Boolean Domains

Andrzej Trybulec¹ Warsaw University Białystok Agata Darmochwał² Warsaw University Białystok

Summary. BOOLE DOMAIN is a SET DOMAIN that is closed under union and difference. This condition is equivalent to being closed under symmetric difference and one of the following operations: union, intersection or difference. We introduce the set of all finite subsets of a set A, denoted by Fin A. The mode Finite Subset of a set A is introduced with the mother type: Element of Fin A. In consequence, "Finite Subset of ..." is an elementary type, therefore one may use such types as "set of Finite Subset of A", "[(Finite Subset of A), Finite Subset of A]", and so on. The article begins with some auxiliary theorems that belong really to [5] or [1] but are missing there. Moreover, bool A is redefined as a SET DOMAIN, for an arbitrary set A.

The articles [4], [5], [3], and [2] provide the notation and terminology for this paper. In the sequel X, Y will denote objects of the type set. The following propositions are true:

(1) X misses Y implies $X \setminus Y = X \& Y \setminus X$	= Y,
---	------

(2)
$$X$$
 misses Y implies $(X \cup Y) \setminus Y = X \& (X \cup Y) \setminus X = Y$,

(3)
$$X \cup Y = X - (Y \setminus X),$$

(4)
$$X \cup Y = X - Y - X \cap Y,$$

(5)
$$X \setminus Y = X \div (X \cap Y),$$

(6)
$$X \cap Y = X - Y - (X \cup Y),$$

(7) (for x being set st
$$x \in X$$
 holds $x \in Y$) implies $X \subseteq Y$.

¹Supported by RPBP.III-24.C1.

© 1990 Fondation Philippe le Hodey ISSN 0777-4028

²Supported by RPBP.III-24.C1.

Let us consider X. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$bool X$$
 is SET_DOMAIN.

The following proposition is true

(8) for Y being Element of bool X holds
$$Y \subseteq X$$
.

The mode

which widens to the type SET_DOMAIN, is defined by

```
for X,Y being Element of it holds X \cup Y \in it \& X \setminus Y \in it.
```

The following proposition is true

(9) for *A* being SET_DOMAIN holds *A* is BOOLE_DOMAIN
iff for *X*,*Y* being Element of *A* holds
$$X \cup Y \in A \& X \setminus Y \in A$$
.

In the sequel A will denote an object of the type BOOLE_DOMAIN. One can prove the following propositions:

(10)
$$X \in A \& Y \in A \text{ implies } X \cup Y \in A \& X \setminus Y \in A,$$

(11) X is Element of A & Y is Element of A implies $X \cup Y$ is Element of A,

(12) X is Element of A & Y is Element of A implies $X \setminus Y$ is Element of A.

The arguments of the notions defined below are the following: A which is an object of the type reserved above; X, Y which are objects of the type Element of A. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$X \cup Y$$
 is Element of A ,
 $X \setminus Y$ is Element of A .

The following propositions are true:

- (13) X is Element of A & Y is Element of A implies $X \cap Y$ is Element of A,
- (14) X is Element of A & Y is Element of A implies X Y is Element of A,

(15) for
$$A$$
 being SET_DOMAIN st

for X, Y being Element of A holds $X \stackrel{\cdot}{\rightarrow} Y \in A \& X \setminus Y \in A$ holds A is BOOLE_DOMAIN,

(16) for A being SET_DOMAIN st
for X,Y being Element of A holds
$$X - Y \in A \& X \cap Y \in A$$

holds A is BOOLE_DOMAIN,

(17) for A being SET_DOMAIN st

for X,Y being Element of A holds
$$X - Y \in A \& X \cup Y \in A$$

holds A is BOOLE_DOMAIN.

The arguments of the notions defined below are the following: A which is an object of the type reserved above; X, Y which are objects of the type Element of A. Let us note that it makes sense to consider the following functors on restricted areas. Then

$X \cap Y$	is	Element of A ,
$X \doteq Y$	is	Element of A .

We now state four propositions:

$$(18) \emptyset \in A,$$

(19)
$$\emptyset$$
 is Element of A ,

(20)
$$\operatorname{bool} A$$
 is BOOLE_DOMAIN,

(21) for A, B being BOOLE_DOMAIN holds $A \cap B$ is BOOLE_DOMAIN.

In the sequel A, B will denote objects of the type set. Let us consider A. The functor

 $\operatorname{Fin} A$,

with values of the type BOOLE_DOMAIN, is defined by

for X being set holds $X \in$ it iff $X \subseteq A \& X$ is_finite.

The following propositions are true:

(22) $B \in \operatorname{Fin} A \text{ iff } B \subseteq A \& B \text{ is_finite},$

(23)
$$A \subseteq B$$
 implies Fin $A \subseteq$ Fin B ,

(24)
$$\operatorname{Fin}(A \cap B) = \operatorname{Fin} A \cap \operatorname{Fin} B,$$

(25)
$$\operatorname{Fin} A \cup \operatorname{Fin} B \subseteq \operatorname{Fin} (A \cup B),$$

- (26) $\operatorname{Fin} A \subseteq \operatorname{bool} A,$
- (27) A is_finite **implies** Fin A = bool A,
- (28) $\operatorname{Fin} \emptyset = \{\emptyset\}.$