text { holds } f . x \in Y, \\
\text { for } f \text { being Function of }\{x\}, Y \text { st } Y \neq \emptyset \text { holds rng } f=\{f . x\}, \\
\text { for } f \text { being Function of }\{x\}, Y \text { st } Y \neq \emptyset \text { holds } f \text { is_one-to-one,, } \\
\text { for } f \text { being Function of }\{x\}, Y \text { st } Y \neq \emptyset \text { holds } f \circ P \subseteq\{f . x\}, \\
\text { for } f \text { being Function of } X,\{y\} \text { st } x \in X \text { holds } f . x=y, \\
\text { for } f 1, f 2 \text { being Function of } X,\{y\} \text { holds } f 1=f 2 .
\end{gathered}
$$

The arguments of the notions defined below are the following: X which is an object of the type reserved above; f, g which are objects of the type Function of X, X. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
g \cdot f \quad \text { is } \quad \text { Function of } X, X .
$$

Let us consider X. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\text { id } X \quad \text { is } \quad \text { Function of } X, X .
$$

The following propositions are true:

$$
\begin{equation*}
\text { for } f \text { being Function of } X, X \text { holds } \operatorname{dom} f=X \& \operatorname{rng} f \subseteq X, \tag{67}
\end{equation*}
$$

$$
\begin{gather*}
\text { for } f \text { being Function } \tag{68}\\
\text { st dom } f=X \& \operatorname{rng} f \subseteq X \text { holds } f \text { is Function of } X, X, \\
\text { for } f \text { being Function of } X, X \text { st } x \in X \text { holds } f \cdot x \in X, \\
\text { for } f, g \text { being Function of } X, X \text { st } x \in X \text { holds }(g \cdot f) \cdot x=g \cdot(f \cdot x), \\
\text { for } f \text { being Function of } X, X \\
\text { for } g \text { being Function of } X, Y \text { st } Y \neq \emptyset \& x \in X \text { holds }(g \cdot f) \cdot x=g \cdot(f \cdot x), \\
\text { for } f \text { being Function of } X, Y \\
\text { for } g \text { being Function of } Y, Y \text { st } Y \neq \emptyset \& x \in X \text { holds }(g \cdot f) \cdot x=g \cdot(f \cdot x),
\end{gather*}
$$

(75) for f, g being Function of X, X st $g \cdot f=f \& \operatorname{rng} f=X$ holds $g=\operatorname{id} X$,
(76) for f, g being Function of X, X st $f \cdot g=f \& f$ is_one-to-one holds $g=\operatorname{id} X$,
for f being Function of X, X holds f is_one-to-one iff for $x 1, x 2$ st $x 1 \in X \& x 2 \in X \& f . x 1=f . x 2$ holds $x 1=x 2$,

$$
\begin{equation*}
\text { for } f \text { being Function of } X, X \text { holds } f^{\circ} P \subseteq X \text {. } \tag{78}
\end{equation*}
$$

The arguments of the notions defined below are the following: X which is an object of the type reserved above; f which is an object of the type Function of $X, X ; P$ which is an object of the type reserved above. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
f^{\circ} P \quad \text { is } \quad \text { Subset of } X
$$

One can prove the following propositions:

$$
\begin{equation*}
\text { for } f \text { being Function of } X, X \text { holds } f^{\circ} X=\operatorname{rng} f \tag{79}
\end{equation*}
$$

for f being Function of X, X holds $f^{-1} Q \subseteq X$.

The arguments of the notions defined below are the following: X which is an object of the type reserved above; f which is an object of the type Function of $X, X ; Q$ which is an object of the type reserved above. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
f^{-1} Q \quad \text { is } \quad \text { Subset of } X \text {. }
$$

Next we state two propositions:

$$
\begin{equation*}
\text { for } f \text { being Function of } X, X \text { st } \operatorname{rng} f=X \text { holds } f^{\circ}\left(f^{-1} X\right)=X, \tag{81}
\end{equation*}
$$

for f being Function of X, X holds $f^{-1}\left(f^{\circ} X\right)=X$.

Let us consider X. The mode

$$
\text { Permutation of } X \text {, }
$$

which widens to the type Function of X, X, is defined by

$$
\text { it is_one-to-one } \& \text { rng it }=X
$$

Next we state three propositions:

> for f being Function of X, X
> holds f is Permutation of X iff f is_one-to-one $\& \operatorname{rng} f=X$, for f being Permutation of X holds f is_one-to-one $\& \operatorname{rng} f=X$, for f being Permutation of X
> for $x 1, x 2$ st $x 1 \in X \& x 2 \in X \& f \cdot x 1=f . x 2$ holds $x 1=x 2$

The arguments of the notions defined below are the following: X which is an object of the type reserved above; f, g which are objects of the type Permutation of X. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
g \cdot f \quad \text { is } \quad \text { Permutation of } X
$$

Let us consider X. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\text { id } X \quad \text { is } \quad \text { Permutation of } X .
$$

The arguments of the notions defined below are the following: X which is an object of the type reserved above; f which is an object of the type Permutation of X. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
f^{-1} \quad \text { is } \quad \text { Permutation of } X
$$

The following propositions are true:

$$
\begin{gather*}
\text { for } f, g \text { being Permutation of } X \text { st } g \cdot f=g \text { holds } f=\operatorname{id} X, \tag{86}\\
\text { for } f, g \text { being Permutation of } X \text { st } g \cdot f=\operatorname{id} X \text { holds } g=f^{-1}, \\
\text { for } f \text { being Permutation of } X \text { holds }\left(f^{-1}\right) \cdot f=\operatorname{id} X \& f \cdot\left(f^{-1}\right)=\operatorname{id} X, \\
\text { for } f \text { being Permutation of } X \text { holds }\left(f^{-1}\right)^{-1}=f, \\
\text { for } f, g \text { being Permutation of } X \text { holds }(g \cdot f)^{-1}=f^{-1} \cdot g^{-1}, \\
\text { for } f \text { being Permutation of } X \text { st } P \cap Q=\emptyset \text { holds } f^{\circ} P \cap f^{\circ} Q=\emptyset, \\
\text { for } f \text { being Permutation of } X \\
\text { st } P \subseteq X \text { holds } f^{\circ}\left(f^{-1} P\right)=P \& f^{-1}\left(f^{\circ} P\right)=P,
\end{gather*}
$$

(93) for f being Permutation of X holds $f^{\circ} P=\left(f^{-1}\right)^{-1} P \& f^{-1} P=\left(f^{-1}\right)^{\circ} P$.

In the sequel C, D, E denote objects of the type DOMAIN. The arguments of the notions defined below are the following: $\quad X, D, E$ which are objects of the type
reserved above; f which is an object of the type Function of $X, D ; g$ which is an object of the type Function of D, E. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
g \cdot f \quad \text { is } \quad \text { Function of } X, E .
$$

Let us consider X, D. Let us note that one can characterize the mode

$$
\text { Function of } X, D
$$

by the following (equivalent) condition:

$$
X=\operatorname{dom} \text { it } \& \text { rng it } \subseteq D
$$

We now state a number of propositions:

> for f being Function of X, D holds $\operatorname{dom} f=X \& \operatorname{rng} f \subseteq D$,
> for f being Function st $\operatorname{dom} f=X \& \operatorname{rng} f \subseteq D$ holds f is Function of X, D, for f being Function of X, D st $x \in X$ holds $f . x \in D$, for f being Function of $\{x\}, D$ holds $f . x \in D$, for $f 1, f 2$ being Function of X, D st for x st $x \in X$ holds $f 1 . x=f 2 . x$ holds $f 1=f 2$,
for g being Function of D, E st $x \in X$ holds $(g \cdot f) \cdot x=g \cdot(f \cdot x)$, for f being Function of X, D holds $f \cdot(\operatorname{id} X)=f \&(\operatorname{id} D) \cdot f=f$,

$$
\begin{equation*}
\text { for } f \text { being Function of } X, D \text { holds } f \text { is_one-to-one } \tag{100}
\end{equation*}
$$ iff for $x 1, x 2$ st $x 1 \in X \& x 2 \in X \& f . x 1=f . x 2$ holds $x 1=x 2$,

for f being Function of X, D

for y holds $y \in f^{\circ} P$ iff ex x st $x \in X \& x \in P \& y=f . x$,

The arguments of the notions defined below are the following: X, D which are objects of the type reserved above; f which is an object of the type Function of X, $D ; P$ which is an object of the type reserved above. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
f^{\circ} P \quad \text { is } \quad \text { Subset of } D
$$

One can prove the following propositions:

$$
\begin{gather*}
\text { for } f \text { being Function of } X, D \text { holds } f^{\circ} X=\operatorname{rng} f, \tag{104}\\
\text { for } f \text { being Function of } X, D \text { st } f^{\circ} X=D \text { holds } \operatorname{rng}(f)=D, \tag{105}\\
\text { for } f \text { being Function of } X, D \text { for } x \text { holds } x \in f^{-1} Q \text { iff } x \in X \& f . x \in Q, \\
\text { for } f \text { being Function of } X, D \text { holds } f^{-1} Q \subseteq X .
\end{gather*}
$$

The arguments of the notions defined below are the following: X, D which are objects of the type reserved above; f which is an object of the type Function of X, $D ; Q$ which is an object of the type reserved above. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
f^{-1} Q \quad \text { is } \quad \text { Subset of } X \text {. }
$$

One can prove the following propositions:
for f being Function of X, D
holds (for y st $y \in D$ holds $f^{-1}\{y\} \neq \emptyset$) iff $\operatorname{rng} f=D$,
for f being Function of X, D holds $f^{-1}\left(f^{\circ} X\right)=X$,
for f being Function of X, D st $\operatorname{rng} f=D$ holds $f^{\circ}\left(f^{-1} D\right)=D$,
for f being Function of X, D
for g being Function of D, E holds $f^{-1} Q \subseteq(g \cdot f)^{-1}\left(g^{\circ} Q\right)$.
In the sequel c denotes an object of the type Element of $C ; d$ denotes an object of the type Element of D. The arguments of the notions defined below are the following: C, D which are objects of the type reserved above; f which is an object of the type Function of $C, D ; c$ which is an object of the type reserved above. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
f . c \quad \text { is } \quad \text { Element of } D .
$$

Now we present two schemes. The scheme FuncExD concerns a constant \mathcal{A} that has the type DOMAIN, a constant \mathcal{B} that has the type DOMAIN and a binary predicate \mathcal{P} and states that the following holds
ex f being Function of \mathcal{A}, \mathcal{B} st for x being Element of \mathcal{A} holds $\mathcal{P}[x, f . x]$
provided the parameters satisfy the following conditions:

- for x being Element of \mathcal{A} ex y being Element of \mathcal{B} st $\mathcal{P}[x, y]$,
- for x being Element of $\mathcal{A}, y 1, y 2$ being Element of \mathcal{B}

$$
\text { st } \mathcal{P}[x, y 1] \& \mathcal{P}[x, y 2] \text { holds } y 1=y 2
$$

The scheme LambdaD concerns a constant \mathcal{A} that has the type DOMAIN, a constant \mathcal{B} that has the type DOMAIN and a unary functor \mathcal{F} yielding values of the type Element of \mathcal{B} and states that the following holds
ex f being Function of \mathcal{A}, \mathcal{B} st for x being Element of \mathcal{A} holds $f . x=\mathcal{F}(x)$
for all values of the parameters.
One can prove the following propositions:
(113) for $f 1, f 2$ being Function of C, D st for c holds $f 1 . c=f 2 . c$ holds $f 1=f 2$,

$$
\begin{gather*}
\text { for } f \text { being Function of } C, D \tag{115}\\
\text { for } g \text { being Function of } D, E \text { holds }(g \cdot f) \cdot c=g \cdot(f . c), \\
\text { for } f \text { being Function of } C, D \tag{116}\\
\text { for } d \text { holds } d \in f^{\circ} P \text { iff ex } c \text { st } c \in P \& d=f . c, \\
\text { for } f \text { being Function of } C, D \text { for } c \text { holds } c \in f^{-1} Q \text { iff } f . c \in Q, \tag{117}\\
\text { for } f 1, f 2 \text { being Function of }: X, Y:], Z \text { st } \tag{118}\\
Z \neq \emptyset \& \text { for } x, y \text { st } x \in X \& y \in Y \text { holds } f 1 .\langle x, y\rangle=f 2 .\langle x, y\rangle \text { holds } f 1=f 2,
\end{gather*}
$$

> for f being Function of $[: X, Y:], Z$ st $x \in X \& y \in Y \& Z \neq \emptyset$ holds $f .\langle x, y\rangle \in Z$.

Now we present two schemes. The scheme FuncEx2 concerns a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set, a constant \mathcal{C} that has the type set and a ternary predicate \mathcal{P} and states that the following holds
ex f being Function of $: \mathcal{A}, \mathcal{B} ;, \mathcal{C}$ st for x, y st $x \in \mathcal{A} \& y \in \mathcal{B}$ holds $\mathcal{P}[x, y, f .\langle x, y\rangle]$
provided the parameters satisfy the following conditions:

- for x, y st $x \in \mathcal{A} \& y \in \mathcal{B}$ ex z st $z \in \mathcal{C} \& \mathcal{P}[x, y, z]$,
- \quad for $x, y, z 1, z 2$ st $x \in \mathcal{A} \& y \in \mathcal{B} \& \mathcal{P}[x, y, z 1] \& \mathcal{P}[x, y, z 2]$ holds $z 1=z 2$.

The scheme Lambda2 concerns a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set, a constant \mathcal{C} that has the type set and a binary functor \mathcal{F} and states that the following holds
ex f being Function of $: \mathcal{A}, \mathcal{B} ;, \mathcal{C}$ st for x, y st $x \in \mathcal{A} \& y \in \mathcal{B}$ holds $f .\langle x, y\rangle=\mathcal{F}(x, y)$
provided the parameters satisfy the following condition:

- for x, y st $x \in \mathcal{A} \& y \in \mathcal{B}$ holds $\mathcal{F}(x, y) \in \mathcal{C}$.

We now state a proposition

> for $f 1, f 2$ being Function of $[: C, D \exists], E$
> st for c, d holds $f 1 .\langle c, d\rangle=f 2 .\langle c, d\rangle$ holds $f 1=f 2$.

Now we present two schemes. The scheme FuncEx2D deals with a constant \mathcal{A} that has the type DOMAIN, a constant \mathcal{B} that has the type DOMAIN, a constant \mathcal{C} that has the type DOMAIN and a ternary predicate \mathcal{P} and states that the following holds
ex f being Function of $: \mathcal{A}, \mathcal{B}:, \mathcal{C}$
st for x being Element of \mathcal{A} for y being Element of \mathcal{B} holds $\mathcal{P}[x, y, f .\langle x, y\rangle]$
provided the parameters satisfy the following conditions:

- for x being Element of \mathcal{A}
for y being Element of $\mathcal{B} \operatorname{ex} z$ being Element of \mathcal{C} st $\mathcal{P}[x, y, z]$,
- \quad for x being Element of \mathcal{A} for y being Element of \mathcal{B}
for $z 1, z 2$ being Element of \mathcal{C} st $\mathcal{P}[x, y, z 1] \& \mathcal{P}[x, y, z 2]$ holds $z 1=z 2$.
The scheme Lambda2D concerns a constant \mathcal{A} that has the type DOMAIN, a constant \mathcal{B} that has the type DOMAIN, a constant \mathcal{C} that has the type DOMAIN and a binary functor \mathcal{F} yielding values of the type Element of \mathcal{C} and states that the following holds

$$
\text { ex } f \text { being Function of }: \mathcal{A}, \mathcal{B}\rceil, \mathcal{C}
$$

st for x being Element of \mathcal{A} for y being Element of \mathcal{B} holds $f .\langle x, y\rangle=\mathcal{F}(x, y)$
for all values of the parameters.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[3] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1.

