JOURNAL OF FORMALIZED MATHEMATICS
Volume10, Released 1998, Published 2003
Inst. of Computer Science, Univ. of Bialystok

Bases and Refinements of Topologi&s

Grzegorz Bancerek
University of Biatystok

MML Identifier: YELLOW_9.

WWW: http://mizar.org/JEM/Voll0/yellow_9.html
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1. SUBSETS ASNETS

In this article we present several logical schemes. The sclireaeskellnvolutiordeals with a non
empty setq, subset3B, C of 4, and a unary functof yielding an element off, and states that:
B = {7 (a);aranges over elements gf: a € C}
provided the following conditions are satisfied:
e (C={%(a);aranges over elements gf: a € B}, and
e For every elemerd of 4 holds ¥ (¥ (a)) = a.
The schemé&raenkelComplementeals with a non empty relational structuea family B of
subsets of4, a setC, and a unary functoff yielding a subset afl, and states that:
B¢ = { ¥ (a)%;aranges over elements &f: a€ C}
provided the following condition is met:
e B={7(a);aranges over elements gf: a€ C}.
The schemé&raenkelComplement®eals with a non empty relational structuea family B of
subsets 0f4, a setC, and a unary functoff yielding a subset ofl, and states that:
B¢ = { ¥ (a);aranges over elements gf: a€ C}
provided the following requirement is met:
e B={%(a)%aranges over elements &f: a<c C}.
Next we state several propositions:

(1) For every non empty relational structtRend for all elements, y of R holdsy € (1x)¢ iff
X LY.

(2) LetShbe a 1-sorted structur&, be a non empty 1-sorted structufebe a map fronsinto
T, andX be a subset 6f . Then(f~1(X))¢ = f=1(X°).

(3) For every 1-sorted structuiie and for every familyF of subsets ofl holdsF¢ = {a%a
ranges over subsets of ac F}.

(4) LetRbe anonempty relational structure gnthe a subset dR. ThenTF = J{1x;xranges
over elements oR: x € F} and|F = J{|x;x ranges over elements Bf x € F}.

(5) LetRbe anon empty relational structusebe a family of subsets d®, andF be a subset
of R. If A= {(7x) x ranges over elements Bf x € F }, then Interseq®®) = (1F)°.
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One can verify that there exists a FR-structure which is strict, trivial, reflexive, non empty,
discrete, and finite.

One can verify that there exists a top-lattice which is strict, complete, and trivial.

Let Sbe a non empty relational structure andTidte an upper-bounded non empty reflexive an-
tisymmetric relational structure. Note that there exists a map 8oto T which is infs-preserving.

Let S be a non empty relational structure and Tebe a lower-bounded non empty reflexive
antisymmetric relational structure. One can check that there exists a maSfirdnT which is
sups-preserving.

LetR, Sbe 1-sorted structures. Let us assume that the carrietdhe carrier oR. The functor
incl(S R) yields a map fronSinto Rand is defined by:

(Def. 1) incSR) = idtne carrier ofs-

Let Rbe a non empty relational structure and3die a non empty relational substructureRof
Note that inc{S R) is monotone.

Let R be a non empty relational structure andXebe a non empty subset 8 The functor
(X;id) yields a strict non empty net structure o®and is defined by:

(Def. 2) (X;id) = incl(sub(X),R) - (sul(X);id).
The functor(X°P;id) yields a strict non empty net structure oWand is defined as follows:
(Def. 3) (X°P;id) = incl(sub(X),R) - ((sul(X))°P;id).
We now state two propositions:

(6) LetRbe anonempty relational structure akdbe a non empty subset Bf Then
(i) the carrier of(X;id) = X,

(i)  (X;id) is a full relational substructure &, and

(i)  for every element of (X;id) holds(X;id)(x) = x.

(7) LetRbe a non empty relational structure addbe a non empty subset Bf Then
(i) the carrier of(X°F;id) = X,

(i) (X°P;id) is a full relational substructure &P, and

(i)  for every element of (X°P;id) holds (X°P;id)(x) = x.

Let R be a non empty reflexive relational structure andddie a non empty subset B Note
that (X;id) is reflexive and X°P;id) is reflexive.

Let Rbe a non empty transitive relational structure ancKléte a non empty subset Bf Note
that (X;id) is transitive andX°;id) is transitive.

Let Rbe a non empty reflexive relational structure and lle¢ a directed subset 8 Note that
sul(l) is directed.

Let Rbe a non empty reflexive relational structure and le¢ a directed non empty subsetRf
One can verify thatl;id) is directed.

Let Rbe a non empty reflexive relational structure andFléte a filtered non empty subsetif
One can check thd{sul(F))°F;id) is directed.

Let Rbe a non empty reflexive relational structure andHdte a filtered non empty subsetiRf
One can verify thatF°F;id) is directed.

2. OPERATIONS ONFAMILIES OF OPEN SETS

We now state a number of propositions:
(8) For every topological spadesuch thafl is empty holds the topology af = {0}.

(9) LetT be a trivial non empty topological space. Then
(i) the topology ofT = 2the carier ofT ' gng
(i) for every pointx of T holds the carrier oT = {x} and the topology of = {0,{x}}.
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(10) LetT be a trivial non empty topological space. Thighe carrier ofT } is a basis off and
0 is a prebasis of and{0} is a prebasis of .

(11) For all setsX, Y and for every familyA of subsets ofX such thatA = {Y} holds
FinMeetC[A) = {Y, X} and UniC[A) = {Y, 0}.

(12) Forevery seX and for all familiesA, B of subsets oK such thaA =BU{X} orB=A\ {X}
holds Interse¢®) = IntersectB).

(13) Forevery seX and for all familiesA, B of subsets oK such thah = BU{X} orB=A\ {X}
holds FinMeetClA) = FinMeetC[B).

(14) LetX be a set and\ be a family of subsets ok. SupposeX € A. Let x be a set. Then
x € FinMeetClA) if and only if there exists a finite non empty famiyof subsets oK such
thatY C Aandx = IntersectY).

(15) For every seX and for every familyA of subsets oK holds UniC[UniCI(A)) = UniCI(A).
(16) For every seX and for every empty family of subsets oK holds UniC[A) = {0}.
(17) For every seX and for every empty famil of subsets oK holds FinMeetQlA) = {X}.

(18) For every seX and for every familyA of subsets ofX such thatA = {0,X} holds
UniCI(A) = Aand FinMeetQlA) = A.

(19) LetX,Y be setsAbe a family of subsets of, andB be a family of subsets of. Then
(i) if ACB,then UniC[A) C UniCI(B), and
(i) if A=B,then UniC[A) = UniCI(B).

(20) LetX,Y be setsA be a family of subsets of, andB be a family of subsets of. If A=B
andX € AandX CY, then FinMeetQB) = {Y} UFinMeetC[A).

(21) Forevery seX and for every familyA of subsets oK holds UniC(FinMeetC(UniCI(A))) =
UniCl(FinMeetC[A)).

3. BASEs
One can prove the following propositions:

(22) LetT be a topological space and be a family of subsets of. Then the topology of
T = UniCI(K) if and only if K is a basis off .

(23) LetT be atopological space adbe a family of subsets df. ThenK is a prebasis of
if and only if FinMeetC(K) is a basis off .

(24) LetT be a non empty topological space aithe a family of subsets oF. If UniCl(B) is
a prebasis of, thenB is a prebasis of .

(25) LetT;, T, be topological spaces argRlbe a basis offl;. Suppose the carrier df = the
carrier of T andB is a basis off,. Then the topology of; = the topology ofTs.

(26) LetTy, T, be topological spaces aftbe a prebasis of;. Suppose the carrier @i = the
carrier of T, andP is a prebasis of,. Then the topology of; = the topology ofT».

(27) For every topological spadeholds every basis df is open and a prebasis of
(28) For every topological spadeholds every prebasis df is open.

(29) LetT be a non empty topological space @ble a prebasis of. ThenBU {the carrier of
T} is a prebasis of .
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(30) For every topological spadeand for every basiB of T holdsBU {the carrier ofT } is a
basis ofT.

(31) LetT be atopological spac® be a basis of’, andA be a subset of . ThenA is open if
and only if for every poinp of T such thatp € Athere exists a subsatof T such thaia € B
andp € aandaCA.

(32) LetT be atopological space afdbe a family of subsets of. Suppose that
(i) BCthe topology ofT, and

(i) for every subsef of T such thatA is open and for every poimt of T such thap € Athere
exists a subset of T such thab € Bandp € aanda C A.

ThenB is a basis off .

(33) LetSbhe atopological spac#, be a non empty topological spaé¢epe a basis of, andf
be a map fronSinto T. Thenf is continuous if and only if for every subsgtof T such that
A € K holds f~1(A°) is closed.

(34) LetSbhe atopological spac#, be a non empty topological spaé¢epe a basis of’, andf
be a map fronSinto T. Thenf is continuous if and only if for every subs&tof T such that
Ac K holdsf~1(A) is open.

(35) LetSbe atopological spac@&, be a non empty topological spa¢ebe a prebasis of, and
f be a map fronSinto T. Thenf is continuous if and only if for every subsatof T such
thatA € K holds f ~1(A°) is closed.

(36) LetSbe atopological spac&, be a non empty topological spa¢ebe a prebasis of, and
f be a map fronSinto T. Thenf is continuous if and only if for every subsatof T such
thatA € K holds f ~1(A) is open.

(37) LetT be a non empty topological spacghe a point ofT, X be a subset of, andK be a
basis ofT. Suppose that for every subgedf T such thatA € K andx € A holdsA meetsX.
Thenx € X.

(38) LetT be a non empty topological spacebe a point ofT, X be a subset of, andK be
a prebasis o . Suppose that for every finite famil of subsets off such thaz C K and
x € IntersectZ) holds Interse¢Z) meetsX. Thenx € X.

(39) LetT be a non empty topological spa¢ebe a prebasis df, x be a point ofT, andN be a
netinT. Suppose that for every subgeof T such thaiA € K andx € AholdsN is eventually
in A. LetSbe a subset of . If rngnetmagN, T) C S thenxe S

4. PRODUCTTOPOLOGIES

We now state four propositions:

(40) LetTy, T> be non empty topological spacd, be a basis off;, andB; be a basis of».
Then{[:a, b];aranges over subsets of, b ranges over subsets®f: ac By A be By} isa
basis off: Ty, T2 .

(41) LetTy, T> be non empty topological spacds, be a prebasis of;, andB; be a prebasis
of T,. Then{[.the carrier ofT1, b]; b ranges over subsets &f: b € By} U{[: a, the carrier of
T, ];aranges over subsets of: a € By} is a prebasis of T1, T2 .

(42) LetXy, Xy be setsA be a family of subsets dfX;, X2 ], A1 be a non empty family of
subsets oK;, andA; be a non empty family of subsets ¥f. Supposéd = {[:a, b];aranges
over subsets oKj, b ranges over subsets 86: ac€ A1 A b € Ax}. Then Intersed®) =
[ IntersectA;), IntersectAy) J.

(43) LetTy, To be non empty topological spacds, be a prebasis of;, andB, be a prebasis
of T,. Supposeé JB; = the carrier ofT; and|J B, = the carrier ofT>. Then{[.a, b];aranges
over subsets df, b ranges over subsets ©f: a< B; A b e By} is a prebasis of Ty, T2 .
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5. TOPOLOGICALAUGMENTATIONS

Let Rbe a relational structure. A FR-structure is called a topological augmentati®if:of
(Def. 4) The relational structure of4t the relational structure dk.

Let R be a relational structure and [Etbe a topological augmentation Bf We introduceT is
correct as a synonym df is topological space-like.

Let R be a relational structure. Note that there exists a topological augmentatwluth is
correct, discrete, and strict.

One can prove the following propositions:

(44) Every FR-structur@ is a topological augmentation of.

(45) LetSbe a FR-structure anfl be a topological augmentation 8f ThenSis a topological
augmentation of .

(46) LetR be a relational structure and be a topological augmentation & Then every
topological augmentation df is a topological augmentation B

Let Rbe a non empty relational structure. Note that every topological augmentativis obn
empty.

Let R be a reflexive relational structure. One can check that every topological augmentation of
Ris reflexive.

Let R be a transitive relational structure. Observe that every topological augmentafvis of
transitive.

Let R be an antisymmetric relational structure. Observe that every topological augmentation of
Ris antisymmetric.

LetRbe a complete non empty relational structure. Observe that every topological augmentation
of Ris complete.

The following three propositions are true:

(47) LetSbe an up-complete antisymmetric non empty reflexive relational structur€ bed
non empty reflexive relational structure. Suppose the relational struct&e e relational
structure ofT. Let A be a subset ddandC be a subset of . If A=C andA is inaccessible,
thenC is inaccessible.

(48) LetSbe a non empty reflexive relational structure dntde a topological augmentation of
S. If the topology ofT = a(S), thenT is correct.

(49) LetSbe a complete lattice antl be a topological augmentation 8f If the topology of
T =0(9), thenT is Scott.

Let Rbe a complete lattice. Observe that there exists a topological augmentakomtich is
Scott, strict, and correct.
Next we state three propositions:

(50) LetS T be complete Scott non empty reflexive transitive antisymmetric FR-structures.
Suppose the relational structure % the relational structure of. Let F be a subset 0%
andG be a subset of . If F = G, then ifF is open, ther is open.

(51) For every complete latticeand for every Scott topological augmentatibrof Sholds the
topology of T = o(S).

(52) LetS T be complete lattices. Suppose the relational structuge-athe relational structure
of T. Theno(S) = o(T).

Let R be a complete lattice. One can verify that every topological augmentatiBwabiich is
Scott is also correct.
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6. REFINEMENTS

Let T be a topological structure. A topological space is said to be a topological extendiaf of
(Def.5) The carrier off = the carrier of it and the topology df C the topology of it.

Next we state the proposition

(53) LetShe atopological structure. Then there exists a topological exteisads such that
T is strict and the topology dBis a prebasis of .

Let T be atopological structure. Observe that there exists a topological extendionto€h is
strict and discrete.

Let T, T2 be topological structures. A topological space is said to be a refineméntoid T,
if it satisfies the conditions (Def. 6).

(Def. 6)(i) The carrier of it= (the carrier ofT;) U (the carrier ofT,), and
(i) (the topology ofT;) U (the topology ofT,) is a prebasis of it.

Let Ty be a non empty topological structure andligbe a topological structure. Note that every
refinement off; andT; is non empty and every refinementBfandT; is non empty.
We now state several propositions:

(54) LetTy, T, be topological structures afid T’ be refinements of; andT,. Then the topo-
logical structure off = the topological structure df’.

(55) For all topological structureg, T, holds every refinement ai, andT; is a refinement of
To andTl.

(56) LetTy, T, be topological structured, be a refinement of; andT,, andX be a family of
subsets off . SupposeX = (the topology ofT1) U (the topology ofT»). Then the topology of
T = UniCl(FinMeetCIX)).

(57) LetTy, T, be topological structures. Suppose the carrief;0f the carrier ofT,. Then
every refinement of; andT; is a topological extension Gk and a topological extension of
To.

(58) LetTy, T> be non empty topological spacdsbe a refinement of; andT,, By be a prebasis
of T1, andB; be a prebasis of2. ThenB; UBy U {the carrier ofTy, the carrier ofTz} is a
prebasis off .

(59) LetTy, T> be non empty topological spacd, be a basis oT;, B, be a basis of,, andT
be a refinement of; andT,. ThenB; UB; UB1m By is a basis off.

(60) LetTy, T> be non empty topological spaces. Suppose the carri€r efthe carrier ofTs.
Let T be arefinement of; andT,. Then (the topology oT1) m (the topology ofT») is a basis
of T.

(61) LetL be a non empty relational structuii, T, be correct topological augmentationd of
andT be a refinement of; andT,. Then (the topology of;) m (the topology ofTy) is a basis
of T.
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