Boolean Domains

Andrzej Trybulec ${ }^{1}$
Warsaw University
Białystok

Agata Darmochwal ${ }^{2}$
Warsaw University
Białystok

Summary. BOOLE DOMAIN is a SET DOMAIN that is closed under union and difference. This condition is equivalent to being closed under symmetric difference and one of the following operations: union, intersection or difference. We introduce the set of all finite subsets of a set A, denoted by Fin A. The mode Finite Subset of a set A is introduced with the mother type: Element of Fin A. In consequence, "Finite Subset of ..." is an elementary type, therefore one may use such types as "set of Finite Subset of A ", "[(Finite Subset of A), Finite Subset of $A]$ ", and so on. The article begins with some auxiliary theorems that belong really to [5] or [1] but are missing there. Moreover, bool A is redefined as a SET DOMAIN, for an arbitrary set A.

The articles [4], [5], [3], and [2] provide the notation and terminology for this paper. In the sequel X, Y will denote objects of the type set. The following propositions are true:

$$
X \text { misses } Y \text { implies } X \backslash Y=X \& Y \backslash X=Y
$$

$$
\begin{equation*}
X \text { misses } Y \text { implies }(X \cup Y) \backslash Y=X \&(X \cup Y) \backslash X=Y \text {, } \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
X \cup Y=X \doteq(Y \backslash X) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
X \cup Y=X \doteq Y \doteq X \cap Y \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
X \backslash Y=X \doteq(X \cap Y) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
X \cap Y=X \doteq Y \doteq(X \cup Y) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\text { (for } x \text { being set st } x \in X \text { holds } x \in Y \text {) implies } X \subseteq Y \text {. } \tag{7}
\end{equation*}
$$

[^0]Let us consider X. Let us note that it makes sense to consider the following functor on a restricted area. Then
bool $X \quad$ is \quad SET_DOMAIN .

The following proposition is true

$$
\begin{equation*}
\text { for } Y \text { being Element of bool } X \text { holds } Y \subseteq X \text {. } \tag{8}
\end{equation*}
$$

The mode
BOOLE_DOMAIN ,
which widens to the type SET_DOMAIN, is defined by

$$
\text { for } X, Y \text { being Element of it holds } X \cup Y \in \text { it \& } X \backslash Y \in \text { it . }
$$

The following proposition is true
for A being SET_DOMAIN holds A is BOOLE_DOMAIN iff for X, Y being Element of A holds $X \cup Y \in A \& X \backslash Y \in A$.

In the sequel A will denote an object of the type BOOLE_DOMAIN. One can prove the following propositions:

$$
\begin{equation*}
X \in A \& Y \in A \text { implies } X \cup Y \in A \& X \backslash Y \in A \tag{10}
\end{equation*}
$$

(11) X is Element of $A \& Y$ is Element of A implies $X \cup Y$ is Element of A,
(12) $\quad X$ is Element of $A \& Y$ is Element of A implies $X \backslash Y$ is Element of A.

The arguments of the notions defined below are the following: A which is an object of the type reserved above; X, Y which are objects of the type Element of A. Let us note that it makes sense to consider the following functors on restricted areas. Then

| $X \cup Y$ | is \quad Element of A, |
| :--- | :--- | :--- |
| $X \backslash Y$ | is \quad Element of A. |

The following propositions are true:
(13) $\quad X$ is Element of $A \& Y$ is Element of A implies $X \cap Y$ is Element of A,
(14) $\quad X$ is Element of $A \& Y$ is Element of A implies $X \doteq Y$ is Element of A,
for A being SET_DOMAIN st
for X, Y being Element of A holds $X \dot{-} Y \in A \& X \backslash Y \in A$
holds A is BOOLE_DOMAIN ,

for A being SET_DOMAIN st

for X, Y being Element of A holds $X \dot{-Y \in A \& X \cap Y \in A}$ holds A is BOOLE_DOMAIN, for A being SET_DOMAIN st for X, Y being Element of A holds $X \dot{-Y \in A \& X \cup Y \in A}$ holds A is BOOLE_DOMAIN .

The arguments of the notions defined below are the following: A which is an object of the type reserved above; X, Y which are objects of the type Element of A. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
\begin{array}{ll}
X \cap Y & \text { is } \quad \text { Element of } A \\
X-Y & \text { is } \quad \text { Element of } A .
\end{array}
$$

We now state four propositions:

$$
\begin{gather*}
\emptyset \in A, \tag{18}\\
\emptyset \text { is Element of } A, \\
\text { bool } A \text { is BOOLE_DOMAIN, }
\end{gather*}
$$

(21) for A, B being BOOLE_DOMAIN holds $A \cap B$ is BOOLE_DOMAIN .

In the sequel A, B will denote objects of the type set. Let us consider A. The functor

$$
\operatorname{Fin} A
$$

with values of the type BOOLE_DOMAIN, is defined by

$$
\text { for } X \text { being set holds } X \in \text { it iff } X \subseteq A \& X \text { is_finite . }
$$

The following propositions are true:

$$
\begin{equation*}
B \in \operatorname{Fin} A \text { iff } B \subseteq A \& B \text { is_finite }, \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
A \subseteq B \text { implies Fin } A \subseteq \operatorname{Fin} B \tag{23}
\end{equation*}
$$

$\operatorname{Fin}(A \cap B)=\operatorname{Fin} A \cap \operatorname{Fin} B$,
$\operatorname{Fin} A \cup \operatorname{Fin} B \subseteq \operatorname{Fin}(A \cup B)$,
Fin $A \subseteq$ bool A,
A is_finite implies $\operatorname{Fin} A=\operatorname{bool} A$,

$$
\begin{equation*}
\operatorname{Fin} \emptyset=\{\emptyset\} . \tag{28}
\end{equation*}
$$

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1.
 ${ }^{2}$ Supported by RPBP.III-24.C1.

