Functions and Their Basic Properties

Czesław Byliński ${ }^{1}$
Warsaw University
Białystok

Summary. The definitions of the mode Function and the graph of a function are introduced. The graph of a function is defined to be identical with the function. The following concepts are also defined: the domain of a function, the range of a function, the identity function, the composition of functions, the 1-1 function, the inverse function, the restriction of a function, the image and the inverse image. Certain basic facts about functions and the notions defined in the article are proved.

The notation and terminology used here are introduced in the papers [1] and [2]. For simplicity we adopt the following convention: $X, X 1, X 2, Y, Y 1, Y 2$ have the type set; $p, x, x 1, x 2, y, y 1, y 2, z$ have the type Any. The mode

Function,
which widens to the type Any, is defined by

$$
\begin{gathered}
\text { ex } F \text { being set st it }=F \&(\text { for } p \text { st } p \in F \text { ex } x, y \text { st }\langle x, y\rangle=p) \\
\& \text { for } x, y 1, y 2 \text { st }\langle x, y 1\rangle \in F \&\langle x, y 2\rangle \in F \text { holds } y 1=y 2 .
\end{gathered}
$$

In the sequel f, g, h will have the type Function. Let us consider f. The functor

$$
\operatorname{graph} f
$$

yields the type set and is defined by

$$
f=\mathbf{i t} .
$$

Next we state several propositions:

$$
\begin{equation*}
\text { graph } f=f \tag{1}
\end{equation*}
$$

[^0](2)

for F being set st

$($ for p st $p \in F \mathbf{e x} x, y$ st $\langle x, y\rangle=p)$ $\&$ for $x, y 1, y 2$ st $\langle x, y 1\rangle \in F \&\langle x, y 2\rangle \in F$ holds $y 1=y 2$
ex f being Function st graph $f=F$,

$$
\begin{equation*}
p \in \operatorname{graph} f \text { implies ex } x, y \text { st }\langle x, y\rangle=p \tag{3}
\end{equation*}
$$

$$
\langle x, y 1\rangle \in \operatorname{graph} f \&\langle x, y 2\rangle \in \operatorname{graph} f \text { implies } y 1=y 2
$$

$$
\begin{equation*}
\text { graph } f=\operatorname{graph} g \text { implies } f=g . \tag{5}
\end{equation*}
$$

The scheme GraphFunc concerns a constant \mathcal{A} that has the type set and a binary predicate \mathcal{P} and states that the following holds

$$
\text { ex } f \text { st for } x, y \text { holds }\langle x, y\rangle \in \operatorname{graph} f \text { iff } x \in \mathcal{A} \& \mathcal{P}[x, y]
$$

provided the parameters satisfy the following condition:

- for $x, y 1, y 2$ st $\mathcal{P}[x, y 1] \& \mathcal{P}[x, y 2]$ holds $y 1=y 2$.

Let us consider f. The functor

$$
\operatorname{dom} f
$$

yields the type set and is defined by

$$
\text { for } x \text { holds } x \in \text { it iff ex } y \text { st }\langle x, y\rangle \in \operatorname{graph} f .
$$

One can prove the following proposition

$$
\begin{equation*}
X=\operatorname{dom} f \text { iff for } x \text { holds } x \in X \text { iff ex } y \text { st }\langle x, y\rangle \in \operatorname{graph} f \tag{6}
\end{equation*}
$$

Let us consider f, x. Assume that the following holds

$$
x \in \operatorname{dom} f
$$

The functor

$$
f . x
$$

yields the type Any and is defined by

$$
\langle x, \mathbf{i t}\rangle \in \operatorname{graph} f
$$

The following three propositions are true:

$$
\begin{equation*}
x \in \operatorname{dom} f \text { implies }(y=f . x \operatorname{iff}\langle x, y\rangle \in \operatorname{graph} f) \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\langle x, y\rangle \in \operatorname{graph} f \text { iff } x \in \operatorname{dom} f \& y=f . x \tag{8}
\end{equation*}
$$

(9) $X=\operatorname{dom} f \& X=\operatorname{dom} g \&($ for x st $x \in X$ holds $f . x=g . x)$ implies $f=g$.

Let us consider f. The functor

$$
\operatorname{rng} f
$$

with values of the type set, is defined by

$$
\text { for } y \text { holds } y \in \text { it iff ex } x \text { st } x \in \operatorname{dom} f \& y=f . x
$$

One can prove the following propositions:

$$
\begin{equation*}
Y=\operatorname{rng} f \text { iff for } y \text { holds } y \in Y \text { iff ex } x \text { st } x \in \operatorname{dom} f \& y=f . x \tag{10}
\end{equation*}
$$

$$
\begin{gather*}
y \in \operatorname{rng} f \text { iff ex } x \text { st } x \in \operatorname{dom} f \& y=f . x, \tag{11}\\
x \in \operatorname{dom} f \text { implies } f . x \in \operatorname{rng} f, \tag{12}\\
\operatorname{dom} f=\emptyset \text { iff } \operatorname{rng} f=\emptyset, \tag{13}\\
\operatorname{dom} f=\{x\} \text { implies } \operatorname{rng} f=\{f . x\} . \tag{14}
\end{gather*}
$$

Now we present two schemes. The scheme FuncEx concerns a constant \mathcal{A} that has the type set and a binary predicate \mathcal{P} and states that the following holds

$$
\text { ex } f \text { st } \operatorname{dom} f=\mathcal{A} \& \text { for } x \text { st } x \in \mathcal{A} \text { holds } \mathcal{P}[x, f . x]
$$

provided the parameters satisfy the following conditions:

- \quad for $x, y 1, y 2$ st $x \in \mathcal{A} \& \mathcal{P}[x, y 1] \& \mathcal{P}[x, y 2]$ holds $y 1=y 2$,
-

$$
\text { for } x \text { st } x \in \mathcal{A} \mathbf{e x} y \text { st } \mathcal{P}[x, y] .
$$

The scheme Lambda concerns a constant \mathcal{A} that has the type set and a unary functor \mathcal{F} and states that the following holds

$$
\text { ex } f \text { being Function st } \operatorname{dom} f=\mathcal{A} \& \text { for } x \text { st } x \in \mathcal{A} \text { holds } f . x=\mathcal{F}(x)
$$

for all values of the parameters.
Next we state several propositions:

$$
\begin{equation*}
X \neq \emptyset \operatorname{implies} \text { for } y \mathbf{e x} f \text { st } \operatorname{dom} f=X \& \operatorname{rng} f=\{y\} \tag{15}
\end{equation*}
$$

$($ for f, g st $\operatorname{dom} f=X \& \operatorname{dom} g=X$ holds $f=g$) implies $X=\emptyset$,
$\operatorname{dom} f=\operatorname{dom} g \& \operatorname{rng} f=\{y\} \& \operatorname{rng} g=\{y\}$ implies $f=g$,
$Y \neq \emptyset$ or $X=\emptyset$ implies ex f st $X=\operatorname{dom} f \& \operatorname{rng} f \subseteq Y$,
(for y st $y \in Y \mathbf{e x} x$ st $x \in \operatorname{dom} f \& y=f . x)$ implies $Y \subseteq \operatorname{rng} f$.
Let us consider f, g. The functor

$$
g \cdot f
$$

yields the type Function and is defined by
$($ for x holds $x \in \operatorname{dom}$ it iff $x \in \operatorname{dom} f \& f . x \in \operatorname{dom} g)$
$\quad \&$ for x st $x \in \operatorname{dom}$ it holds it. $x=g \cdot(f \cdot x)$.

The following propositions are true:

$$
\begin{gather*}
h=g \cdot f \text { iff }(\text { for } x \text { holds } x \in \operatorname{dom} h \mathbf{i f f} x \in \operatorname{dom} f \& f \cdot x \in \operatorname{dom} g) \tag{20}\\
\\
\& \text { for } x \text { st } x \in \operatorname{dom} h \text { holds } h \cdot x=g \cdot(f \cdot x), \\
x \in \operatorname{dom}(g \cdot f) \text { iff } x \in \operatorname{dom} f \& f \cdot x \in \operatorname{dom} g, \\
\\
x \in \operatorname{dom}(g \cdot f) \text { implies }(g \cdot f) \cdot x=g \cdot(f \cdot x),
\end{gather*}
$$

$$
\begin{equation*}
x \in \operatorname{dom} f \& f \cdot x \in \operatorname{dom} g \text { implies }(g \cdot f) \cdot x=g \cdot(f \cdot x), \tag{23}
\end{equation*}
$$ $\operatorname{dom}(g \cdot f) \subseteq \operatorname{dom} f$, $z \in \operatorname{rng}(g \cdot f)$ implies $z \in \operatorname{rng} g$,

$$
\begin{equation*}
\operatorname{rng}(g \cdot f) \subseteq \operatorname{rng} g, \tag{25}
\end{equation*}
$$

$$
\operatorname{rng} f \subseteq \operatorname{dom} g \operatorname{iff} \operatorname{dom}(g \cdot f)=\operatorname{dom} f
$$

$$
\begin{equation*}
\operatorname{dom} g \subseteq \operatorname{rng} f \text { implies } \operatorname{rng}(g \cdot f)=\operatorname{rng} g \tag{27}
\end{equation*}
$$ $\operatorname{rng} f=\operatorname{dom} g$ implies $\operatorname{dom}(g \cdot f)=\operatorname{dom} f \& \operatorname{rng}(g \cdot f)=\operatorname{rng} g$,

$$
\begin{equation*}
h \cdot(g \cdot f)=(h \cdot g) \cdot f, \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{rng} f \subseteq \operatorname{dom} g \& x \in \operatorname{dom} f \text { implies }(g \cdot f) \cdot x=g \cdot(f \cdot x), \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{rng} f=\operatorname{dom} g \& x \in \operatorname{dom} f \text { implies }(g \cdot f) \cdot x=g \cdot(f \cdot x), \tag{32}
\end{equation*}
$$

(33) $\operatorname{rng} f \subseteq Y \&($ for g, h st $\operatorname{dom} g=Y \& \operatorname{dom} h=Y \& g \cdot f=h \cdot f$ holds $g=h$)

$$
\text { implies } Y=\operatorname{rng} f .
$$

Let us consider X. The functor

$$
\text { id } X,
$$

with values of the type Function, is defined by

$$
\operatorname{dom} \text { it }=X \& \text { for } x \text { st } x \in X \text { holds it. } x=x .
$$

Next we state a number of propositions:

$$
\begin{equation*}
f=\operatorname{id} X \operatorname{iff} \operatorname{dom} f=X \& \text { for } x \text { st } x \in X \text { holds } f . x=x, \tag{34}
\end{equation*}
$$

$$
\begin{equation*}
x \in X \text { implies }(\operatorname{id} X) \cdot x=x, \tag{35}
\end{equation*}
$$

$$
\begin{gathered}
\operatorname{domid} X=X \& \operatorname{rng} \operatorname{id} X=X, \\
\operatorname{dom}(f \cdot(\operatorname{id} X))=\operatorname{dom} f \cap X,
\end{gathered}
$$

$$
x \in \operatorname{dom} f \cap X \text { implies } f \cdot x=(f \cdot(\operatorname{id} X)) \cdot x
$$

$\operatorname{dom} f \subseteq X$ implies $f \cdot(\operatorname{id} X)=f$, $x \in \operatorname{dom}((\operatorname{id} Y) \cdot f) \operatorname{iff} x \in \operatorname{dom} f \& f . x \in Y$,

$$
\operatorname{rng} f \subseteq Y \text { implies }(\operatorname{id} Y) \cdot f=f
$$

$$
f \cdot(\operatorname{id} \operatorname{dom} f)=f \&(\operatorname{id} \operatorname{rng} f) \cdot f=f
$$

$$
(\operatorname{id} X) \cdot(\operatorname{id} Y)=\operatorname{id}(X \cap Y)
$$

$$
\operatorname{dom} f=X \& \operatorname{rng} f=X \& \operatorname{dom} g=X \& g \cdot f=f \text { implies } g=\operatorname{id} X
$$

Let us consider f. The predicate
f is_one-to-one
is defined by
for $x 1, x 2$ st $x 1 \in \operatorname{dom} f \& x 2 \in \operatorname{dom} f \& f . x 1=f . x 2$ holds $x 1=x 2$.
One can prove the following propositions:
f is_one-to-one
iff for $x 1, x 2$ st $x 1 \in \operatorname{dom} f \& x 2 \in \operatorname{dom} f \& f . x 1=f . x 2$ holds $x 1=x 2$,
(46) f is_one-to-one \& g is_one-to-one $\operatorname{implies} g \cdot f$ is_one-to-one,

$$
\begin{equation*}
g \cdot f \text { is_one-to-one } \& \operatorname{rng} f \subseteq \operatorname{dom} g \text { implies } f \text { is_one-to-one, } \tag{47}
\end{equation*}
$$

(48) $g \cdot f$ is_one-to-one $\& \operatorname{rng} f=\operatorname{dom} g$ implies f is_one-to-one $\& g$ is_one-to-one,
f is_one-to-one $\mathbf{i f f}$ for g, h st
$\operatorname{rng} g \subseteq \operatorname{dom} f \& \operatorname{rng} h \subseteq \operatorname{dom} f \& \operatorname{dom} g=\operatorname{dom} h \& f \cdot g=f \cdot h$ holds $g=h$,
(50) $\quad \operatorname{dom} f=X \& \operatorname{dom} g=X \& \operatorname{rng} g \subseteq X \& f$ is_one-to-one $\& f \cdot g=f$ implies $g=\operatorname{id} X$,
$\operatorname{rng}(g \cdot f)=\operatorname{rng} g \& g$ is_one-to-one $\operatorname{implies} \operatorname{dom} g \subseteq \operatorname{rng} f$, id X is_one-to-one,
(ex g st $g \cdot f=\operatorname{id} \operatorname{dom} f)$ implies f is_one-to-one.

Let us consider f. Assume that the following holds

$$
f \text { is_one-to-one. }
$$

The functor

$$
f^{-1}
$$

with values of the type Function, is defined by
domit $=\operatorname{rng} f \&$ for y, x holds $y \in \operatorname{rng} f \& x=$ it. y iff $x \in \operatorname{dom} f \& y=f . x$.
We now state a number of propositions:
f is_one-to-one implies ($g=f^{-1}$ iff $\operatorname{dom} g=\operatorname{rng} f \&$ for y, x holds $y \in \operatorname{rng} f \& x=g . y \operatorname{iff} x \in \operatorname{dom} f \& y=f . x)$,
f is_one-to-one implies $\operatorname{rng} f=\operatorname{dom}\left(f^{-1}\right) \& \operatorname{dom} f=\operatorname{rng}\left(f^{-1}\right)$,
(56) $\quad f$ is_one-to-one \& $x \in \operatorname{dom} f$ implies $x=\left(f^{-1}\right) \cdot(f \cdot x) \& x=\left(f^{-1} \cdot f\right) \cdot x$,

$$
\begin{equation*}
f \text { is_one-to-one implies } \operatorname{dom}\left(f^{-1} \cdot f\right)=\operatorname{dom} f \& \operatorname{rng}\left(f^{-1} \cdot f\right)=\operatorname{dom} f \tag{57}
\end{equation*}
$$

$$
\begin{equation*}
f \text { is_one-to-one implies } \operatorname{dom}\left(f \cdot f^{-1}\right)=\operatorname{rng} f \& \operatorname{rng}\left(f \cdot f^{-1}\right)=\operatorname{rng} f \tag{58}
\end{equation*}
$$

f is_one-to-one $\& \operatorname{dom} f=\operatorname{rng} g \& \operatorname{rng} f=\operatorname{dom} g$ $\&($ for x, y st $x \in \operatorname{dom} f \& y \in \operatorname{dom} g$ holds $f . x=y$ iff $g . y=x)$
implies $g=f^{-1}$,
(61) $\quad f$ is_one-to-one implies $f^{-1} \cdot f=\operatorname{id} \operatorname{dom} f \& f \cdot f^{-1}=\operatorname{id} \operatorname{rng} f$,
f is_one-to-one implies f^{-1} is_one-to-one,
(63) $\quad f$ is_one-to-one \& $\operatorname{rng} f=\operatorname{dom} g \& g \cdot f=\operatorname{id} \operatorname{dom} f$ implies $g=f^{-1}$,
(64) $\quad f$ is_one-to-one $\& \operatorname{rng} g=\operatorname{dom} f \& f \cdot g=\operatorname{id} \operatorname{rng} f \operatorname{implies} g=f^{-1}$,

$$
\begin{equation*}
f \text { is_one-to-one implies }\left(f^{-1}\right)^{-1}=f \tag{65}
\end{equation*}
$$

$$
\begin{equation*}
f \text { is_one-to-one } \& g \text { is_one-to-one } \operatorname{implies}(g \cdot f)^{-1}=f^{-1} \cdot g^{-1} \tag{66}
\end{equation*}
$$ $(\operatorname{id} X)^{-1}=(\operatorname{id} X)$.

Let us consider f, X. The functor

$$
f \mid X
$$

yields the type Function and is defined by

$$
\operatorname{dom} \text { it }=\operatorname{dom} f \cap X \& \text { for } x \text { st } x \in \operatorname{dom} \text { it holds it. } x=f . x .
$$

We now state a number of propositions:
(68) $\quad g=f \mid X$ iff $\operatorname{dom} g=\operatorname{dom} f \cap X \&$ for x st $x \in \operatorname{dom} g$ holds $g . x=f . x$,

$$
\begin{equation*}
\operatorname{dom}(f \mid X)=\operatorname{dom} f \cap X \tag{69}
\end{equation*}
$$

$$
\begin{equation*}
x \in \operatorname{dom}(f \mid X) \text { implies }(f \mid X) \cdot x=f \cdot x \tag{70}
\end{equation*}
$$

$x \in \operatorname{dom} f \cap X$ implies $(f \mid X) . x=f . x$,

$$
\begin{equation*}
x \in \operatorname{dom} f \& x \in X \text { implies }(f \mid X) \cdot x=f \cdot x \tag{71}
\end{equation*}
$$ $x \in \operatorname{dom} f \& x \in X$ implies $f . x \in \operatorname{rng}(f \mid X)$,

$$
\begin{equation*}
X \subseteq \operatorname{dom} f \text { implies } \operatorname{dom}(f \mid X)=X \tag{73}
\end{equation*}
$$

$\operatorname{dom}(f \mid X) \subseteq X$, $\operatorname{dom}(f \mid X) \subseteq \operatorname{dom} f \& \operatorname{rng}(f \mid X) \subseteq \operatorname{rng} f$,

$$
\begin{equation*}
f \mid X=f \cdot(\operatorname{id} X) \tag{76}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{dom} f \subseteq X \text { implies } f \mid X=f \tag{77}
\end{equation*}
$$

$$
\begin{equation*}
f \mid(\operatorname{dom} f)=f \tag{78}
\end{equation*}
$$

$$
\begin{equation*}
(f \mid X)|Y=f|(X \cap Y) \tag{79}
\end{equation*}
$$

$$
\begin{equation*}
(f \mid X)|X=f| X \tag{80}
\end{equation*}
$$

$$
\begin{equation*}
X \subseteq Y \text { implies }(f \mid X)|Y=f| X \&(f \mid Y)|X=f| X \tag{81}
\end{equation*}
$$

$$
\begin{equation*}
(g \cdot f) \mid X=g \cdot(f \mid X) \tag{82}
\end{equation*}
$$

$$
\begin{equation*}
f \text { is_one-to-one implies } f \mid X \text { is_one-to-one. } \tag{83}
\end{equation*}
$$

Let us consider Y, f. The functor

$$
Y \mid f
$$

with values of the type Function, is defined by

$$
\begin{gathered}
(\text { for } x \text { holds } x \in \operatorname{dom} \text { it iff } x \in \operatorname{dom} f \& f \cdot x \in Y) \\
\quad \& \text { for } x \text { st } x \in \operatorname{dom} \text { it holds it. } x=f \cdot x
\end{gathered}
$$

We now state a number of propositions:

$$
\begin{gather*}
g=Y \mid f \text { iff (for } x \text { holds } x \in \operatorname{dom} g \text { iff } x \in \operatorname{dom} f \& f \cdot x \in Y) \tag{85}\\
\& \text { for } x \text { st } x \in \operatorname{dom} g \text { holds } g \cdot x=f \cdot x
\end{gather*}
$$

$$
\begin{align*}
& x \in \operatorname{dom}(Y \mid f) \operatorname{iff} x \in \operatorname{dom} f \& f . x \in Y \tag{86}\\
& x \in \operatorname{dom}(Y \mid f) \operatorname{implies}(Y \mid f) \cdot x=f . x \tag{87}
\end{align*}
$$

$$
\operatorname{rng}(Y \mid f) \subseteq Y
$$

$$
\operatorname{dom}(Y \mid f) \subseteq \operatorname{dom} f \& \operatorname{rng}(Y \mid f) \subseteq \operatorname{rng} f
$$

$$
\operatorname{rng}(Y \mid f)=\operatorname{rng} f \cap Y
$$

$$
\begin{equation*}
Y \subseteq \operatorname{rng} f \text { implies } \operatorname{rng}(Y \mid f)=Y \tag{91}
\end{equation*}
$$

$$
\begin{equation*}
Y \mid f=(\operatorname{id} Y) \cdot f \tag{92}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{rng} f \subseteq Y \text { implies } Y \mid f=f \tag{93}
\end{equation*}
$$

$$
\begin{gathered}
(\operatorname{rng} f) \mid f=f \\
Y|(X \mid f)=(Y \cap X)| f \\
Y|(Y \mid f)=Y| f
\end{gathered}
$$

$X \subseteq Y$ implies $Y|(X \mid f)=X| f \& X|(Y \mid f)=X| f$,

$$
Y \mid(g \cdot f)=(Y \mid g) \cdot f
$$

f is_one-to-one implies $Y \mid f$ is_one-to-one, $(Y \mid f)|X=Y|(f \mid X)$.

Let us consider f, X. The functor

$$
f^{\circ} X
$$

yields the type set and is defined by
for y holds $y \in$ it iff ex x st $x \in \operatorname{dom} f \& x \in X \& y=f . x$.
The following propositions are true:
(101) $\quad Y=f^{\circ} X$ iff for y holds $y \in Y$ iff ex x st $x \in \operatorname{dom} f \& x \in X \& y=f . x$,

$$
\begin{equation*}
y \in f^{\circ} X \text { iff ex } x \text { st } x \in \operatorname{dom} f \& x \in X \& y=f . x \tag{102}
\end{equation*}
$$

$$
\begin{equation*}
f^{\circ} X \subseteq \operatorname{rng} f \tag{103}
\end{equation*}
$$

$$
\begin{equation*}
f^{\circ}(X)=f^{\circ}(\operatorname{dom} f \cap X), \tag{104}
\end{equation*}
$$

$$
\begin{equation*}
f^{\circ}(\operatorname{dom} f)=\operatorname{rng} f \tag{105}
\end{equation*}
$$

$$
\begin{equation*}
f^{\circ} X \subseteq f^{\circ}(\operatorname{dom} f) \tag{106}
\end{equation*}
$$

(107)
(124) (for $X 1, X 2$ holds $\left.f^{\circ}(X 1 \backslash X 2)=f^{\circ} X 1 \backslash f^{\circ} X 2\right)$ implies f is_one-to-one,

$$
\begin{equation*}
X \cap Y=\emptyset \& f \text { is_one-to-one implies } f^{\circ} X \cap f^{\circ} Y=\emptyset \tag{125}
\end{equation*}
$$

$$
\begin{equation*}
(Y \mid f)^{\circ} X=Y \cap f^{\circ} X \tag{126}
\end{equation*}
$$

Let us consider f, Y. The functor

$$
f^{-1} Y
$$

yields the type set and is defined by

$$
\text { for } x \text { holds } x \in \text { it iff } x \in \operatorname{dom} f \& f . x \in Y
$$

We now state a number of propositions:

$$
\begin{align*}
& X=f^{-1} Y \text { iff for } x \text { holds } x \in X \text { iff } x \in \operatorname{dom} f \& f . x \in Y, \tag{127}\\
& x \in f^{-1} Y \text { iff } x \in \operatorname{dom} f \& f . x \in Y, \tag{128}\\
& f^{-1} Y \subseteq \operatorname{dom} f, \tag{129}\\
& f^{-1} Y=f^{-1}(\operatorname{rng} f \cap Y), \tag{130}\\
& f^{-1}(\operatorname{rng} f)=\operatorname{dom} f, \tag{131}\\
& f^{-1} \emptyset=\emptyset, \tag{132}\\
& f^{-1} Y=\emptyset \text { iff rng } f \cap Y=\emptyset, \tag{133}\\
& Y \subseteq \operatorname{rng} f \text { implies }\left(f^{-1} Y=\emptyset \text { iff } Y=\emptyset\right), \tag{134}\\
& Y 1 \subseteq Y 2 \text { implies } f^{-1} Y 1 \subseteq f^{-1} Y 2, \tag{135}\\
& f^{-1}(Y 1 \cup Y 2)=f^{-1} Y 1 \cup f^{-1} Y 2, \tag{136}\\
& f^{-1}(Y 1 \cap Y 2)=f^{-1} Y 1 \cap f^{-1} Y 2, \tag{137}\\
& f^{-1}(Y 1 \backslash Y 2)=f^{-1} Y 1 \backslash f^{-1} Y 2, \tag{138}\\
& (f \mid X)^{-1} Y=X \cap\left(f^{-1} Y\right), \tag{139}\\
& (g \cdot f)^{-1} Y=f^{-1}\left(g^{-1} Y\right), \tag{140}\\
& \operatorname{dom}(g \cdot f)=f^{-1}(\operatorname{dom} g), \tag{141}\\
& y \in \operatorname{rng} f \text { iff } f^{-1}\{y\} \neq \emptyset, \tag{142}\\
& \text { (for } \left.y \text { st } y \in Y \text { holds } f^{-1}\{y\} \neq \emptyset\right) \text { implies } Y \subseteq \operatorname{rng} f, \tag{143}\\
& \text { (for } y \text { st } y \in \operatorname{rng} f \mathbf{e x} x \text { st } f^{-1}\{y\}=\{x\} \text {) iff } f \text { is_one-to-one, } \tag{144}\\
& f^{\circ}\left(f^{-1} Y\right) \subseteq Y, \tag{145}\\
& X \subseteq \operatorname{dom} f \text { implies } X \subseteq f^{-1}\left(f^{\circ} X\right), \tag{146}\\
& Y \subseteq \operatorname{rng} f \text { implies } f^{\circ}\left(f^{-1} Y\right)=Y, \tag{147}\\
& f^{\circ}\left(f^{-1} Y\right)=Y \cap f^{\circ}(\operatorname{dom} f), \tag{148}\\
& f^{\circ}\left(X \cap f^{-1} Y\right) \subseteq\left(f^{\circ} X\right) \cap Y, \tag{149}\\
& f^{\circ}\left(X \cap f^{-1} Y\right)=\left(f^{\circ} X\right) \cap Y, \tag{150}
\end{align*}
$$

$$
X \cap f^{-1} Y \subseteq f^{-1}\left(f^{\circ} X \cap Y\right)
$$

f is_one-to-one implies $f^{-1}\left(f^{\circ} X\right) \subseteq X$, (for X holds $\left.f^{-1}\left(f^{\circ} X\right) \subseteq X\right)$ implies f is_one-to-one,

$$
\begin{gathered}
f \text { is_one-to-one implies } f^{\circ} X=\left(f^{-1}\right)^{-1} X, \\
f \text { is_one-to-one implies } f^{-1} Y=\left(f^{-1}\right)^{\circ} Y, \\
Y=\operatorname{rng} f \& \operatorname{dom} g=Y \& \operatorname{dom} h=Y \& g \cdot f=h \cdot f \text { implies } g=h, \\
f^{\circ} X 1 \subseteq f^{\circ} X 2 \& X 1 \subseteq \operatorname{dom} f \& f \text { is_one-to-one implies } X 1 \subseteq X 2, \\
f^{-1} Y 1 \subseteq f^{-1} Y 2 \& Y 1 \subseteq \operatorname{rng} f \text { implies } Y 1 \subseteq Y 2, \\
f \text { is_one-to-one iff for } y \text { ex } x \text { st } f^{-1}\{y\} \subseteq\{x\}, \\
\operatorname{rng} f \subseteq \operatorname{dom} g \text { implies } f^{-1} X \subseteq(g \cdot f)^{-1}\left(g^{\circ} X\right)
\end{gathered}
$$

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[2] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1.

