# Domains and Their Cartesian Products 

Andrzej Trybulec ${ }^{1}$<br>Warsaw University<br>Białystok


#### Abstract

Summary. The article includes: theorems related to domains, theorems related to Cartesian products presented earlier in various articles and simplified here by substituting domains for sets and omitting the assumption that the sets involved must not be empty. Several schemes and theorems related to Fraenkel operator are given. We also redefine subset yielding functions such as the pair of elements of a set and the union of two subsets of a set.


The terminology and notation used in this paper have been introduced in the following articles: [2], [5], [1], [4], and [3]. For simplicity we adopt the following convention: $a$, $b, c, d$ will have the type Any; $A, B$ will have the type set; $D, X 1, X 2, X 3, X 4, Y 1$, $Y 2, Y 3, Y 4$ will have the type DOMAIN; $x 1, y 1, z 1$ will have the type Element of $X 1 ; x 2$ will have the type Element of $X 2 ; x 3$ will have the type Element of $X 3 ; x 4$ will have the type Element of $X 4$. The following three propositions are true:

$$
\begin{equation*}
A \text { is DOMAIN iff } A \neq \emptyset \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
D \neq \emptyset \tag{2}
\end{equation*}
$$

$a$ is Element of $D$ implies $a \in D$.
In the sequel $A 1, B 1$ will denote objects of the type Subset of $X 1$. One can prove the following propositions:

$$
\begin{align*}
& A 1=B 1^{\mathrm{c}} \text { iff for } x 1 \text { holds } x 1 \in A 1 \text { iff not } x 1 \in B 1,  \tag{4}\\
& A 1=B 1^{\mathrm{c}} \text { iff for } x 1 \text { holds not } x 1 \in A 1 \text { iff } x 1 \in B 1,
\end{align*}
$$

$$
\begin{equation*}
A 1=B 1^{\mathrm{c}} \mathbf{i f f} \text { for } x 1 \text { holds } \operatorname{not}(x 1 \in A 1 \mathbf{i f f} x 1 \in B 1), \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\langle x 1, x 2\rangle \in[: X 1, X 2], \tag{7}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
\langle x 1, x 2\rangle \text { is Element of }[: X 1, X 2:], \tag{8}
\end{equation*}
$$

\]

$$
\begin{equation*}
a \in[: X 1, X 2] \text { implies ex } x 1, x 2 \text { st } a=\langle x 1, x 2\rangle . \tag{9}
\end{equation*}
$$

In the sequel $x$ denotes an object of the type Element of $: X 1, X 2]$. One can prove the following propositions:

$$
\begin{gather*}
x=\left\langle x_{\mathbf{1}}, x_{\mathbf{2}}\right\rangle  \tag{10}\\
x \neq x_{\mathbf{1}} \& x \neq x_{\mathbf{2}} \tag{11}
\end{gather*}
$$

$$
\begin{equation*}
\text { for } x, y \text { being Element of }[: X 1, X 2:] \text { st } x_{\mathbf{1}}=y_{1} \& x_{\mathbf{2}}=y_{\mathbf{2}} \text { holds } x=y \tag{12}
\end{equation*}
$$

$$
[: A, D: \subseteq: B, D: \text { or }: D, A: \subseteq[D, B:] \text { implies } A \subseteq B,
$$

$$
[: X 1, X 2]=[: A, B:] \text { implies } X 1=A \& X 2=B
$$

Let us consider $X 1, X 2, x 1, x 2$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\langle x 1, x 2\rangle \quad \text { is } \quad \text { Element of }[: X 1, X 2] \text {. }
$$

The arguments of the notions defined below are the following: $X 1, X 2$ which are objects of the type reserved above; $x$ which is an object of the type Element of $: X 1, X 2$ : . Let us note that it makes sense to consider the following functors on restricted areas. Then

| $x_{\mathbf{1}}$ | is $\quad$ Element of $X 1$, |
| :--- | :--- | :--- |
| $x_{\mathbf{2}}$ | is $\quad$ Element of $X 2$. |

One can prove the following propositions:

$$
\begin{equation*}
a \in[: X 1, X 2, X 3] \text { iff ex } x 1, x 2, x 3 \text { st } a=\langle x 1, x 2, x 3\rangle, \tag{15}
\end{equation*}
$$

$$
\begin{gather*}
\text { (for } a \text { holds } a \in D \text { iff ex } x 1, x 2, x 3 \text { st } a=\langle x 1, x 2, x 3\rangle)  \tag{16}\\
\text { implies } D=[: X 1, X 2, X 3]
\end{gather*}
$$

$$
\begin{equation*}
D=[: X 1, X 2, X 3] \text { iff for } a \text { holds } a \in D \text { iff ex } x 1, x 2, x 3 \text { st } a=\langle x 1, x 2, x 3\rangle, \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
[: X 1, X 2, X 3:]=[Y 1, Y 2, Y 3] \text { implies } X 1=Y 1 \& X 2=Y 2 \& X 3=Y 3 \tag{18}
\end{equation*}
$$

In the sequel $x, y$ will have the type Element of $: X 1, X 2, X 3]$. Next we state several propositions:

$$
\begin{gather*}
x=\langle a, b, c\rangle \text { implies } x_{\mathbf{1}}=a \& x_{\mathbf{2}}=b \& x_{\mathbf{3}}=c,  \tag{19}\\
x=\left\langle x_{\mathbf{1}}, x_{\mathbf{2}}, x_{\mathbf{3}}\right\rangle^{\prime} \\
x_{\mathbf{1}}=(x \text { qua Any })_{1 \mathbf{1}} \& x_{\mathbf{2}}=(x \text { qua Any })_{\mathbf{1}_{2}} \& x_{\mathbf{3}}=(x \text { qua Any })_{\mathbf{2}},
\end{gather*}
$$

$$
\begin{gather*}
x \neq x_{\mathbf{1}} \& x \neq x_{\mathbf{2}} \& x \neq x_{\mathbf{3}},  \tag{22}\\
\langle x 1, x 2, x 3\rangle \in[: X 1, X 2, X 3] . \tag{23}
\end{gather*}
$$

Let us consider $X 1, X 2, X 3, x 1, x 2, x 3$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\langle x 1, x 2, x 3\rangle \quad \text { is } \quad \text { Element of }: X 1, X 2, X 3] .
$$

The arguments of the notions defined below are the following: $X 1, X 2, X 3$ which are objects of the type reserved above; $x$ which is an object of the type Element of : $: X 1, X 2, X 3$ :]. Let us note that it makes sense to consider the following functors on restricted areas. Then

| $x_{\mathbf{1}}$ | is | Element of $X 1$, |
| :--- | :--- | :--- |
| $x_{\mathbf{2}}$ | is | Element of $X 2$, |
| $x_{\mathbf{3}}$ | is | Element of $X 3$. |

The following propositions are true:

$$
\begin{gather*}
a=x_{\mathbf{1}} \text { iff for } x 1, x 2, x 3 \text { st } x=\langle x 1, x 2, x 3\rangle \text { holds } a=x 1,  \tag{24}\\
b=x_{\mathbf{2}} \text { iff for } x 1, x 2, x 3 \text { st } x=\langle x 1, x 2, x 3\rangle \text { holds } b=x 2,  \tag{25}\\
c=x_{\mathbf{3}} \text { iff for } x 1, x 2, x 3 \text { st } x=\langle x 1, x 2, x 3\rangle \text { holds } c=x 3,  \tag{26}\\
\left\langle x_{\mathbf{1}}, x_{\mathbf{2}}, x_{\mathbf{3}}\right\rangle=x, \tag{27}
\end{gather*}
$$

$$
\begin{equation*}
\langle x 1, x 2, x 3\rangle_{\mathbf{1}}=x 1 \&\langle x 1, x 2, x 3\rangle_{\mathbf{2}}=x 2 \&\langle x 1, x 2, x 3\rangle_{\mathbf{3}}=x 3 \tag{28}
\end{equation*}
$$

(30) for $x$ being Element of $: X 1, X 2, X 3]$, $y$ being Element of $: Y 1, Y 2, Y 3$ :
holds $x=y$ implies $x_{\mathbf{1}}=y_{1} \& x_{\mathbf{2}}=y_{2} \& x_{\mathbf{3}}=y_{\mathbf{3}}$,

$$
\begin{equation*}
a \in[: X 1, X 2, X 3, X 4] \text { iff ex } x 1, x 2, x 3, x 4 \text { st } a=\langle x 1, x 2, x 3, x 4\rangle, \tag{31}
\end{equation*}
$$

(for $a$ holds $a \in D$ iff ex $x 1, x 2, x 3, x 4$ st $a=\langle x 1, x 2, x 3, x 4\rangle)$

$$
\text { implies } D=[: X 1, X 2, X 3, X 4\},
$$

$$
\begin{equation*}
D=[: X 1, X 2, X 3, X 4:] \tag{33}
\end{equation*}
$$

iff for $a$ holds $a \in D$ iff ex $x 1, x 2, x 3, x 4$ st $a=\langle x 1, x 2, x 3, x 4\rangle$.
In the sequel $x$ denotes an object of the type Element of $: X 1, X 2, X 3, X 4]$. The following propositions are true:

$$
\begin{equation*}
[: X 1, X 2, X 3, X 4]=[: Y 1, Y 2, Y 3, Y 4] \tag{34}
\end{equation*}
$$

implies $X 1=Y 1 \& X 2=Y 2 \& X 3=Y 3 \& X 4=Y 4$,

$$
\begin{equation*}
x=\langle a, b, c, d\rangle \text { implies } x_{\mathbf{1}}=a \& x_{\mathbf{2}}=b \& x_{\mathbf{3}}=c \& x_{\mathbf{4}}=d, \tag{35}
\end{equation*}
$$

$$
\begin{align*}
x & =\left\langle x_{\mathbf{1}}, x_{\mathbf{2}}, x_{\mathbf{3}}, x_{\mathbf{4}}\right\rangle  \tag{36}\\
x_{\mathbf{1}} & =(x \text { qua Any })_{\mathbf{1} \mathbf{1}} \tag{37}
\end{align*}
$$

$\& x_{2}=(x \text { qua Any })_{112} \& x_{3}=(x \text { qua Any })_{12} \& x_{4}=(x \text { qua Any })_{2}$,

$$
\begin{gathered}
x \neq x_{\mathbf{1}} \& x \neq x_{\mathbf{2}} \& x \neq x_{\mathbf{3}} \& x \neq x_{\mathbf{4}}, \\
\langle x 1, x 2, x 3, x 4\rangle \in[: X 1, X 2, X 3, X 4] .
\end{gathered}
$$

Let us consider $X 1, X 2, X 3, X 4, x 1, x 2, x 3, x 4$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\langle x 1, x 2, x 3, x 4\rangle \quad \text { is } \quad \text { Element of }[: X 1, X 2, X 3, X 4:] .
$$

The arguments of the notions defined below are the following: $\quad X 1, X 2, X 3, X 4$ which are objects of the type reserved above; $x$ which is an object of the type Element of $: X 1, X 2, X 3, X 4$ ]. Let us note that it makes sense to consider the following functors on restricted areas. Then

| $x_{\mathbf{1}}$ | is | Element of $X 1$, |
| :--- | :--- | :--- |
| $x_{\mathbf{2}}$ | is $\quad$ | Element of $X 2$, |
| $x_{\mathbf{3}}$ | is | Element of $X 3$, |
| $x_{\mathbf{4}}$ | is | Element of $X 4$. |

The following propositions are true:

$$
\begin{equation*}
a=x_{\mathbf{1}} \text { iff for } x 1, x 2, x 3, x 4 \text { st } x=\langle x 1, x 2, x 3, x 4\rangle \text { holds } a=x 1, \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
b=x_{\mathbf{2}} \text { iff for } x 1, x 2, x 3, x 4 \text { st } x=\langle x 1, x 2, x 3, x 4\rangle \text { holds } b=x 2, \tag{41}
\end{equation*}
$$

$$
c=x_{\mathbf{3}} \text { iff for } x 1, x 2, x 3, x 4 \text { st } x=\langle x 1, x 2, x 3, x 4\rangle \text { holds } c=x 3,
$$

$$
\begin{equation*}
d=x_{4} \text { iff for } x 1, x 2, x 3, x 4 \text { st } x=\langle x 1, x 2, x 3, x 4\rangle \text { holds } d=x 4, \tag{43}
\end{equation*}
$$

(44) for $x$ being Element of $: X 1, X 2, X 3, X 4\}$ holds $\left\langle x_{\mathbf{1}}, x_{\mathbf{2}}, x_{\mathbf{3}}, x_{\mathbf{4}}\right\rangle=x$,

$$
\begin{equation*}
\text { for } x, y \text { being Element of }: X 1, X 2, X 3, X 4: \tag{45}
\end{equation*}
$$

$$
\text { st } x_{\mathbf{1}}=y_{1} \& x_{2}=y_{2} \& x_{3}=y_{3} \& x_{4}=y_{4} \text { holds } x=y
$$

$$
\begin{equation*}
\langle x 1, x 2, x 3, x 4\rangle_{\mathbf{1}}=x 1 \tag{46}
\end{equation*}
$$

$\&\langle x 1, x 2, x 3, x 4\rangle_{\mathbf{2}}=x 2 \&\langle x 1, x 2, x 3, x 4\rangle_{\mathbf{3}}=x 3 \&\langle x 1, x 2, x 3, x 4\rangle_{4}=x 4$,
(47) for $x$ being Element of : $X 1, X 2, X 3, X 4]$, $y$ being Element of $[: Y 1, Y 2, Y 3, Y 4]$

$$
\text { holds } x=y \text { implies } x_{1}=y_{1} \& x_{2}=y_{2} \& x_{3}=y_{\mathbf{3}} \& x_{4}=y_{\mathbf{4}}
$$

In the sequel $A 2$ will denote an object of the type Subset of $X 2 ; A 3$ will denote an object of the type Subset of $X 3 ; A 4$ will denote an object of the type Subset of $X 4$. In the article we present several logical schemes. The scheme Fraenkel1 deals with a unary predicate $\mathcal{P}$ states that the following holds

$$
\text { for } X 1 \text { holds }\{x 1: \mathcal{P}[x 1]\} \text { is Subset of } X 1
$$

for all values of the parameter.
The scheme Fraenkel2 deals with a binary predicate $\mathcal{P}$ states that the following holds

$$
\text { for } X 1, X 2 \text { holds }\{\langle x 1, x 2\rangle: \mathcal{P}[x 1, x 2]\} \text { is Subset of }: X 1, X 2]
$$

for all values of the parameter.
The scheme Fraenkel3 concerns a ternary predicate $\mathcal{P}$ states that the following holds for $X 1, X 2, X 3$ holds $\{\langle x 1, x 2, x 3\rangle: \mathcal{P}[x 1, x 2, x 3]\}$ is Subset of $: X 1, X 2, X 3$ ]
for all values of the parameter.
The scheme Fraenkel4 deals with a 4 -ary predicate $\mathcal{P}$ states that the following holds

$$
\text { for } X 1, X 2, X 3, X 4
$$

holds $\{\langle x 1, x 2, x 3, x 4\rangle: \mathcal{P}[x 1, x 2, x 3, x 4]\}$ is Subset of $: X 1, X 2, X 3, X 4$ :
for all values of the parameter.
The scheme Fraenkel5 concerns a unary predicate $\mathcal{P}$ and a unary predicate $\mathcal{Q}$ and states that the following holds

```
for }X1\mathrm{ st for }x1\mathrm{ holds }\mathcal{P}[x1]\mathrm{ implies }\mathcal{Q}[x1]\mathrm{ holds {y1: P}[y1]}\subseteq{z1:\mathcal{Q}[z1]
```

for all values of the parameters.
The scheme Fraenkel6 deals with a unary predicate $\mathcal{P}$ and a unary predicate $\mathcal{Q}$ and states that the following holds

```
for }X1\mathrm{ st for }x1\mathrm{ holds }\mathcal{P}[x1]\mathrm{ iff }\mathcal{Q}[x1] holds {y1:\mathcal{P}[y1]}={z1:\mathcal{Q}[z1]
```

for all values of the parameters.
Next we state several propositions:

$$
\begin{gather*}
X 1=\{x 1: \text { not contradiction }\},  \tag{48}\\
{[: X 1, X 2:]=\{\langle x 1, x 2\rangle: \text { not contradiction }\},}  \tag{49}\\
{[: X 1, X 2, X 3:]=\{\langle x 1, x 2, x 3\rangle: \text { not contradiction }\},}  \tag{50}\\
{[X 1, X 2, X 3, X 4:]=\{\langle x 1, x 2, x 3, x 4\rangle: \text { not contradiction }\},}  \tag{51}\\
 \tag{52}\\
A 1=\{x 1: x 1 \in A 1\} .
\end{gather*}
$$

Let us consider $X 1, X 2, A 1, A 2$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
[: A 1, A 2] \quad \text { is } \quad \text { Subset of }[: X 1, X 2]
$$

Next we state a proposition

$$
\begin{equation*}
[: A 1, A 2]=\{\langle x 1, x 2\rangle: x 1 \in A 1 \& x 2 \in A 2\} . \tag{53}
\end{equation*}
$$

Let us consider $X 1, X 2, X 3, A 1, A 2, A 3$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
[: A 1, A 2, A 3] \quad \text { is } \quad \text { Subset of }[: X 1, X 2, X 3] \text {. }
$$

Next we state a proposition

$$
\begin{equation*}
: A 1, A 2, A 3:=\{\langle x 1, x 2, x 3\rangle: x 1 \in A 1 \& x 2 \in A 2 \& x 3 \in A 3\} . \tag{54}
\end{equation*}
$$

Let us consider $X 1, X 2, X 3, X 4, A 1, A 2, A 3, A 4$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
[: A 1, A 2, A 3, A 4] \quad \text { is } \quad \text { Subset of }[: X 1, X 2, X 3, X 4:] .
$$

Next we state a number of propositions:

$$
\begin{gather*}
{[: A 1, A 2, A 3, A 4:]}  \tag{55}\\
=\{\langle x 1, x 2, x 3, x 4\rangle: x 1 \in A 1 \& x 2 \in A 2 \& x 3 \in A 3 \& x 4 \in A 4\}, \\
\emptyset X 1=\{x 1: \text { contradiction }\}, \\
A 1^{\mathrm{c}}=\{x 1: \operatorname{not} x 1 \in A 1\}, \\
A 1 \cap B 1=\{x 1: x 1 \in A 1 \& x 1 \in B 1\}, \\
A 1 \cup B 1=\{x 1: x 1 \in A 1 \text { or } x 1 \in B 1\}, \\
A 1 \backslash B 1=\{x 1: x 1 \in A 1 \& \operatorname{not} x 1 \in B 1\}, \\
A 1-B 1=\{x 1: x 1 \in A 1 \& \operatorname{not} x 1 \in B 1 \operatorname{or} \operatorname{not} x 1 \in A 1 \& x 1 \in B 1\}, \\
A 1-B 1=\{x 1: \operatorname{not} x 1 \in A 1 \mathbf{i f f} x 1 \in B 1\},  \tag{62}\\
A 1-B 1=\{x 1: x 1 \in A 1 \mathbf{i f f} \operatorname{not} x 1 \in B 1\}, \\
A 1-B 1=\{x 1: \operatorname{not}(x 1 \in A 1 \mathbf{i f f} x 1 \in B 1)\} .
\end{gather*}
$$

In the sequel $x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8$ will have the type Element of $D$. We now state several propositions:

$$
\begin{equation*}
\{x 1\} \text { is Subset of } D, \tag{65}
\end{equation*}
$$

(66)

$$
\begin{gathered}
\{x 1, x 2\} \text { is Subset of } D, \\
\{x 1, x 2, x 3\} \text { is Subset of } D, \\
\{x 1, x 2, x 3, x 4\} \text { is Subset of } D, \\
\{x 1, x 2, x 3, x 4, x 5\} \text { is Subset of } D, \\
\{x 1, x 2, x 3, x 4, x 5, x 6\} \text { is Subset of } D, \\
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\} \text { is Subset of } D, \\
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\} \text { is Subset of } D .
\end{gathered}
$$

Let us consider $D$. Let $x 1$ have the type Element of $D$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x 1\} \quad \text { is } \quad \text { Subset of } D .
$$

Let $x 2$ have the type Element of $D$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x 1, x 2\} \quad \text { is } \quad \text { Subset of } D
$$

Let $x 3$ have the type Element of $D$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x 1, x 2, x 3\} \quad \text { is } \quad \text { Subset of } D .
$$

Let $x 4$ have the type Element of $D$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x 1, x 2, x 3, x 4\} \quad \text { is } \quad \text { Subset of } D .
$$

Let $x 5$ have the type Element of $D$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x 1, x 2, x 3, x 4, x 5\} \quad \text { is } \quad \text { Subset of } D .
$$

Let $x 6$ have the type Element of $D$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x 1, x 2, x 3, x 4, x 5, x 6\} \quad \text { is } \quad \text { Subset of } D .
$$

Let $x 7$ have the type Element of $D$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\} \quad \text { is } \quad \text { Subset of } D .
$$

Let $x 8$ have the type Element of $D$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\} \quad \text { is } \quad \text { Subset of } D .
$$

Let us consider $X 1, A 1$. Let us note that it makes sense to consider the following functor on a restricted area. Then
$A 1^{\mathrm{c}} \quad$ is $\quad$ Subset of $X 1$.
Let us consider $B 1$. Let us note that it makes sense to consider the following functors on restricted areas. Then

| $A 1 \cup B 1$ | is | Subset of $X 1$, |
| :--- | :--- | :--- |
| $A 1 \cap B 1$ | is | Subset of $X 1$, |
| $A 1 \backslash B 1$ | is | Subset of $X 1$, |
| $A 1-B 1$ | is | Subset of $X 1$. |

## References

[1] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.
[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[3] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1, 1990.
[4] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1, 1990.
[5] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.


[^0]:    ${ }^{1}$ Supported by RPBP.III-24.C1.

