Built-in Concepts

Andrzej Trybulec¹ Warsaw University Białystok

Summary. This abstract contains the second part of the axiomatics of the Mizar system (the first part is in abstract [1]). The axioms listed here characterize the Mizar built-in concepts that are automatically attached to every Mizar article. We give definitional axioms of the following concepts: element, subset, Cartesian product, domain (non empty subset), subdomain (non empty subset of a domain), set domain (domain consisting of sets). Axioms of strong arithmetics of real numbers are also included.

The notation and terminology used here have been introduced in the axiomatics [1]. For simplicity we adopt the following convention: x, y, z denote objects of the type Any; X, X1, X2, X3, X4, Y denote objects of the type set. The following axioms hold:

- (1) $(\mathbf{ex} \ x \ \mathbf{st} \ x \in X)$ implies $(x \ \mathbf{is} \ \text{Element of} \ X \ \text{iff} \ x \in X)$,
- (2) X is Subset of Y iff $X \subseteq Y$,
- (3) $z \in [X, Y] \text{ iff ex } x, y \text{ st } x \in X \& y \in Y \& z = \langle x, y \rangle,$
- (4) X is DOMAIN iff ex x st $x \in X$,
- (5) [X1, X2, X3] = [[X1, X2], X3],
- (6) [X1, X2, X3, X4] = [[X1, X2, X3], X4].

In the sequel D1, D2, D3, D4 will denote objects of the type DOMAIN. Let us introduce the consecutive axioms:

- (7) for X being Element of [D1,D2] holds X is TUPLE of D1,D2,
- (8) for X being Element of [D1, D2, D3] holds X is TUPLE of D1, D2, D3,

¹Supported by RPBP.III-24.B1.

© 1990 Fondation Philippe le Hodey ISSN 0777-4028 ANDRZEJ TRYBULEC

(9) for X being Element of
$$[D1,D2,D3,D4]$$

holds X is TUPLE of $D1,D2,D3,D4$.

In the sequel D has the type DOMAIN. The following axioms hold:

(10) D1 is SUBDOMAIN of D2 iff $D1 \subseteq D2$,

(11)
$$D$$
 is SET_DOMAIN.

In the sequel x, y, z denote objects of the type Element of REAL. The following axioms are true:

axioms are true:
(12)
$$x + y = y + x$$
,
(13) $x + (y + z) = (x + y) + z$,
(14) $x + 0 = x$,
(15) $x \cdot y = y \cdot x$,
(16) $x \cdot (y \cdot z) = (x \cdot y) \cdot z$,
(17) $x \cdot 1 = x$,
(18) $x \cdot (y + z) = x \cdot y + x \cdot z$,
(19) $ex y st x + y = 0$,
(20) $x \neq 0$ implies $ex y st x \cdot y = 1$,
(21) $x \leq y \& y \leq x$ implies $x = y$,
(22) $x \leq y \& y \leq z$ implies $x = y$,
(23) $x \leq y \text{ or } y \leq x$,
(24) $x \leq y \text{ implies } x + z \leq y + z$,
(25) $x \leq y \& 0 \leq z$ implies $x \cdot z \leq y \cdot z$,
(26) for X, Y being Subset of REAL st
($ex x \text{ st } x \in X$) & ($ex x \text{ st } x \in Y$) & for $x, y \text{ st } x \in X \& y \in Y$ holds $x \leq y$
(26) $for X, Y$ being Subset of REAL st
($ex x \text{ st } x \in X$) & ($ex x \text{ st } x \in Y$) & for $x, y \text{ st } x \in X \& y \in Y$ holds $x \leq y$,
(27) x is Real,
(28) $x \in \text{NAT implies } x + 1 \in \text{NAT}$,
(29) for A being set of Real
 $\text{ st } 0 \in A \&$ for x st $x \in A$ holds $x + 1 \in A$ holds NAT $\subseteq A$,
(30) $x \in \text{NAT implies } x$ is Nat.

14

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

Received January 1, 1989
