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Summary. We define the notion of an initial segment of natural numbers and

prove a number of their properties. Using this notion we introduce finite sequences,

subsequences, the empty sequence, a sequence of a domain, and the operation of

concatenation of two sequences.

The papers [4], [5], [2], [3], and [1] provide the notation and terminology for this paper.

For simplicity we adopt the following convention: k, l, m, n, k1, k2 denote objects of

the type Nat; X denotes an object of the type set; x, y, z, y1, y2 denote objects of the

type Any; f denotes an object of the type Function. Let us consider n. The functor

Seg n,

with values of the type set, is defined by

it = { k : 1 ≤ k & k ≤ n }.

Let us consider n. Let us note that it makes sense to consider the following functor

on a restricted area. Then

Seg n is set of Nat .

One can prove the following propositions:

(1) Seg n = { k : 1 ≤ k & k ≤ n },

(2) x ∈ Seg n implies x is Nat ,

(3) k ∈ Seg n iff 1 ≤ k & k ≤ n,
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(4) Seg 0 = ∅ & Seg 1 = {1} & Seg 2 = {1,2},

(5) n = 0 or n ∈ Seg n,

(6) n + 1 ∈ Seg (n + 1),

(7) n ≤ m iff Seg n ⊆ Seg m,

(8) Seg n = Seg m implies n = m,

(9) k ≤ n implies Seg k = Seg k ∩ Seg n & Seg k = Seg n ∩ Seg k,

(10) Seg k = Seg k ∩ Seg n or Seg k = Seg n ∩ Seg k implies k ≤ n,

(11) Seg n ∪ {n + 1} = Seg (n + 1).

The mode

FinSequence ,

which widens to the type Function, is defined by

exn st dom it = Seg n.

In the sequel p, q, r denote objects of the type FinSequence. Let us consider p.

The functor

len p,

with values of the type Nat, is defined by

Seg it = dom p.

Next we state four propositions:

(12) for f being Function holds f is FinSequence iff exn st dom f = Seg n,

(13) k = len p iff Seg k = dom p,

(14) ∅ is FinSequence ,

(15) (ex k st dom f ⊆ Seg k) implies ex p st graph f ⊆ graph p.

In the article we present several logical schemes. The scheme SeqEx concerns a

constant A that has the type Nat and a binary predicate P and states that the following

holds

ex p st dom p = SegA & for k st k ∈ SegA holds P [k, p.k]

provided the parameters satisfy the following conditions:

• for k,y1,y2 st k ∈ SegA & P [k, y1] & P [k, y2] holds y1 = y2,
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• for k st k ∈ SegA exx st P [k, x].

The scheme SeqLambda deals with a constant A that has the type Nat and a unary

functor F and states that the following holds

ex p being FinSequence st len p = A & for k st k ∈ SegA holds p.k = F(k)

for all values of the parameters.

We now state several propositions:

(16) z ∈ graph p implies ex k st k ∈ dom p & z = 〈k, p.k〉,

(17) X = dom p & X = dom q & (for k st k ∈ X holds p.k = q.k) implies p = q,

(18) for p,q

st len p = len q & for k st 1 ≤ k & k ≤ len p holds p.k = q.k holds p = q,

(19) p | (Seg n) is FinSequence ,

(20) rng p ⊆ dom f implies f · p is FinSequence ,

(21) k ≤ len p & q = p | (Seg k) implies len q = k & dom q = Seg k.

Let D have the type DOMAIN. The mode

FinSequence of D,

which widens to the type FinSequence, is defined by

rng it ⊆ D.

In the sequel D will have the type DOMAIN. The following three propositions

are true:

(22) p is FinSequence of D iff rng p ⊆ D,

(23) forD,k for p being FinSequence of D holds p | (Seg k) is FinSequence of D,

(24) ex p being FinSequence of D st len p = k.

The constant ε has the type FinSequence, and is defined by

len it = 0.

The following propositions are true:

(25) p = ε iff len p = 0,

(26) p = ε iff dom p = ∅,

(27) p = ε iff rng p = ∅,
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(28) graph ε = ∅,

(29) forD holds ε is FinSequence of D.

Let D have the type DOMAIN. The functor

εD,

yields the type FinSequence of D and is defined by

it = ε .

One can prove the following four propositions:

(30) p = ε (D) iff dom p = ∅,

(31) ε (D) = ε ,

(32) p = ε (D) iff len p = 0,

(33) p = ε (D) iff rng p = ∅.

Let us consider p, q. The functor

p ⌢ q,

with values of the type FinSequence, is defined by

dom it = Seg (len p + len q) &

(for k st k ∈ dom p holds it.k = p.k) & for k st k ∈ dom q holds it.(len p + k) = q.k.

One can prove the following propositions:

(34) r = p ⌢ q iff dom r = Seg (len p + len q) &

(for k st k ∈ dom p holds r.k = p.k)

& for k st k ∈ dom q holds r.(len p + k) = q.k,

(35) len (p ⌢ q) = len p + len q,

(36) for k st len p + 1 ≤ k & k ≤ len p + len q holds (p ⌢ q).k = q.(k − len p),

(37) len p < k & k ≤ len (p ⌢ q) implies (p ⌢ q).k = q.(k − len p),

(38) k ∈ dom (p ⌢ q) implies k ∈ dom p or exn st n ∈ dom q & k = len p + n,

(39) dom p ⊆ dom (p ⌢ q),

(40) x ∈ dom q implies ex k st k = x & len p + k ∈ dom (p ⌢ q),

(41) k ∈ dom q implies len p + k ∈ dom (p ⌢ q),
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(42) rng p ⊆ rng (p ⌢ q),

(43) rng q ⊆ rng (p ⌢ q),

(44) rng (p ⌢ q) = rng p ∪ rng q,

(45) p ⌢ q ⌢ r = p ⌢ (q ⌢ r),

(46) p ⌢ r = q ⌢ r or r ⌢ p = r ⌢ q implies p = q,

(47) p ⌢ ε = p & ε ⌢ p = p,

(48) p ⌢ q = ε implies p = ε & q = ε .

The arguments of the notions defined below are the following: D which is an object

of the type reserved above; p, q which are objects of the type FinSequence of D. Let

us note that it makes sense to consider the following functor on a restricted area. Then

p ⌢ q is FinSequence of D.

One can prove the following proposition

(49) for p,q being FinSequence of D holds p ⌢ q is FinSequence of D.

Let us consider x. The functor

<x>,

with values of the type FinSequence, is defined by

dom it = Seg 1 & it.1 = x.

The following proposition is true

(50) p ⌢ q is FinSequence of D

implies p is FinSequence of D & q is FinSequence of D.

We now define two new functors. Let us consider x, y. The functor

<x, y>,

with values of the type FinSequence, is defined by

it = <x> ⌢ <y>.

Let us consider z. The functor

<x, y, z>,

with values of the type FinSequence, is defined by

it = <x> ⌢ <y> ⌢ <z>.
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Next we state a number of propositions:

(51) p = <x> iff dom p = Seg 1 & p.1 = x,

(52) graph <x> = {〈1,x〉},

(53) <x, y> = <x> ⌢ <y>,

(54) <x, y, z> = <x> ⌢ <y> ⌢ <z>,

(55) p = <x> iff dom p = Seg 1 & rng p = {x},

(56) p = <x> iff len p = 1 & rng p = {x},

(57) p = <x> iff len p = 1 & p.1 = x,

(58) (<x> ⌢ p).1 = x,

(59) (p ⌢ <x>).(len p + 1) = x,

(60) <x, y, z> = <x> ⌢ <y, z> & <x, y, z> = <x, y> ⌢ <z>,

(61) p = <x, y> iff len p = 2 & p.1 = x & p.2 = y,

(62) p = <x, y, z> iff len p = 3 & p.1 = x & p.2 = y & p.3 = z,

(63) for p st p 6= ε ex q,x st p = q ⌢ <x>.

The arguments of the notions defined below are the following: D which is an object

of the type reserved above; x which is an object of the type Element of D. Let us note

that it makes sense to consider the following functor on a restricted area. Then

<x> is FinSequence of D.

The arguments of the notions defined below are the following: D which is an object

of the type reserved above; S which is an object of the type SUBDOMAIN of D; x

which is an object of the type Element of S. Let us note that it makes sense to consider

the following functor on a restricted area. Then

<x> is FinSequence of S.

The arguments of the notions defined below are the following: S which is an object

of the type SUBDOMAIN of REAL; x which is an object of the type Element of S.

Let us note that it makes sense to consider the following functor on a restricted area.

Then

<x> is FinSequence of S.

The scheme IndSeq concerns a unary predicate P states that the following holds

for p holds P [p]
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provided the parameter satisfies the following conditions:

• P [ε],

• for p,x st P [p] holds P [p ⌢ <x>].

One can prove the following proposition

(64) for p,q,r,s being FinSequence

st p ⌢ q = r ⌢ s & len p ≤ len r ex t being FinSequence st p ⌢ t = r.

Let us consider D. The functor

D * ,

yields the type DOMAIN and is defined by

x ∈ it iff x is FinSequence of D.

One can prove the following propositions:

(65) x ∈ D * iff x is FinSequence of D,

(66) ε ∈ D * .

The scheme SepSeq deals with a constant A that has the type DOMAIN and a unary

predicate P and states that the following holds

exX st forx holds x ∈ X iff ex p st p ∈ A * & P [p] & x = p

for all values of the parameters.

The mode

FinSubsequence ,

which widens to the type Function, is defined by

ex k st dom it ⊆ Seg k.

The following three propositions are true:

(67) f is FinSubsequence iff ex k st dom f ⊆ Seg k,

(68) for p being FinSequence holds p is FinSubsequence ,

(69) for p,X holds p | X is FinSubsequence & X | p is FinSubsequence .

In the sequel p′ has the type FinSubsequence. Let us consider X . Assume there

exists k, such that

X ⊆ Seg k.

The functor

Sgm X,
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with values of the type FinSequence of NAT, is defined by

rng it = X &

for l,m,k1,k2 st 1 ≤ l & l < m & m ≤ len it & k1 = it.l & k2 = it.m holds k1 < k2.

One can prove the following propositions:

(70) (ex k st X ⊆ Seg k) implies for p being FinSequence of NAT holds

p = Sgm X iff rng p = X & for l,m,k1,k2

st 1 ≤ l & l < m & m ≤ len p & k1 = p.l & k2 = p.m holds k1 < k2,

(71) rng Sgm dom p′ = dom p′.

Let us consider p′. The functor

Seq p′,

yields the type FinSequence and is defined by

it = p′ · Sgm (dom p′).

Next we state two propositions:

(72) forX st ex k st X ⊆ Seg k holds Sgm X = ε iff X = ∅,

(73) p = Seq p′ iff p = p′ · Sgm (dom p′).
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