Bases and Refinements of Topologies¹

Grzegorz Bancerek University of Białystok

MML Identifier: YELLOW_9.

WWW: http://mizar.org/JFM/Vol10/yellow_9.html

The articles [15], [7], [21], [11], [22], [5], [9], [16], [24], [23], [4], [6], [20], [1], [2], [3], [13], [8], [12], [18], [10], [19], [14], and [17] provide the notation and terminology for this paper.

1. Subsets as Nets

In this article we present several logical schemes. The scheme *FraenkelInvolution* deals with a non empty set \mathcal{A} , subsets \mathcal{B} , \mathcal{C} of \mathcal{A} , and a unary functor \mathcal{F} yielding an element of \mathcal{A} , and states that:

 $\mathcal{B} = \{ \mathcal{F}(a); a \text{ ranges over elements of } \mathcal{A} : a \in \mathcal{C} \}$ provided the following conditions are satisfied:

- $C = \{ \mathcal{F}(a); a \text{ ranges over elements of } \mathcal{A} : a \in \mathcal{B} \}$, and
- For every element a of \mathcal{A} holds $\mathcal{F}(\mathcal{F}(a)) = a$.

The scheme FraenkelComplement1 deals with a non empty relational structure \mathcal{A} , a family \mathcal{B} of subsets of \mathcal{A} , a set \mathcal{C} , and a unary functor \mathcal{F} yielding a subset of \mathcal{A} , and states that:

 $\mathcal{B}^{c} = \{ \mathcal{F}(a)^{c}; a \text{ ranges over elements of } \mathcal{A} : a \in \mathcal{C} \}$ provided the following condition is met:

• $\mathcal{B} = \{ \mathcal{F}(a); a \text{ ranges over elements of } \mathcal{A} : a \in \mathcal{C} \}.$

The scheme *FraenkelComplement2* deals with a non empty relational structure \mathcal{A} , a family \mathcal{B} of subsets of \mathcal{A} , a set \mathcal{C} , and a unary functor \mathcal{F} yielding a subset of \mathcal{A} , and states that:

 $\mathcal{B}^{c} = \{ \mathcal{F}(a); a \text{ ranges over elements of } \mathcal{A} : a \in \mathcal{C} \}$ provided the following requirement is met:

• $\mathcal{B} = \{ \mathcal{F}(a)^{c}; a \text{ ranges over elements of } \mathcal{A} : a \in \mathcal{C} \}.$

Next we state several propositions:

- (1) For every non empty relational structure R and for all elements x, y of R holds $y \in (\uparrow x)^c$ iff $x \not\leq y$.
- (2) Let *S* be a 1-sorted structure, *T* be a non empty 1-sorted structure, *f* be a map from *S* into *T*, and *X* be a subset of *T*. Then $(f^{-1}(X))^c = f^{-1}(X^c)$.
- (3) For every 1-sorted structure T and for every family F of subsets of T holds $F^c = \{a^c; a \text{ ranges over subsets of } T: a \in F\}$.
- (4) Let R be a non empty relational structure and F be a subset of R. Then $\uparrow F = \bigcup \{ \uparrow x; x \text{ ranges over elements of } R: x \in F \}$ and $\downarrow F = \bigcup \{ \downarrow x; x \text{ ranges over elements of } R: x \in F \}$.
- (5) Let R be a non empty relational structure, A be a family of subsets of R, and F be a subset of R. If $A = \{(\uparrow x)^c; x \text{ ranges over elements of } R: x \in F\}$, then Intersect $(A) = (\uparrow F)^c$.

¹This work has been supported by KBN Grant 8 T11C 018 12.

One can verify that there exists a FR-structure which is strict, trivial, reflexive, non empty, discrete, and finite.

One can verify that there exists a top-lattice which is strict, complete, and trivial.

Let *S* be a non empty relational structure and let *T* be an upper-bounded non empty reflexive antisymmetric relational structure. Note that there exists a map from *S* into *T* which is infs-preserving.

Let S be a non empty relational structure and let T be a lower-bounded non empty reflexive antisymmetric relational structure. One can check that there exists a map from S into T which is sups-preserving.

Let R, S be 1-sorted structures. Let us assume that the carrier of $S \subseteq$ the carrier of R. The functor incl(S,R) yields a map from S into R and is defined by:

(Def. 1)
$$\operatorname{incl}(S, R) = \operatorname{id}_{\operatorname{the carrier of } S}$$
.

Let R be a non empty relational structure and let S be a non empty relational substructure of R. Note that incl(S,R) is monotone.

Let R be a non empty relational structure and let X be a non empty subset of R. The functor $\langle X; \mathrm{id} \rangle$ yields a strict non empty net structure over R and is defined by:

(Def. 2)
$$\langle X; id \rangle = incl(sub(X), R) \cdot \langle sub(X); id \rangle$$
.

The functor $\langle X^{op}; id \rangle$ yields a strict non empty net structure over R and is defined as follows:

(Def. 3)
$$\langle X^{op}; id \rangle = incl(sub(X), R) \cdot \langle (sub(X))^{op}; id \rangle$$
.

We now state two propositions:

- (6) Let R be a non empty relational structure and X be a non empty subset of R. Then
- (i) the carrier of $\langle X; id \rangle = X$,
- (ii) $\langle X; id \rangle$ is a full relational substructure of R, and
- (iii) for every element x of $\langle X; id \rangle$ holds $\langle X; id \rangle(x) = x$.
- (7) Let R be a non empty relational structure and X be a non empty subset of R. Then
- (i) the carrier of $\langle X^{op}; id \rangle = X$,
- (ii) $\langle X^{op}; id \rangle$ is a full relational substructure of R^{op} , and
- (iii) for every element x of $\langle X^{op}; id \rangle$ holds $\langle X^{op}; id \rangle(x) = x$.

Let *R* be a non empty reflexive relational structure and let *X* be a non empty subset of *R*. Note that $\langle X; \mathrm{id} \rangle$ is reflexive and $\langle X^{\mathrm{op}}; \mathrm{id} \rangle$ is reflexive.

Let R be a non empty transitive relational structure and let X be a non empty subset of R. Note that $\langle X; \mathrm{id} \rangle$ is transitive and $\langle X^{\mathrm{op}}; \mathrm{id} \rangle$ is transitive.

Let R be a non empty reflexive relational structure and let I be a directed subset of R. Note that sub(I) is directed.

Let *R* be a non empty reflexive relational structure and let *I* be a directed non empty subset of *R*. One can verify that $\langle I; \text{id} \rangle$ is directed.

Let *R* be a non empty reflexive relational structure and let *F* be a filtered non empty subset of *R*. One can check that $\langle (\operatorname{sub}(F))^{\operatorname{op}}; \operatorname{id} \rangle$ is directed.

Let *R* be a non empty reflexive relational structure and let *F* be a filtered non empty subset of *R*. One can verify that $\langle F^{op}; id \rangle$ is directed.

2. OPERATIONS ON FAMILIES OF OPEN SETS

We now state a number of propositions:

- (8) For every topological space T such that T is empty holds the topology of $T = \{\emptyset\}$.
- (9) Let T be a trivial non empty topological space. Then
- (i) the topology of $T = 2^{\text{the carrier of } T}$, and
- (ii) for every point x of T holds the carrier of $T = \{x\}$ and the topology of $T = \{\emptyset, \{x\}\}$.

- (10) Let T be a trivial non empty topological space. Then {the carrier of T} is a basis of T and \emptyset is a prebasis of T and $\{\emptyset\}$ is a prebasis of T.
- (11) For all sets X, Y and for every family A of subsets of X such that $A = \{Y\}$ holds FinMeetCl(A) = $\{Y, X\}$ and UniCl(A) = $\{Y, \emptyset\}$.
- (12) For every set *X* and for all families *A*, *B* of subsets of *X* such that $A = B \cup \{X\}$ or $B = A \setminus \{X\}$ holds Intersect(*A*) = Intersect(*B*).
- (13) For every set X and for all families A, B of subsets of X such that $A = B \cup \{X\}$ or $B = A \setminus \{X\}$ holds FinMeetCl(A) = FinMeetCl(B).
- (14) Let X be a set and A be a family of subsets of X. Suppose $X \in A$. Let x be a set. Then $x \in \text{FinMeetCl}(A)$ if and only if there exists a finite non empty family Y of subsets of X such that $Y \subseteq A$ and x = Intersect(Y).
- (15) For every set X and for every family A of subsets of X holds UniCl(UniCl(A)) = UniCl(A).
- (16) For every set *X* and for every empty family *A* of subsets of *X* holds UniCl(*A*) = $\{\emptyset\}$.
- (17) For every set *X* and for every empty family *A* of subsets of *X* holds FinMeetCl(A) = {X}.
- (18) For every set X and for every family A of subsets of X such that $A = \{\emptyset, X\}$ holds UniCl(A) = A and FinMeetCl(A) = A.
- (19) Let X, Y be sets, A be a family of subsets of X, and B be a family of subsets of Y. Then
 - (i) if $A \subseteq B$, then UniCl(A) \subseteq UniCl(B), and
- (ii) if A = B, then UniCl(A) = UniCl(B).
- (20) Let X, Y be sets, A be a family of subsets of X, and B be a family of subsets of Y. If A = B and $X \subseteq A$ and $X \subseteq Y$, then FinMeetCl(B) = $\{Y\} \cup$ FinMeetCl(A).
- (21) For every set X and for every family A of subsets of X holds UniCl(FinMeetCl(UniCl(A))) = UniCl(FinMeetCl(A)).

3. Bases

One can prove the following propositions:

- (22) Let T be a topological space and K be a family of subsets of T. Then the topology of T = UniCl(K) if and only if K is a basis of T.
- (23) Let T be a topological space and K be a family of subsets of T. Then K is a prebasis of T if and only if FinMeetCl(K) is a basis of T.
- (24) Let T be a non empty topological space and B be a family of subsets of T. If UniCl(B) is a prebasis of T, then B is a prebasis of T.
- (25) Let T_1 , T_2 be topological spaces and B be a basis of T_1 . Suppose the carrier of T_1 = the carrier of T_2 and B is a basis of T_2 . Then the topology of T_1 = the topology of T_2 .
- (26) Let T_1 , T_2 be topological spaces and P be a prebasis of T_1 . Suppose the carrier of T_1 = the carrier of T_2 and P is a prebasis of T_2 . Then the topology of T_1 = the topology of T_2 .
- (27) For every topological space T holds every basis of T is open and a prebasis of T.
- (28) For every topological space T holds every prebasis of T is open.
- (29) Let T be a non empty topological space and B be a prebasis of T. Then $B \cup \{$ the carrier of $T\}$ is a prebasis of T.

- (30) For every topological space T and for every basis B of T holds $B \cup \{$ the carrier of $T \}$ is a basis of T.
- (31) Let T be a topological space, B be a basis of T, and A be a subset of T. Then A is open if and only if for every point p of T such that $p \in A$ there exists a subset a of T such that $a \in B$ and $p \in a$ and $a \subseteq A$.
- (32) Let T be a topological space and B be a family of subsets of T. Suppose that
 - (i) $B \subseteq$ the topology of T, and
- (ii) for every subset A of T such that A is open and for every point p of T such that p∈ A there exists a subset a of T such that a∈ B and p∈ a and a⊆ A.
 Then B is a basis of T.
- (33) Let *S* be a topological space, *T* be a non empty topological space, *K* be a basis of *T*, and *f* be a map from *S* into *T*. Then *f* is continuous if and only if for every subset *A* of *T* such that $A \in K$ holds $f^{-1}(A^c)$ is closed.
- (34) Let *S* be a topological space, *T* be a non empty topological space, *K* be a basis of *T*, and *f* be a map from *S* into *T*. Then *f* is continuous if and only if for every subset *A* of *T* such that $A \in K$ holds $f^{-1}(A)$ is open.
- (35) Let *S* be a topological space, *T* be a non empty topological space, *K* be a prebasis of *T*, and *f* be a map from *S* into *T*. Then *f* is continuous if and only if for every subset *A* of *T* such that $A \in K$ holds $f^{-1}(A^c)$ is closed.
- (36) Let *S* be a topological space, *T* be a non empty topological space, *K* be a prebasis of *T*, and *f* be a map from *S* into *T*. Then *f* is continuous if and only if for every subset *A* of *T* such that $A \in K$ holds $f^{-1}(A)$ is open.
- (37) Let T be a non empty topological space, x be a point of T, X be a subset of T, and X be a basis of T. Suppose that for every subset A of T such that $A \in K$ and $x \in A$ holds A meets X. Then $x \in \overline{X}$.
- (38) Let T be a non empty topological space, x be a point of T, X be a subset of T, and K be a prebasis of T. Suppose that for every finite family Z of subsets of T such that $Z \subseteq K$ and $x \in \text{Intersect}(Z)$ holds Intersect(Z) meets X. Then $x \in \overline{X}$.
- (39) Let T be a non empty topological space, K be a prebasis of T, x be a point of T, and N be a net in T. Suppose that for every subset A of T such that $A \in K$ and $x \in A$ holds N is eventually in A. Let S be a subset of T. If rng netmap(N, T) $\subseteq S$, then $x \in \overline{S}$.

4. PRODUCT TOPOLOGIES

We now state four propositions:

- (40) Let T_1 , T_2 be non empty topological spaces, B_1 be a basis of T_1 , and B_2 be a basis of T_2 . Then $\{[:a,b:];a \text{ ranges over subsets of } T_1,b \text{ ranges over subsets of } T_2:a\in B_1 \land b\in B_2\}$ is a basis of $[:T_1,T_2:]$.
- (41) Let T_1 , T_2 be non empty topological spaces, B_1 be a prebasis of T_1 , and B_2 be a prebasis of T_2 . Then $\{[: \text{the carrier of } T_1, b:]; b \text{ ranges over subsets of } T_2: b \in B_2\} \cup \{[: a, \text{the carrier of } T_2:]; a \text{ ranges over subsets of } T_1: a \in B_1\} \text{ is a prebasis of } [:T_1, T_2:].$
- (42) Let X_1 , X_2 be sets, A be a family of subsets of $[:X_1, X_2:]$, A_1 be a non empty family of subsets of X_1 , and A_2 be a non empty family of subsets of X_2 . Suppose $A = \{[:a, b:]; a \text{ ranges over subsets of } X_1, b \text{ ranges over subsets of } X_2: a \in A_1 \land b \in A_2\}$. Then Intersect(A_1): Intersect(A_2): $A_1 \cap A_2 \cap A_3 \cap A_4 \cap$
- (43) Let T_1 , T_2 be non empty topological spaces, B_1 be a prebasis of T_1 , and B_2 be a prebasis of T_2 . Suppose $\bigcup B_1$ = the carrier of T_1 and $\bigcup B_2$ = the carrier of T_2 . Then $\{[:a,b:];a \text{ ranges over subsets of } T_1, b \text{ ranges over subsets of } T_2: a \in B_1 \land b \in B_2\}$ is a prebasis of $[:T_1, T_2:]$.

5. TOPOLOGICAL AUGMENTATIONS

Let *R* be a relational structure. A FR-structure is called a topological augmentation of *R* if:

(Def. 4) The relational structure of it = the relational structure of R.

Let R be a relational structure and let T be a topological augmentation of R. We introduce T is correct as a synonym of T is topological space-like.

Let *R* be a relational structure. Note that there exists a topological augmentation of *R* which is correct, discrete, and strict.

One can prove the following propositions:

- (44) Every FR-structure T is a topological augmentation of T.
- (45) Let S be a FR-structure and T be a topological augmentation of S. Then S is a topological augmentation of T.
- (46) Let R be a relational structure and T_1 be a topological augmentation of R. Then every topological augmentation of T_1 is a topological augmentation of R.

Let R be a non empty relational structure. Note that every topological augmentation of R is non empty.

Let R be a reflexive relational structure. One can check that every topological augmentation of R is reflexive.

Let R be a transitive relational structure. Observe that every topological augmentation of R is transitive

Let *R* be an antisymmetric relational structure. Observe that every topological augmentation of *R* is antisymmetric.

Let *R* be a complete non empty relational structure. Observe that every topological augmentation of *R* is complete.

The following three propositions are true:

- (47) Let S be an up-complete antisymmetric non empty reflexive relational structure and T be a non empty reflexive relational structure. Suppose the relational structure of S = the relational structure of T. Let A be a subset of S and C be a subset of T. If A = C and A is inaccessible, then C is inaccessible.
- (48) Let S be a non empty reflexive relational structure and T be a topological augmentation of S. If the topology of $T = \sigma(S)$, then T is correct.
- (49) Let *S* be a complete lattice and *T* be a topological augmentation of *S*. If the topology of $T = \sigma(S)$, then *T* is Scott.

Let *R* be a complete lattice. Observe that there exists a topological augmentation of *R* which is Scott, strict, and correct.

Next we state three propositions:

- (50) Let S, T be complete Scott non empty reflexive transitive antisymmetric FR-structures. Suppose the relational structure of S = the relational structure of T. Let F be a subset of S and G be a subset of T. If F = G, then if F is open, then G is open.
- (51) For every complete lattice S and for every Scott topological augmentation T of S holds the topology of $T = \sigma(S)$.
- (52) Let S, T be complete lattices. Suppose the relational structure of S = the relational structure of T. Then $\sigma(S) = \sigma(T)$.

Let R be a complete lattice. One can verify that every topological augmentation of R which is Scott is also correct.

6. Refinements

Let T be a topological structure. A topological space is said to be a topological extension of T if:

(Def. 5) The carrier of T = the carrier of it and the topology of $T \subseteq$ the topology of it.

Next we state the proposition

(53) Let S be a topological structure. Then there exists a topological extension T of S such that T is strict and the topology of S is a prebasis of T.

Let *T* be a topological structure. Observe that there exists a topological extension of *T* which is strict and discrete.

Let T_1 , T_2 be topological structures. A topological space is said to be a refinement of T_1 and T_2 if it satisfies the conditions (Def. 6).

- (Def. 6)(i) The carrier of it = (the carrier of T_1) \cup (the carrier of T_2), and
 - (ii) (the topology of T_1) \cup (the topology of T_2) is a prebasis of it.

Let T_1 be a non empty topological structure and let T_2 be a topological structure. Note that every refinement of T_1 and T_2 is non empty and every refinement of T_2 and T_3 is non empty.

We now state several propositions:

- (54) Let T_1 , T_2 be topological structures and T, T' be refinements of T_1 and T_2 . Then the topological structure of T'.
- (55) For all topological structures T_1 , T_2 holds every refinement of T_1 and T_2 is a refinement of T_2 and T_1 .
- (56) Let T_1 , T_2 be topological structures, T be a refinement of T_1 and T_2 , and X be a family of subsets of T. Suppose X = (the topology of T_1) \cup (the topology of T_2). Then the topology of T = UniCl(FinMeetCl(X)).
- (57) Let T_1 , T_2 be topological structures. Suppose the carrier of T_1 = the carrier of T_2 . Then every refinement of T_1 and T_2 is a topological extension of T_1 and a topological extension of T_2 .
- (58) Let T_1 , T_2 be non empty topological spaces, T be a refinement of T_1 and T_2 , B_1 be a prebasis of T_1 , and B_2 be a prebasis of T_2 . Then $B_1 \cup B_2 \cup \{$ the carrier of T_1 , the carrier of $T_2 \}$ is a prebasis of T.
- (59) Let T_1 , T_2 be non empty topological spaces, B_1 be a basis of T_1 , B_2 be a basis of T_2 , and T be a refinement of T_1 and T_2 . Then $B_1 \cup B_2 \cup B_1 \cap B_2$ is a basis of T.
- (60) Let T_1 , T_2 be non empty topological spaces. Suppose the carrier of T_1 = the carrier of T_2 . Let T be a refinement of T_1 and T_2 . Then (the topology of T_1) \cap (the topology of T_2) is a basis of T.
- (61) Let L be a non empty relational structure, T_1 , T_2 be correct topological augmentations of L, and T be a refinement of T_1 and T_2 . Then (the topology of T_1) \cap (the topology of T_2) is a basis of T.

REFERENCES

- [1] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [2] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [4] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/realsetl. html.

- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [7] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [8] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [9] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [10] Artur Korniłowicz. On the topological properties of meet-continuous lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_9.html.
- [11] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [12] Beata Padlewska. Locally connected spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/connsp_ 2.html.
- [13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [14] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vo17/cantor_1.html.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/
- [16] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/mcart 1.html.
- [17] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/borsuk_1.html.
- [18] Andrzej Trybulec. Moore-Smith convergence. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_6.html.
- [19] Andrzej Trybulec. Scott topology. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/waybelll.html.
- [20] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [21] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [22] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.
- [23] Edmund Woronowicz. Relations defined on sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relset 1 html
- [24] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_2.html.

Received March 9, 1998

Published January 2, 2004