Boolean Properties of Sets

Zinaida Trybulec ${ }^{1}$
Warsaw University
Białystok

Halina Śswiẹczkowska ${ }^{2}$
Warsaw University
Białystok

Abstract

Summary. The text includes a number of theorems about Boolean operations on sets: union, intersection, difference, symmetric difference; and relations on sets: meets (having non-empty intersection), misses (being disjoint) and subset (inclusion).

The terminology and notation used here are introduced in the article [1]. For simplicity we adopt the following convention: x will have the type Any; X, Y, Z, V will have the type set. The scheme Separation concerns a constant \mathcal{A} that has the type set and a unary predicate \mathcal{P} and states that the following holds

$$
\text { ex } X \text { st for } x \text { holds } x \in X \text { iff } x \in \mathcal{A} \& \mathcal{P}[x]
$$

for all values of the parameters.
We now define several new constructions. The constant \emptyset has the type set, and is defined by

$$
\text { notex } x \text { st } x \in \mathbf{i t} .
$$

Let us consider X, Y. The functor

$$
X \cup Y
$$

with values of the type set, is defined by

$$
x \in \text { it iff } x \in X \text { or } x \in Y
$$

The functor

$$
X \cap Y
$$

[^0]with values of the type set, is defined by
$$
x \in \text { it iff } x \in X \& x \in Y
$$

The functor

$$
X \backslash Y
$$

yields the type set and is defined by

$$
x \in \operatorname{it} \text { iff } x \in X \& \operatorname{not} x \in Y
$$

The predicate

$$
X \text { meets } Y \quad \text { is defined by } \quad \text { ex } x \text { st } x \in X \& x \in Y \text {. }
$$

The predicate
X misses $Y \quad$ is defined by \quad for x holds $x \in X$ implies not $x \in Y$.
Let us consider X, Y. The functor

$$
X \doteq Y
$$

with values of the type set, is defined by

$$
\mathbf{i t}=(X \backslash Y) \cup(Y \backslash X)
$$

We now state several propositions:

$$
\begin{equation*}
Z=\emptyset \text { iff not ex } x \text { st } x \in Z \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
Z=X \cup Y \text { iff for } x \text { holds } x \in Z \text { iff } x \in X \text { or } x \in Y \tag{2}
\end{equation*}
$$

$$
Z=X \cap Y \text { iff for } x \text { holds } x \in Z \text { iff } x \in X \& x \in Y
$$

$$
\begin{equation*}
Z=X \backslash Y \text { iff for } x \text { holds } x \in Z \text { iff } x \in X \& \text { not } x \in Y \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
X \subseteq Y \text { iff for } x \text { holds } x \in X \text { implies } x \in Y \tag{5}
\end{equation*}
$$

X meets Y iff ex x st $x \in X \& x \in Y$,
X misses Y iff for x holds $x \in X$ implies not $x \in Y$.
Let us consider X, Y. Let us note that one can characterize the predicate

$$
X=Y
$$

by the following (equivalent) condition:

$$
X \subseteq Y \& Y \subseteq X
$$

The following propositions are true:

$$
\begin{equation*}
x \in X \cup Y \text { iff } x \in X \text { or } x \in Y \tag{8}
\end{equation*}
$$

$$
x \in X \cap Y \text { iff } x \in X \& x \in Y
$$

$$
\begin{gathered}
x \in X \backslash Y \text { iff } x \in X \& \text { not } x \in Y, \\
x \in X \& X \subseteq Y \text { implies } x \in Y, \\
x \in X \& X \text { misses } Y \text { implies not } x \in Y, \\
x \in X \& x \in Y \text { implies } X \text { meets } Y, \\
x \in X \text { implies } X \neq \emptyset, \\
X \text { meets } Y \text { implies ex } x \text { st } x \in X \& x \in Y, \\
\text { (for } x \text { st } x \in X \text { holds } x \in Y \text {) implies } X \subseteq Y, \\
\text { (for } x \text { st } x \in X \text { holds not } x \in Y \text {) implies } X \text { misses } Y, \\
\text { (for } x \text { holds } x \in X \text { iff } x \in Y \text { or } x \in Z \text {) implies } X=Y \cup Z, \\
\text { (for } x \text { holds } x \in X \text { iff } x \in Y \& x \in Z \text {) implies } X=Y \cap Z, \\
\text { (for } x \text { holds } x \in X \text { iff } x \in Y \& \text { not } x \in Z) \text { implies } X=Y \backslash Z, \\
\text { not }(\text { ex } x \text { st } x \in X) \text { implies } X=\emptyset, \\
(\text { for } x \text { holds } x \in X \text { iff } x \in Y) \text { implies } X=Y, \\
x \in X \dot{ } x \text { iff not }(x \in X \text { iff } x \in Y), \\
x \in X \& x \in Y \text { implies } X \cap Y \neq \emptyset,
\end{gathered}
$$

(for x holds not $x \in X$ iff $(x \in Y$ iff $x \in Z)$) implies $X=Y \doteq Z$,

$$
\begin{gathered}
X \subseteq X \\
\emptyset \subseteq X
\end{gathered}
$$

$$
X \subseteq Y \& Y \subseteq X \text { implies } X=Y
$$

$$
X \subseteq Y \& Y \subseteq Z \text { implies } X \subseteq Z
$$

$$
X \subseteq \emptyset \text { implies } X=\emptyset
$$

$$
X \subseteq X \cup Y \& Y \subseteq X \cup Y
$$

$X \subseteq Z \& Y \subseteq Z$ implies $X \cup Y \subseteq Z$,

$$
X \subseteq Y \text { implies } X \cup Z \subseteq Y \cup Z \& Z \cup X \subseteq Z \cup Y
$$

(34)

$$
\begin{equation*}
X \subseteq Y \& Y \cap Z=\emptyset \text { implies } X \cap Z=\emptyset \tag{54}
\end{equation*}
$$

(56) $\quad X=Y \cup Z$ iff $Y \subseteq X \& Z \subseteq X \&$ for V st $Y \subseteq V \& Z \subseteq V$ holds $X \subseteq V$,
(57) $\quad X=Y \cap Z$ iff $X \subseteq Y \& X \subseteq Z \&$ for V st $V \subseteq Y \& V \subseteq Z$ holds $V \subseteq X$,

$$
\begin{equation*}
X \backslash Y \subseteq X \doteq Y \tag{58}
\end{equation*}
$$

(60)

$$
X \cup Y=\emptyset \text { iff } X=\emptyset \& Y=\emptyset
$$

$$
X \cup \emptyset=X \& \emptyset \cup X=X
$$

$$
X \cap \emptyset=\emptyset \& \emptyset \cap X=\emptyset
$$

$$
X \cup X=X
$$

$$
X \cup Y=Y \cup X
$$

$$
(X \cup Y) \cup Z=X \cup(Y \cup Z)
$$

$$
X \cap X=X
$$

$$
X \cap Y=Y \cap X
$$

$$
(X \cap Y) \cap Z=X \cap(Y \cap Z)
$$

$$
X \cap(X \cup Y)=X
$$

$$
\&(X \cup Y) \cap X=X \& X \cap(Y \cup X)=X \&(Y \cup X) \cap X=X
$$

$$
\begin{gathered}
X \cup(X \cap Y)=X \\
\&(X \cap Y) \cup X=X \& X \cup(Y \cap X)=X \&(Y \cap X) \cup X=X, \\
X \cap(Y \cup Z)=X \cap Y \cup X \cap Z \&(Y \cup Z) \cap X=Y \cap X \cup Z \cap X, \\
X \cup Y \cap Z=(X \cup Y) \cap(X \cup Z) \& Y \cap Z \cup X=(Y \cup X) \cap(Z \cup X), \\
(X \cap Y) \cup(Y \cap Z) \cup(Z \cap X)=(X \cup Y) \cap(Y \cup Z) \cap(Z \cup X), \\
X \backslash X=\emptyset, \\
X \backslash \emptyset=X, \\
\emptyset \backslash X=\emptyset,
\end{gathered}
$$

$$
X \backslash(X \cup Y)=\emptyset \& X \backslash(Y \cup X)=\emptyset
$$

$$
X \backslash X \cap Y=X \backslash Y \& X \backslash Y \cap X=X \backslash Y
$$

$$
(X \backslash Y) \cap Y=\emptyset \& Y \cap(X \backslash Y)=\emptyset
$$

$$
X \cup(Y \backslash X)=X \cup Y \&(Y \backslash X) \cup X=Y \cup X
$$

$$
X \cap Y \cup(X \backslash Y)=X \&(X \backslash Y) \cup X \cap Y=X
$$

$$
X \backslash(Y \backslash Z)=(X \backslash Y) \cup X \cap Z
$$

$$
X \backslash(X \backslash Y)=X \cap Y
$$

(83)
$(X \cup Y) \backslash Y=X \backslash Y$,
$X \cap Y=\emptyset$ iff $X \backslash Y=X$,
$X \backslash(Y \cup Z)=(X \backslash Y) \cap(X \backslash Z)$,
$X \backslash(Y \cap Z)=(X \backslash Y) \cup(X \backslash Z)$,
$(X \cup Y) \backslash(X \cap Y)=(X \backslash Y) \cup(Y \backslash X)$,
$(X \backslash Y) \backslash Z=X \backslash(Y \cup Z)$,
$(X \cup Y) \backslash Z=(X \backslash Z) \cup(Y \backslash Z)$,
$X \backslash Y=Y \backslash X$ implies $X=Y$,
$X \doteq Y=(X \backslash Y) \cup(Y \backslash X)$,
$X \doteq \emptyset=X \& \emptyset \doteq X=X$,
$X \doteq X=\emptyset$,
$X \dot{-}=Y \dot{-}$,
$X \cup Y=(X \doteq Y) \cup X \cap Y$,
$X \dot{-} Y=(X \cup Y) \backslash X \cap Y$,
$(X \doteq Y) \backslash Z=(X \backslash(Y \cup Z)) \cup(Y \backslash(X \cup Z))$,
$X \backslash(Y \doteq Z)=X \backslash(Y \cup Z) \cup X \cap Y \cap Z$,
$(X \doteq Y) \doteq Z=X \doteq(Y \doteq Z)$,
X meets $Y \cup Z$ iff X meets Y or X meets Z,
X meets $Y \& Y \subseteq Z$ implies X meets Z,
X meets $Y \cap Z$ implies X meets $Y \& X$ meets Z,
X meets Y implies Y meets X,
$\operatorname{not}(X$ meets \emptyset or \emptyset meets $X)$,
X misses Y iff not X meets Y,
X misses $Y \cup Z$ iff X misses $Y \& X$ misses Z,
X misses $Z \& Y \subseteq Z$ implies X misses Y,
(108)
(109) X misses Y or X misses Z implies X misses $Y \cap Z$,

$$
\begin{gathered}
X \text { misses } \emptyset \& \emptyset \text { misses } X, \\
X \text { meets } X \text { iff } X \neq \emptyset, \\
X \cap Y \text { misses } X \backslash Y, \\
X \cap Y \text { misses } X \dot{-}, \\
X \text { meets } Y \backslash Z \text { implies } X \text { meets } Y, \\
X \subseteq Y \& X \subseteq Z \& Y \text { misses } Z \text { implies } X=\emptyset, \\
X \cap(Y \backslash Z)=X \cap Y \backslash X \cap Z \&(Y \backslash Z) \cap X=Y \cap X \backslash Z \cap X, \\
X \backslash Y \subseteq Z \& Y \backslash X \subseteq Z \text { implies } X \dot{ } \text { \& } X \subseteq Z, \\
X \cap(Y \backslash Z)=(X \cap Y) \backslash Z, \\
X \text { misses } Y \text { iff } X \cap Y=\emptyset, \\
X \subseteq(Y \cup Z) \& X \cap Z=\emptyset \text { implies } X \subseteq Y, \\
Y \subseteq X \& X \cap Y=\emptyset \text { implies } Y=\emptyset, \\
X \operatorname{misses} Y \text { implies } Y \text { misses } X .
\end{gathered}
$$

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1.
 ${ }^{2}$ Supported by RPBP.III-24.C1.

