
FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Functions and Their Basic Properties

Czes law Byliński1

Warsaw University

Bia lystok

Summary. The definitions of the mode Function and the graph of a function

are introduced. The graph of a function is defined to be identical with the function.

The following concepts are also defined: the domain of a function, the range of

a function, the identity function, the composition of functions, the 1-1 function,

the inverse function, the restriction of a function, the image and the inverse image.

Certain basic facts about functions and the notions defined in the article are proved.

The notation and terminology used here are introduced in the papers [1] and [2]. For

simplicity we adopt the following convention: X , X1, X2, Y , Y 1, Y 2 have the type

set; p, x, x1, x2, y, y1, y2, z have the type Any. The mode

Function ,

which widens to the type Any, is defined by

exF being set st it = F & (for p st p ∈ F exx,y st 〈x, y〉 = p)

& forx,y1,y2 st 〈x, y1〉 ∈ F & 〈x, y2〉 ∈ F holds y1 = y2.

In the sequel f , g, h will have the type Function. Let us consider f . The functor

graph f,

yields the type set and is defined by

f = it .

Next we state several propositions:

(1) graph f = f,

1Supported by RPBP.III-24.C1.

55
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028

56 Czes law Byliński

(2) forF being set st

(for p st p ∈ F exx,y st 〈x, y〉 = p)

& forx,y1,y2 st 〈x, y1〉 ∈ F & 〈x, y2〉 ∈ F holds y1 = y2

ex f being Function st graphf = F,

(3) p ∈ graphf implies exx,y st 〈x, y〉 = p,

(4) 〈x, y1〉 ∈ graphf & 〈x, y2〉 ∈ graph f implies y1 = y2,

(5) graph f = graph g implies f = g.

The scheme GraphFunc concerns a constant A that has the type set and a binary

predicate P and states that the following holds

ex f st forx,y holds 〈x, y〉 ∈ graph f iff x ∈ A & P [x, y]

provided the parameters satisfy the following condition:

• forx,y1,y2 st P [x, y1] & P [x, y2] holds y1 = y2.

Let us consider f . The functor

dom f,

yields the type set and is defined by

forx holds x ∈ it iff ex y st 〈x, y〉 ∈ graphf.

One can prove the following proposition

(6) X = dom f iff forx holds x ∈ X iff ex y st 〈x, y〉 ∈ graph f.

Let us consider f , x. Assume that the following holds

x ∈ dom f.

The functor

f .x,

yields the type Any and is defined by

〈x, it〉 ∈ graph f.

The following three propositions are true:

(7) x ∈ dom f implies (y = f .x iff 〈x, y〉 ∈ graph f),

(8) 〈x, y〉 ∈ graph f iff x ∈ dom f & y = f .x,

(9) X = dom f & X = dom g & (forx st x ∈ X holds f .x = g.x) implies f = g.

Functions and Their Basic Properties 57

Let us consider f . The functor

rng f,

with values of the type set, is defined by

for y holds y ∈ it iff exx st x ∈ dom f & y = f .x.

One can prove the following propositions:

(10) Y = rng f iff for y holds y ∈ Y iff exx st x ∈ dom f & y = f .x,

(11) y ∈ rng f iff exx st x ∈ dom f & y = f .x,

(12) x ∈ dom f implies f .x ∈ rng f,

(13) dom f = ∅ iff rng f = ∅,

(14) dom f = {x} implies rng f = {f .x}.

Now we present two schemes. The scheme FuncEx concerns a constant A that has

the type set and a binary predicate P and states that the following holds

ex f st dom f = A & forx st x ∈ A holds P [x, f .x]

provided the parameters satisfy the following conditions:

• forx,y1,y2 st x ∈ A & P [x, y1] & P [x, y2] holds y1 = y2,

• forx st x ∈ A ex y st P [x, y].

The scheme Lambda concerns a constant A that has the type set and a unary functor

F and states that the following holds

ex f being Function st dom f = A & forx st x ∈ A holds f .x = F(x)

for all values of the parameters.

Next we state several propositions:

(15) X 6= ∅ implies for y ex f st dom f = X & rng f = {y},

(16) (for f,g st dom f = X & dom g = X holds f = g) implies X = ∅,

(17) dom f = dom g & rng f = {y} & rng g = {y} implies f = g,

(18) Y 6= ∅ or X = ∅ implies ex f st X = dom f & rng f ⊆ Y,

(19) (for y st y ∈ Y exx st x ∈ dom f & y = f .x) implies Y ⊆ rng f.

Let us consider f , g. The functor

g · f,

58 Czes law Byliński

yields the type Function and is defined by

(for x holds x ∈ dom it iff x ∈ dom f & f .x ∈ dom g)

& forx st x ∈ dom it holds it.x = g.(f .x).

The following propositions are true:

(20) h = g · f iff (forx holds x ∈ domh iff x ∈ dom f & f .x ∈ dom g)

& forx st x ∈ domh holds h.x = g.(f .x),

(21) x ∈ dom (g · f) iff x ∈ dom f & f .x ∈ dom g,

(22) x ∈ dom(g · f) implies (g · f).x = g.(f .x),

(23) x ∈ dom f & f .x ∈ dom g implies (g · f).x = g.(f .x),

(24) dom(g · f) ⊆ dom f,

(25) z ∈ rng (g · f) implies z ∈ rng g,

(26) rng (g · f) ⊆ rng g,

(27) rng f ⊆ dom g iff dom(g · f) = dom f,

(28) dom g ⊆ rng f implies rng (g · f) = rng g,

(29) rng f = dom g implies dom(g · f) = dom f & rng (g · f) = rng g,

(30) h · (g · f) = (h · g) · f,

(31) rng f ⊆ dom g & x ∈ dom f implies (g · f).x = g.(f .x),

(32) rng f = dom g & x ∈ dom f implies (g · f).x = g.(f .x),

(33) rng f ⊆ Y & (for g,h st dom g = Y & domh = Y & g · f = h · f holds g = h)

implies Y = rng f.

Let us consider X . The functor

idX,

with values of the type Function, is defined by

dom it = X & forx st x ∈ X holds it.x = x.

Next we state a number of propositions:

(34) f = idX iff dom f = X & forx st x ∈ X holds f .x = x,

(35) x ∈ X implies (idX).x = x,

Functions and Their Basic Properties 59

(36) dom idX = X & rng idX = X,

(37) dom (f · (id X)) = dom f ∩ X,

(38) x ∈ dom f ∩ X implies f .x = (f · (id X)).x,

(39) dom f ⊆ X implies f · (idX) = f,

(40) x ∈ dom((id Y) · f) iff x ∈ dom f & f .x ∈ Y,

(41) rng f ⊆ Y implies (id Y) · f = f,

(42) f · (id dom f) = f & (id rng f) · f = f,

(43) (idX) · (idY) = id (X ∩ Y),

(44) dom f = X & rng f = X & dom g = X & g · f = f implies g = idX.

Let us consider f . The predicate

f is one-to-one

is defined by

forx1,x2 st x1 ∈ dom f & x2 ∈ dom f & f .x1 = f .x2 holds x1 = x2.

One can prove the following propositions:

(45) f is one-to-one

iff for x1,x2 st x1 ∈ dom f & x2 ∈ dom f & f .x1 = f .x2 holds x1 = x2,

(46) f is one-to-one & g is one-to-one implies g · f is one-to-one ,

(47) g · f is one-to-one & rng f ⊆ dom g implies f is one-to-one ,

(48) g · f is one-to-one & rng f = dom g implies f is one-to-one & g is one-to-one ,

(49) f is one-to-one iff for g,h st

rng g ⊆ dom f & rngh ⊆ dom f & dom g = domh & f · g = f · h holds g = h,

(50) dom f = X & dom g = X & rng g ⊆ X & f is one-to-one & f · g = f

implies g = idX,

(51) rng (g · f) = rng g & g is one-to-one implies dom g ⊆ rng f,

(52) idX is one-to-one ,

(53) (ex g st g · f = id dom f) implies f is one-to-one .

60 Czes law Byliński

Let us consider f . Assume that the following holds

f is one-to-one .

The functor

f -1 ,

with values of the type Function, is defined by

dom it = rng f & for y,x holds y ∈ rng f & x = it.y iff x ∈ dom f & y = f .x.

We now state a number of propositions:

(54) f is one-to-one implies (g = f -1 iff

dom g = rng f & for y,x holds y ∈ rng f & x = g.y iff x ∈ dom f & y = f .x),

(55) f is one-to-one implies rng f = dom (f -1) & dom f = rng (f -1),

(56) f is one-to-one & x ∈ dom f implies x = (f -1).(f .x) & x = (f -1 · f).x,

(57) f is one-to-one & y ∈ rng f implies y = f .((f -1).y) & y = (f · f -1).y,

(58) f is one-to-one implies dom (f -1 · f) = dom f & rng (f -1 · f) = dom f,

(59) f is one-to-one implies dom (f · f -1) = rng f & rng (f · f -1) = rng f,

(60) f is one-to-one & dom f = rng g & rng f = dom g

& (for x,y st x ∈ dom f & y ∈ dom g holds f .x = y iff g.y = x)

implies g = f -1 ,

(61) f is one-to-one implies f -1 · f = id dom f & f · f -1 = id rng f,

(62) f is one-to-one implies f -1 is one-to-one ,

(63) f is one-to-one & rng f = dom g & g · f = id dom f implies g = f -1 ,

(64) f is one-to-one & rng g = dom f & f · g = id rng f implies g = f -1 ,

(65) f is one-to-one implies (f -1) -1 = f,

(66) f is one-to-one & g is one-to-one implies (g · f) -1 = f -1 · g -1 ,

(67) (idX) -1 = (id X).

Let us consider f , X . The functor

f | X,

yields the type Function and is defined by

dom it = dom f ∩ X & forx st x ∈ dom it holds it.x = f .x.

Functions and Their Basic Properties 61

We now state a number of propositions:

(68) g = f | X iff dom g = dom f ∩ X & forx st x ∈ dom g holds g.x = f .x,

(69) dom(f | X) = dom f ∩ X,

(70) x ∈ dom(f | X) implies (f | X).x = f .x,

(71) x ∈ dom f ∩ X implies (f | X).x = f .x,

(72) x ∈ dom f & x ∈ X implies (f | X).x = f .x,

(73) x ∈ dom f & x ∈ X implies f .x ∈ rng (f | X),

(74) X ⊆ dom f implies dom (f | X) = X,

(75) dom (f | X) ⊆ X,

(76) dom (f | X) ⊆ dom f & rng (f | X) ⊆ rng f,

(77) f | X = f · (idX),

(78) dom f ⊆ X implies f | X = f,

(79) f | (dom f) = f,

(80) (f | X) | Y = f | (X ∩ Y),

(81) (f | X) | X = f | X,

(82) X ⊆ Y implies (f | X) | Y = f | X & (f | Y) | X = f | X,

(83) (g · f) | X = g · (f | X),

(84) f is one-to-one implies f | X is one-to-one .

Let us consider Y , f . The functor

Y | f,

with values of the type Function, is defined by

(forx holds x ∈ dom it iff x ∈ dom f & f .x ∈ Y)

& forx st x ∈ dom it holds it.x = f .x.

We now state a number of propositions:

(85) g = Y | f iff (for x holds x ∈ dom g iff x ∈ dom f & f .x ∈ Y)

& forx st x ∈ dom g holds g.x = f .x,

62 Czes law Byliński

(86) x ∈ dom (Y | f) iff x ∈ dom f & f .x ∈ Y,

(87) x ∈ dom (Y | f) implies (Y | f).x = f .x,

(88) rng (Y | f) ⊆ Y,

(89) dom(Y | f) ⊆ dom f & rng (Y | f) ⊆ rng f,

(90) rng (Y | f) = rng f ∩ Y,

(91) Y ⊆ rng f implies rng (Y | f) = Y,

(92) Y | f = (id Y) · f,

(93) rng f ⊆ Y implies Y | f = f,

(94) (rng f) | f = f,

(95) Y | (X | f) = (Y ∩ X) | f,

(96) Y | (Y | f) = Y | f,

(97) X ⊆ Y implies Y | (X | f) = X | f & X | (Y | f) = X | f,

(98) Y | (g · f) = (Y | g) · f,

(99) f is one-to-one implies Y | f is one-to-one ,

(100) (Y | f) | X = Y | (f | X).

Let us consider f , X . The functor

f ◦ X,

yields the type set and is defined by

for y holds y ∈ it iff exx st x ∈ dom f & x ∈ X & y = f .x.

The following propositions are true:

(101) Y = f ◦ X iff for y holds y ∈ Y iff exx st x ∈ dom f & x ∈ X & y = f .x,

(102) y ∈ f ◦ X iff exx st x ∈ dom f & x ∈ X & y = f .x,

(103) f ◦ X ⊆ rng f,

(104) f ◦ (X) = f ◦ (dom f ∩ X),

(105) f ◦ (dom f) = rng f,

(106) f ◦ X ⊆ f ◦ (dom f),

Functions and Their Basic Properties 63

(107) rng (f | X) = f ◦ X,

(108) f ◦ X = ∅ iff dom f ∩ X = ∅,

(109) f ◦ ∅ = ∅,

(110) X 6= ∅ & X ⊆ dom f implies f ◦ X 6= ∅,

(111) X1 ⊆ X2 implies f ◦ X1 ⊆ f ◦ X2,

(112) f ◦ (X1 ∪ X2) = f ◦ X1 ∪ f ◦ X2,

(113) f ◦ (X1 ∩ X2) ⊆ f ◦ X1 ∩ f ◦ X2,

(114) f ◦ X1 \ f ◦ X2 ⊆ f ◦ (X1 \ X2),

(115) (g · f) ◦ X = g ◦ (f ◦ X),

(116) rng (g · f) = g ◦ (rng f),

(117) x ∈ dom f implies f ◦ {x} = {f .x},

(118) x1 ∈ dom f & x2 ∈ dom f implies f ◦ {x1,x2} = {f .x1,f .x2},

(119) (f | Y) ◦ X ⊆ f ◦ X,

(120) (Y | f) ◦ X ⊆ f ◦ X,

(121) f is one-to-one implies f ◦ (X1 ∩ X2) = f ◦ X1 ∩ f ◦ X2,

(122) (forX1,X2 holds f ◦ (X1 ∩ X2) = f ◦ X1 ∩ f ◦ X2)

implies f is one-to-one ,

(123) f is one-to-one implies f ◦ (X1 \ X2) = f ◦ X1 \ f ◦ X2,

(124) (forX1,X2 holds f ◦ (X1 \ X2) = f ◦ X1 \ f ◦ X2) implies f is one-to-one ,

(125) X ∩ Y = ∅ & f is one-to-one implies f ◦ X ∩ f ◦ Y = ∅,

(126) (Y | f) ◦ X = Y ∩ f ◦ X.

Let us consider f , Y . The functor

f -1 Y,

yields the type set and is defined by

forx holds x ∈ it iff x ∈ dom f & f .x ∈ Y.

64 Czes law Byliński

We now state a number of propositions:

(127) X = f -1 Y iff forx holds x ∈ X iff x ∈ dom f & f .x ∈ Y,

(128) x ∈ f -1 Y iff x ∈ dom f & f .x ∈ Y,

(129) f -1 Y ⊆ dom f,

(130) f -1 Y = f -1 (rng f ∩ Y),

(131) f -1 (rng f) = dom f,

(132) f -1 ∅ = ∅,

(133) f -1 Y = ∅ iff rng f ∩ Y = ∅,

(134) Y ⊆ rng f implies (f -1 Y = ∅ iff Y = ∅),

(135) Y 1 ⊆ Y 2 implies f -1 Y 1 ⊆ f -1 Y 2,

(136) f -1 (Y 1 ∪ Y 2) = f -1 Y 1 ∪ f -1 Y 2,

(137) f -1 (Y 1 ∩ Y 2) = f -1 Y 1 ∩ f -1 Y 2,

(138) f -1 (Y 1 \ Y 2) = f -1 Y 1 \ f -1 Y 2,

(139) (f | X) -1 Y = X ∩ (f -1 Y),

(140) (g · f) -1 Y = f -1 (g -1 Y),

(141) dom(g · f) = f -1 (dom g),

(142) y ∈ rng f iff f -1 {y} 6= ∅,

(143) (for y st y ∈ Y holds f -1 {y} 6= ∅) implies Y ⊆ rng f,

(144) (for y st y ∈ rng f exx st f -1 {y} = {x}) iff f is one-to-one ,

(145) f ◦ (f -1 Y) ⊆ Y,

(146) X ⊆ dom f implies X ⊆ f -1 (f ◦ X),

(147) Y ⊆ rng f implies f ◦ (f -1 Y) = Y,

(148) f ◦ (f -1 Y) = Y ∩ f ◦ (dom f),

(149) f ◦ (X ∩ f -1 Y) ⊆ (f ◦ X) ∩ Y,

(150) f ◦ (X ∩ f -1 Y) = (f ◦ X) ∩ Y,

Functions and Their Basic Properties 65

(151) X ∩ f -1 Y ⊆ f -1 (f ◦ X ∩ Y),

(152) f is one-to-one implies f -1 (f ◦ X) ⊆ X,

(153) (forX holds f -1 (f ◦ X) ⊆ X) implies f is one-to-one ,

(154) f is one-to-one implies f ◦ X = (f -1) -1 X,

(155) f is one-to-one implies f -1 Y = (f -1) ◦ Y,

(156) Y = rng f & dom g = Y & domh = Y & g · f = h · f implies g = h,

(157) f ◦ X1 ⊆ f ◦ X2 & X1 ⊆ dom f & f is one-to-one implies X1 ⊆ X2,

(158) f -1 Y 1 ⊆ f -1 Y 2 & Y 1 ⊆ rng f implies Y 1 ⊆ Y 2,

(159) f is one-to-one iff for y exx st f -1 {y} ⊆ {x},

(160) rng f ⊆ dom g implies f -1 X ⊆ (g · f) -1 (g ◦ X).

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[2] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received March 3, 1989

