Connected Spaces

Beata Padlewska¹ Warsaw University Białystok

Summary. The following notions are defined: separated sets, connected spaces, connected sets, components of a topological space, the component of a point. The definition of the boundary of a set is also included. The singleton of a point of a topological space is redefined as a subset of the space. Some theorems about these notions are proved.

The articles [3], [4], [1], [2], and [5] provide the notation and terminology for this paper. For simplicity we adopt the following convention: GX, GY will have the type TopSpace; A, A1, B, B1, C will have the type Subset of GX. The arguments of the notions defined below are the following: GX which is an object of the type TopSpace; A, B which are objects of the type Subset of GX. The predicate

A, B are separated is defined by $\operatorname{Cl} A \cap B = \emptyset(GX) \& A \cap \operatorname{Cl} B = \emptyset(GX).$

The following propositions are true:

(1)	A, B are_separated implies B, A are_separated,
(2)	$A, B \text{ are_separated implies } A \cap B = \emptyset(GX),$
(3)	$\label{eq:GX} \begin{split} \Omega\left(GX\right) &= A \cup B \ \& \ A \ \text{is_closed} \ \& \ B \ \text{is_closed} \ \& \ A \cap B = \emptyset(GX) \\ & \qquad \qquad$
(4)	$\begin{split} \Omega\left(GX\right) &= A \cup B \ \& \ A \ \text{is_open} \ \& \ B \ \text{is_open} \ \& \ A \cap B = \emptyset(GX) \\ & \text{ implies } A, B \ \text{are_separated} \ , \end{split}$
(5)	$\Omega\left(GX\right) = A \cup B \ \& \ A, B \ \text{are_separated}$
	implies A is_open_closed & B is_open_closed,
10	

¹Supported by RPBP.III-24.C1.

C 1990 Fondation Philippe le Hodey ISSN 0777-4028 BEATA PADLEWSKA

(6)	for X'	
1	being SubSpace of GX , $P1$, $Q1$ being Subset of GX , P , Q being Subset of X'	
5	st $P = P1 \& Q = Q1$ holds P, Q are separated implies $P1, Q1$ are separated,	
(7)	for X'	
1	being SubSpace of GX, P, Q being Subset of $GX, P1, Q1$ being Subset of X'	
	$\mathbf{st} \ P = P1 \ \& \ Q = Q1 \ \& \ P \cup Q \subseteq \Omega \left(X' \right)$	
	holds P, Q are separated implies $P1,Q1$ are separated,	
(8)	$A, B \text{ are_separated } \& \ A1 \subseteq A \And B1 \subseteq B \text{ implies } A1, B1 \text{ are_separated },$	
(9)	$A,B {\rm are_separated} \ \& \ A,C {\rm are_separated} \ {\rm \bf implies} \ A,B\cup C {\rm are_separated} \ ,$	
(10)	$A \: \mbox{is_closed} \& B \: \mbox{is_closed} \: \mbox{or} \: A \: \mbox{is_open} \& B \: \mbox{is_open}$	
	implies $A \setminus B, B \setminus A$ are separated.	
Let GX have the type TopSpace. The predicate		

 $GX \, {\rm is_connected}$

is defined by

for A, B being Subset of GX

 $\mathbf{st}\;\Omega\left(GX\right)=A\cup B\;\&\;A,B\,\mathrm{are_separated}\;\mathbf{holds}\;A=\emptyset(GX)\;\mathbf{or}\;B=\emptyset(GX).$

One can prove the following propositions:

(11)
$$GX$$
 is_connected **iff for** A, B **being** Subset **of** GX **st**
 $\Omega(GX) = A \cup B \& A \neq \emptyset(GX) \& B \neq \emptyset(GX) \& A$ is_closed & B is_closed
holds $A \cap B \neq \emptyset(GX),$

(12)
$$GX$$
 is_connected **iff for** A, B **being** Subset **of** GX **st**
 $\Omega(GX) = A \cup B \& A \neq \emptyset(GX) \& B \neq \emptyset(GX) \& A$ is_open & B is_open
holds $A \cap B \neq \emptyset(GX)$,

(13)
$$GX$$
 is_connected **iff for** A **being** Subset **of** GX
st $A \neq \emptyset(GX)$ & $A \neq \Omega(GX)$ **holds** (Cl A) \cap Cl ($\Omega(GX) \setminus A$) $\neq \emptyset(GX)$,

(14)
$$GX$$
 is_connected **iff for** A **being** Subset **of** GX

st A is_open_closed holds
$$A = \emptyset(GX)$$
 or $A = \Omega(GX)$,

(15) for
$$F$$
 being map of GX, GY st

$$F$$
 is_continuous & $F^{\circ}(\Omega(GX)) = \Omega(GY)$ & GX is_connected

holds GY is_connected.

240

The arguments of the notions defined below are the following: GX which is an object of the type TopSpace; A which is an object of the type Subset of GX. The predicate

 $A ext{ is_connected}$ is defined by $GX \mid A ext{ is_connected}$.

One can prove the following propositions:

(16) $A \neq \emptyset(GX)$ implies (A is_connected iff for P,Q being Subset of GX
st $A = P \cup Q$ & P, Q are separated holds $P = \emptyset(GX)$ or $Q = \emptyset(GX)$),
(17) A is_connected & $A \subseteq B \cup C$ & B, C are_separated implies $A \subseteq B$ or $A \subseteq C$,
(18) A is_connected & B is_connected & not A, B are_separated
implies $A \cup B$ is_connected,
(19) $C \neq \emptyset(GX) \& C$ is_connected $\& C \subseteq A \& A \subseteq \operatorname{Cl} C$ implies A is_connected,
(20) $A \neq \emptyset(GX) \& A \text{ is connected implies Cl } A \text{ is connected },$
(21) GX is_connected
& $A \neq \emptyset(GX)$ & A is_connected & $\Omega(GX) \setminus A = B \cup C$ & B, C are_separated
implies $A \cup B$ is_connected & $A \cup C$ is_connected,
(22) $\Omega(GX) \setminus A = B \cup C \& B, C \text{ are separated } \& A \text{ is closed}$
implies $A \cup B$ is_closed & $A \cup C$ is_closed,
(23) C is_connected & $C \cap A \neq \emptyset(GX)$ & $C \setminus A \neq \emptyset(GX)$
$\mathbf{implies}\ C \cap \mathrm{Fr}\ A \neq \emptyset(GX),$
(24) for X' being SubSpace of GX , A being Subset of GX , B being Subset of X'
st $A \neq \emptyset(GX)$ & $A = B$ holds A is_connected iff B is_connected,
(25) $A \cap B \neq \emptyset(GX) \& A \text{ is_closed \& } B \text{ is_closed implies}$
$(A \cup B \text{ is_connected } \& A \cap B \text{ is_connected}$
implies A is_connected & B is_connected),
(26) for F being Subset-Family of GX st
(for A being Subset of GX st $A \in F$ holds A is_connected) &
ex A being Subset of GX st $A \neq \emptyset(GX)$ & $A \in F$ &
for <i>B</i> being Subset of <i>GX</i> st $B \in F \& B \neq A$ holds not <i>A</i> , <i>B</i> are_separated
holds $\bigcup F$ is_connected,
(27) for F being Subset-Family of GX st
(for A being Subset of GX st $A \in F$ holds A is connected) & $\bigcap F \neq \emptyset(GX)$
$\mathbf{holds} \bigcup F$ is_connected,

(28) $\Omega(GX)$ is_connected **iff** GX is_connected.

The arguments of the notions defined below are the following: GX which is an object of the type TopSpace; x which is an object of the type Point of GX. Let us note that it makes sense to consider the following functor on a restricted area. Then

 $\{x\}$ is Subset of GX.

We now state a proposition

(29) for x being Point of GX holds $\{x\}$ is_connected.

The arguments of the notions defined below are the following: GX which is an object of the type TopSpace; x, y which are objects of the type Point of GX. The predicate

x, y are_joined

is defined by

ex C being Subset of GX st C is_connected & $x \in C$ & $y \in C$.

We now state four propositions:

- (30) (ex x being Point of GX st for y being Point of GX holds x, y are_joined) implies GX is_connected,
- (31) (ex x being Point of GX st for y being Point of GX holds x, y are_joined) iff for x, y being Point of GX holds x, y are_joined,
- (32) (for x, y being Point of GX holds x, y are joined) implies GX is connected,

(33) for x being Point of GX, F being Subset-Family of GX st for A being Subset of GX holds $A \in F$ iff A is_connected & $x \in A$ holds $F \neq \emptyset$.

The arguments of the notions defined below are the following: GX which is an object of the type TopSpace; A which is an object of the type Subset of GX. The predicate

A is_a_component_of GX

is defined by

 $A \, {\rm is_connected}$

& for *B* being Subset of *GX* st *B* is_connected holds $A \subseteq B$ implies A = B.

The following propositions are true:

(34) $A \text{ is_a_component_of } GX \text{ implies } A \neq \emptyset(GX),$

242

CONNECTED SPACES

(35)	$A ext{ is_a_component_of } GX ext{ implies } A ext{ is_closed},$
(36)	A is_a_component_of $GX \ \& B$ is_a_component_of GX
	implies $A = B$ or $(A \neq B$ implies A, B are separated),
(37)	A is_a_component_of $GX \& B$ is_a_component_of GX

(37) A is a component of
$$GX \ll B$$
 is a component of GX
implies $A = B$ or $(A \neq B$ implies $A \cap B = \emptyset(GX))$,

(38)
$$C$$
 is_connected **implies for** S **being** Subset of GX
st S is_a_component_of GX holds $C \cap S = \emptyset(GX)$ or $C \subseteq S$.

The arguments of the notions defined below are the following: GX which is an object of the type TopSpace; A, B which are objects of the type Subset of GX. The predicate

$$B$$
 is_a_component_of A

is defined by

(3

ex B1 being Subset of
$$GX \mid A$$
 st $B1 = B \& B1$ is_a_component_of $(GX \mid A)$.

We now state a proposition

9)
$$GX \text{ is_connected } \& A \neq \Omega(GX)$$

& $A \neq \emptyset(GX)$ & A is_connected & C is_a_component_of $(\Omega(GX) \setminus A)$ implies $(\Omega(GX) \setminus C)$ is_connected.

The arguments of the notions defined below are the following: GX which is an object of the type TopSpace; x which is an object of the type Point of GX. The functor

 $\operatorname{skl} x$,

with values of the type Subset of GX, is defined by

 $\mathbf{ex} F$ being Subset-Family of GX

st (for A being Subset of GX holds $A \in F$ iff A is_connected & $x \in A$) & $\bigcup F = it$.

In the sequel x has the type Point of GX. One can prove the following propositions:

(41)
$$\operatorname{skl} x \operatorname{is-connected},$$

(42)
$$C$$
 is_connected implies $(\operatorname{skl} x \subseteq C \text{ implies } C = \operatorname{skl} x),$

- (43) $A \text{ is_a_component_of } GX \text{ iff } \mathbf{ex} x \text{ being Point of } GX \text{ st } A = \operatorname{skl} x,$
- (44) $A \text{ is_a_component_of } GX \& x \in A \text{ implies } A = \operatorname{skl} x,$

(45) for S being Subset of GX
$\mathbf{st} \ S = \operatorname{skl} x \ \mathbf{for} \ p \ \mathbf{being} \ \operatorname{Point} \ \mathbf{of} \ GX \ \mathbf{st} \ p \neq x \ \& \ p \in S \ \mathbf{holds} \ \operatorname{skl} p = S,$
(46) for F being Subset-Family of GX st
for A being Subset of GX holds $A \in F$ iff A is_a_component_of GX
holds F is_a_cover_of GX ,
(47) $A, B \text{ are separated iff } \operatorname{Cl} A \cap B = \emptyset(GX) \& A \cap \operatorname{Cl} B = \emptyset(GX),$
(48) GX is_connected iff for A, B being Subset of GX
$\mathbf{st}\; \Omega\left(GX\right) = A \cup B \And A, B \text{ are_separated holds } A = \emptyset(GX) \text{ or } B = \emptyset(GX),$
(49) $A \text{ is_connected } \mathbf{iff} \ GX \mid A \text{ is_connected },$
(50) $A \text{ is_a_component_of } GX \text{ iff } A \text{ is_connected}$
& for B being Subset of GX st B is_connected holds $A \subseteq B$ implies $A = B$,
(51) B is_a_component_of A iff
ex B1 being Subset of $GX \mid A$ st B1 = B & B1 is_a_component_of $(GX \mid A)$,
(52) $B = \operatorname{skl} x \operatorname{iff} \operatorname{ex} F \operatorname{being} \operatorname{Subset-Family} \operatorname{of} GX \operatorname{st}$
(for A being Subset of GX holds $A \in F$ iff A is_connected & $x \in A$)
$\& \bigcup F = B.$

References

- [1] Beata Padlewska. Families of sets. Formalized Mathematics, 1, 1990.
- [2] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1, 1990.
- [3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
- [4] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.
- [5] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1, 1990.

Received May 6, 1989