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1. SUBSETS ASNETS

In this article we present several logical schemes. The schemeFraenkelInvolutiondeals with a non
empty setA , subsetsB, C of A , and a unary functorF yielding an element ofA , and states that:

B = {F (a);a ranges over elements ofA : a∈ C}
provided the following conditions are satisfied:

• C = {F (a);a ranges over elements ofA : a∈ B}, and
• For every elementa of A holdsF (F (a)) = a.

The schemeFraenkelComplement1deals with a non empty relational structureA , a familyB of
subsets ofA , a setC , and a unary functorF yielding a subset ofA , and states that:

Bc = {F (a)c;a ranges over elements ofA : a∈ C}
provided the following condition is met:

• B = {F (a);a ranges over elements ofA : a∈ C}.
The schemeFraenkelComplement2deals with a non empty relational structureA , a familyB of

subsets ofA , a setC , and a unary functorF yielding a subset ofA , and states that:
Bc = {F (a);a ranges over elements ofA : a∈ C}

provided the following requirement is met:
• B = {F (a)c;a ranges over elements ofA : a∈ C}.

Next we state several propositions:

(1) For every non empty relational structureRand for all elementsx, y of Rholdsy∈ (↑x)c iff
x 6≤ y.

(2) Let Sbe a 1-sorted structure,T be a non empty 1-sorted structure,f be a map fromS into
T, andX be a subset ofT. Then( f−1(X))c = f−1(Xc).

(3) For every 1-sorted structureT and for every familyF of subsets ofT holdsFc = {ac;a
ranges over subsets ofT: a∈ F}.

(4) LetRbe a non empty relational structure andF be a subset ofR. Then↑F =
⋃
{↑x;x ranges

over elements ofR: x∈ F} and↓F =
⋃
{↓x;x ranges over elements ofR: x∈ F}.

(5) Let R be a non empty relational structure,A be a family of subsets ofR, andF be a subset
of R. If A = {(↑x)c;x ranges over elements ofR: x∈ F}, then Intersect(A) = (↑F)c.
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One can verify that there exists a FR-structure which is strict, trivial, reflexive, non empty,
discrete, and finite.

One can verify that there exists a top-lattice which is strict, complete, and trivial.
Let Sbe a non empty relational structure and letT be an upper-bounded non empty reflexive an-

tisymmetric relational structure. Note that there exists a map fromSinto T which is infs-preserving.
Let S be a non empty relational structure and letT be a lower-bounded non empty reflexive

antisymmetric relational structure. One can check that there exists a map fromS into T which is
sups-preserving.

Let R, Sbe 1-sorted structures. Let us assume that the carrier ofS⊆ the carrier ofR. The functor
incl(S,R) yields a map fromS into Rand is defined by:

(Def. 1) incl(S,R) = idthe carrier ofS.

Let R be a non empty relational structure and letSbe a non empty relational substructure ofR.
Note that incl(S,R) is monotone.

Let R be a non empty relational structure and letX be a non empty subset ofR. The functor
〈X; id〉 yields a strict non empty net structure overRand is defined by:

(Def. 2) 〈X; id〉= incl(sub(X),R) · 〈sub(X); id〉.

The functor〈Xop; id〉 yields a strict non empty net structure overRand is defined as follows:

(Def. 3) 〈Xop; id〉= incl(sub(X),R) · 〈(sub(X))op; id〉.

We now state two propositions:

(6) LetRbe a non empty relational structure andX be a non empty subset ofR. Then

(i) the carrier of〈X; id〉= X,

(ii) 〈X; id〉 is a full relational substructure ofR, and

(iii) for every elementx of 〈X; id〉 holds〈X; id〉(x) = x.

(7) LetRbe a non empty relational structure andX be a non empty subset ofR. Then

(i) the carrier of〈Xop; id〉= X,

(ii) 〈Xop; id〉 is a full relational substructure ofRop, and

(iii) for every elementx of 〈Xop; id〉 holds〈Xop; id〉(x) = x.

Let R be a non empty reflexive relational structure and letX be a non empty subset ofR. Note
that〈X; id〉 is reflexive and〈Xop; id〉 is reflexive.

Let R be a non empty transitive relational structure and letX be a non empty subset ofR. Note
that〈X; id〉 is transitive and〈Xop; id〉 is transitive.

Let R be a non empty reflexive relational structure and letI be a directed subset ofR. Note that
sub(I) is directed.

Let Rbe a non empty reflexive relational structure and letI be a directed non empty subset ofR.
One can verify that〈I ; id〉 is directed.

Let Rbe a non empty reflexive relational structure and letF be a filtered non empty subset ofR.
One can check that〈(sub(F))op; id〉 is directed.

Let Rbe a non empty reflexive relational structure and letF be a filtered non empty subset ofR.
One can verify that〈Fop; id〉 is directed.

2. OPERATIONS ONFAMILIES OF OPEN SETS

We now state a number of propositions:

(8) For every topological spaceT such thatT is empty holds the topology ofT = { /0}.

(9) LetT be a trivial non empty topological space. Then

(i) the topology ofT = 2the carrier ofT , and

(ii) for every pointx of T holds the carrier ofT = {x} and the topology ofT = { /0,{x}}.
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(10) LetT be a trivial non empty topological space. Then{the carrier ofT} is a basis ofT and
/0 is a prebasis ofT and{ /0} is a prebasis ofT.

(11) For all setsX, Y and for every familyA of subsets ofX such thatA = {Y} holds
FinMeetCl(A) = {Y,X} and UniCl(A) = {Y, /0}.

(12) For every setX and for all familiesA, Bof subsets ofX such thatA= B∪{X} orB= A\{X}
holds Intersect(A) = Intersect(B).

(13) For every setX and for all familiesA, Bof subsets ofX such thatA= B∪{X} orB= A\{X}
holds FinMeetCl(A) = FinMeetCl(B).

(14) Let X be a set andA be a family of subsets ofX. SupposeX ∈ A. Let x be a set. Then
x∈ FinMeetCl(A) if and only if there exists a finite non empty familyY of subsets ofX such
thatY ⊆ A andx = Intersect(Y).

(15) For every setX and for every familyA of subsets ofX holds UniCl(UniCl(A)) = UniCl(A).

(16) For every setX and for every empty familyA of subsets ofX holds UniCl(A) = { /0}.

(17) For every setX and for every empty familyA of subsets ofX holds FinMeetCl(A) = {X}.

(18) For every setX and for every familyA of subsets ofX such thatA = { /0,X} holds
UniCl(A) = A and FinMeetCl(A) = A.

(19) LetX, Y be sets,A be a family of subsets ofX, andB be a family of subsets ofY. Then

(i) if A⊆ B, then UniCl(A)⊆ UniCl(B), and

(ii) if A = B, then UniCl(A) = UniCl(B).

(20) LetX, Y be sets,A be a family of subsets ofX, andB be a family of subsets ofY. If A = B
andX ∈ A andX ⊆Y, then FinMeetCl(B) = {Y}∪FinMeetCl(A).

(21) For every setX and for every familyAof subsets ofX holds UniCl(FinMeetCl(UniCl(A)))=
UniCl(FinMeetCl(A)).

3. BASES

One can prove the following propositions:

(22) Let T be a topological space andK be a family of subsets ofT. Then the topology of
T = UniCl(K) if and only if K is a basis ofT.

(23) LetT be a topological space andK be a family of subsets ofT. ThenK is a prebasis ofT
if and only if FinMeetCl(K) is a basis ofT.

(24) LetT be a non empty topological space andB be a family of subsets ofT. If UniCl(B) is
a prebasis ofT, thenB is a prebasis ofT.

(25) Let T1, T2 be topological spaces andB be a basis ofT1. Suppose the carrier ofT1 = the
carrier ofT2 andB is a basis ofT2. Then the topology ofT1 = the topology ofT2.

(26) LetT1, T2 be topological spaces andP be a prebasis ofT1. Suppose the carrier ofT1 = the
carrier ofT2 andP is a prebasis ofT2. Then the topology ofT1 = the topology ofT2.

(27) For every topological spaceT holds every basis ofT is open and a prebasis ofT.

(28) For every topological spaceT holds every prebasis ofT is open.

(29) LetT be a non empty topological space andB be a prebasis ofT. ThenB∪{the carrier of
T} is a prebasis ofT.
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(30) For every topological spaceT and for every basisB of T holdsB∪{the carrier ofT} is a
basis ofT.

(31) LetT be a topological space,B be a basis ofT, andA be a subset ofT. ThenA is open if
and only if for every pointp of T such thatp∈ A there exists a subseta of T such thata∈ B
andp∈ a anda⊆ A.

(32) LetT be a topological space andB be a family of subsets ofT. Suppose that

(i) B⊆ the topology ofT, and

(ii) for every subsetA of T such thatA is open and for every pointp of T such thatp∈ A there
exists a subseta of T such thata∈ B andp∈ a anda⊆ A.

ThenB is a basis ofT.

(33) LetSbe a topological space,T be a non empty topological space,K be a basis ofT, and f
be a map fromS into T. Then f is continuous if and only if for every subsetA of T such that
A∈ K holds f−1(Ac) is closed.

(34) LetSbe a topological space,T be a non empty topological space,K be a basis ofT, and f
be a map fromS into T. Then f is continuous if and only if for every subsetA of T such that
A∈ K holds f−1(A) is open.

(35) LetSbe a topological space,T be a non empty topological space,K be a prebasis ofT, and
f be a map fromS into T. Then f is continuous if and only if for every subsetA of T such
thatA∈ K holds f−1(Ac) is closed.

(36) LetSbe a topological space,T be a non empty topological space,K be a prebasis ofT, and
f be a map fromS into T. Then f is continuous if and only if for every subsetA of T such
thatA∈ K holds f−1(A) is open.

(37) LetT be a non empty topological space,x be a point ofT, X be a subset ofT, andK be a
basis ofT. Suppose that for every subsetA of T such thatA∈ K andx∈ A holdsA meetsX.
Thenx∈ X.

(38) LetT be a non empty topological space,x be a point ofT, X be a subset ofT, andK be
a prebasis ofT. Suppose that for every finite familyZ of subsets ofT such thatZ ⊆ K and
x∈ Intersect(Z) holds Intersect(Z) meetsX. Thenx∈ X.

(39) LetT be a non empty topological space,K be a prebasis ofT, x be a point ofT, andN be a
net inT. Suppose that for every subsetA of T such thatA∈K andx∈A holdsN is eventually
in A. Let Sbe a subset ofT. If rngnetmap(N,T)⊆ S, thenx∈ S.

4. PRODUCT TOPOLOGIES

We now state four propositions:

(40) LetT1, T2 be non empty topological spaces,B1 be a basis ofT1, andB2 be a basis ofT2.
Then{[:a, b:];a ranges over subsets ofT1, b ranges over subsets ofT2: a∈ B1 ∧ b∈ B2} is a
basis of[:T1, T2 :].

(41) LetT1, T2 be non empty topological spaces,B1 be a prebasis ofT1, andB2 be a prebasis
of T2. Then{[: the carrier ofT1, b:];b ranges over subsets ofT2: b∈ B2}∪{[:a, the carrier of
T2 :];a ranges over subsets ofT1: a∈ B1} is a prebasis of[:T1, T2 :].

(42) Let X1, X2 be sets,A be a family of subsets of[:X1, X2 :], A1 be a non empty family of
subsets ofX1, andA2 be a non empty family of subsets ofX2. SupposeA = {[:a, b:];a ranges
over subsets ofX1, b ranges over subsets ofX2: a ∈ A1 ∧ b ∈ A2}. Then Intersect(A) =
[: Intersect(A1), Intersect(A2) :].

(43) LetT1, T2 be non empty topological spaces,B1 be a prebasis ofT1, andB2 be a prebasis
of T2. Suppose

⋃
B1 = the carrier ofT1 and

⋃
B2 = the carrier ofT2. Then{[:a, b:];a ranges

over subsets ofT1, b ranges over subsets ofT2: a∈ B1 ∧ b∈ B2} is a prebasis of[:T1, T2 :].
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5. TOPOLOGICAL AUGMENTATIONS

Let Rbe a relational structure. A FR-structure is called a topological augmentation ofR if:

(Def. 4) The relational structure of it= the relational structure ofR.

Let R be a relational structure and letT be a topological augmentation ofR. We introduceT is
correct as a synonym ofT is topological space-like.

Let R be a relational structure. Note that there exists a topological augmentation ofR which is
correct, discrete, and strict.

One can prove the following propositions:

(44) Every FR-structureT is a topological augmentation ofT.

(45) LetSbe a FR-structure andT be a topological augmentation ofS. ThenS is a topological
augmentation ofT.

(46) Let R be a relational structure andT1 be a topological augmentation ofR. Then every
topological augmentation ofT1 is a topological augmentation ofR.

Let R be a non empty relational structure. Note that every topological augmentation ofR is non
empty.

Let R be a reflexive relational structure. One can check that every topological augmentation of
R is reflexive.

Let R be a transitive relational structure. Observe that every topological augmentation ofR is
transitive.

Let R be an antisymmetric relational structure. Observe that every topological augmentation of
R is antisymmetric.

LetRbe a complete non empty relational structure. Observe that every topological augmentation
of R is complete.

The following three propositions are true:

(47) LetSbe an up-complete antisymmetric non empty reflexive relational structure andT be a
non empty reflexive relational structure. Suppose the relational structure ofS= the relational
structure ofT. Let A be a subset ofSandC be a subset ofT. If A = C andA is inaccessible,
thenC is inaccessible.

(48) LetSbe a non empty reflexive relational structure andT be a topological augmentation of
S. If the topology ofT = σ(S), thenT is correct.

(49) Let S be a complete lattice andT be a topological augmentation ofS. If the topology of
T = σ(S), thenT is Scott.

Let R be a complete lattice. Observe that there exists a topological augmentation ofR which is
Scott, strict, and correct.

Next we state three propositions:

(50) Let S, T be complete Scott non empty reflexive transitive antisymmetric FR-structures.
Suppose the relational structure ofS= the relational structure ofT. Let F be a subset ofS
andG be a subset ofT. If F = G, then ifF is open, thenG is open.

(51) For every complete latticeSand for every Scott topological augmentationT of Sholds the
topology ofT = σ(S).

(52) LetS, T be complete lattices. Suppose the relational structure ofS= the relational structure
of T. Thenσ(S) = σ(T).

Let R be a complete lattice. One can verify that every topological augmentation ofR which is
Scott is also correct.
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6. REFINEMENTS

Let T be a topological structure. A topological space is said to be a topological extension ofT if:

(Def. 5) The carrier ofT = the carrier of it and the topology ofT ⊆ the topology of it.

Next we state the proposition

(53) LetSbe a topological structure. Then there exists a topological extensionT of Ssuch that
T is strict and the topology ofS is a prebasis ofT.

Let T be a topological structure. Observe that there exists a topological extension ofT which is
strict and discrete.

Let T1, T2 be topological structures. A topological space is said to be a refinement ofT1 andT2

if it satisfies the conditions (Def. 6).

(Def. 6)(i) The carrier of it= (the carrier ofT1)∪ (the carrier ofT2), and

(ii) (the topology ofT1)∪ (the topology ofT2) is a prebasis of it.

Let T1 be a non empty topological structure and letT2 be a topological structure. Note that every
refinement ofT1 andT2 is non empty and every refinement ofT2 andT1 is non empty.

We now state several propositions:

(54) LetT1, T2 be topological structures andT, T ′ be refinements ofT1 andT2. Then the topo-
logical structure ofT = the topological structure ofT ′.

(55) For all topological structuresT1, T2 holds every refinement ofT1 andT2 is a refinement of
T2 andT1.

(56) LetT1, T2 be topological structures,T be a refinement ofT1 andT2, andX be a family of
subsets ofT. SupposeX = (the topology ofT1)∪ (the topology ofT2). Then the topology of
T = UniCl(FinMeetCl(X)).

(57) Let T1, T2 be topological structures. Suppose the carrier ofT1 = the carrier ofT2. Then
every refinement ofT1 andT2 is a topological extension ofT1 and a topological extension of
T2.

(58) LetT1, T2 be non empty topological spaces,T be a refinement ofT1 andT2, B1 be a prebasis
of T1, andB2 be a prebasis ofT2. ThenB1∪B2∪{the carrier ofT1, the carrier ofT2} is a
prebasis ofT.

(59) LetT1, T2 be non empty topological spaces,B1 be a basis ofT1, B2 be a basis ofT2, andT
be a refinement ofT1 andT2. ThenB1∪B2∪B1 eB2 is a basis ofT.

(60) LetT1, T2 be non empty topological spaces. Suppose the carrier ofT1 = the carrier ofT2.
Let T be a refinement ofT1 andT2. Then (the topology ofT1)e (the topology ofT2) is a basis
of T.

(61) LetL be a non empty relational structure,T1, T2 be correct topological augmentations ofL,
andT be a refinement ofT1 andT2. Then (the topology ofT1)e (the topology ofT2) is a basis
of T.
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