On the Characterization of Modular and Distributive Lattices¹

Adam Naumowicz University of Białystok

Summary. This article contains definitions of the "pentagon" lattice N_5 and the "diamond" lattice M_3 . It is followed by the characterization of modular and distributive lattices depending on the possible shape of substructures. The last part treats of interval-like sublattices of any lattice.

MML Identifier: YELLOW11.

WWW: http://mizar.org/JFM/Vol10/yellow11.html

The articles [11], [10], [13], [14], [5], [6], [12], [2], [3], [9], [15], [7], [8], [4], and [1] provide the notation and terminology for this paper.

1. Preliminaries

The following propositions are true:

- (1) $3 = \{0, 1, 2\}.$
- (2) $2 \setminus 1 = \{1\}.$
- (3) $3 \setminus 1 = \{1, 2\}.$
- (4) $3 \setminus 2 = \{2\}.$

2. MAIN PART

One can prove the following propositions:

- (5) Let *L* be an antisymmetric reflexive relational structure with g.l.b.'s and l.u.b.'s and *a*, *b* be elements of *L*. Then $a \sqcap b = b$ if and only if $a \sqcup b = a$.
- (6) For every lattice *L* and for all elements *a*, *b*, *c* of *L* holds $(a \sqcap b) \sqcup (a \sqcap c) \leq a \sqcap (b \sqcup c)$.
- (7) For every lattice *L* and for all elements *a*, *b*, *c* of *L* holds $a \sqcup (b \sqcap c) < (a \sqcup b) \sqcap (a \sqcup c)$.
- (8) For every lattice L and for all elements a, b, c of L such that $a \le c$ holds $a \sqcup (b \sqcap c) \le (a \sqcup b) \sqcap c$.

The relational structure N_5 is defined as follows:

(Def. 1)
$$N_5 = \langle \{0, 3 \setminus 1, 2, 3 \setminus 2, 3\}, \subseteq \rangle$$
.

¹This work has been supported by KBN Grant 8 T11C 018 12.

Let us note that N_5 is strict, reflexive, transitive, and antisymmetric and N_5 has g.l.b.'s and l.u.b.'s. The relational structure M_3 is defined by:

(Def. 2)
$$M_3 = \langle \{0, 1, 2 \setminus 1, 3 \setminus 2, 3\}, \subseteq \rangle$$
.

Let us note that M_3 is strict, reflexive, transitive, and antisymmetric and M_3 has g.l.b.'s and l.u.b.'s.

One can prove the following propositions:

- (9) Let L be a lattice. Then the following statements are equivalent
- (i) there exists a full sublattice K of L such that N_5 and K are isomorphic,
- (ii) there exist elements a, b, c, d, e of L such that $a \neq b$ and $a \neq c$ and $a \neq d$ and $a \neq e$ and $b \neq c$ and $b \neq d$ and $b \neq e$ and $c \neq d$ and $c \neq e$ and $d \neq e$ and d = a an
- (10) Let L be a lattice. Then the following statements are equivalent
 - (i) there exists a full sublattice K of L such that M_3 and K are isomorphic,
- (ii) there exist elements a, b, c, d, e of L such that $a \neq b$ and $a \neq c$ and $a \neq d$ and $a \neq e$ and $b \neq c$ and $b \neq d$ and $b \neq e$ and $c \neq d$ and $c \neq e$ and $d \neq e$ and $d \vdash d = a$ and d

3. DIAMOND AND PENTAGON

Let L be a non empty relational structure. We say that L is modular if and only if:

(Def. 3) For all elements a, b, c of L such that $a \le c$ holds $a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap c$.

One can check that every non empty antisymmetric reflexive relational structure with g.l.b.'s which is distributive is also modular.

The following two propositions are true:

- (11) Let L be a lattice. Then L is modular if and only if it is not true that there exists a full sublattice K of L such that N_5 and K are isomorphic.
- (12) Let L be a lattice. Suppose L is modular. Then L is distributive if and only if it is not true that there exists a full sublattice K of L such that M_3 and K are isomorphic.

4. Intervals of a Lattice

Let L be a non empty relational structure and let a, b be elements of L. The functor [a,b] yields a subset of L and is defined by:

(Def. 4) For every element c of L holds $c \in [a,b]$ iff $a \le c$ and $c \le b$.

Let L be a non empty relational structure and let I_1 be a subset of L. We say that I_1 is interval if and only if:

(Def. 5) There exist elements a, b of L such that $I_1 = [a,b]$.

Let L be a non empty reflexive transitive relational structure. One can check that every subset of L which is non empty and interval is also directed and every subset of L which is non empty and interval is also filtered.

Let L be a non empty relational structure and let a, b be elements of L. One can check that [a,b] is interval.

The following proposition is true

(13) For every non empty reflexive transitive relational structure L and for all elements a, b of L holds $[a,b] = \uparrow a \cap \downarrow b$.

Let L be a poset with g.l.b.'s and let a, b be elements of L. One can check that sub([a,b]) is meet-inheriting.

Let L be a poset with l.u.b.'s and let a, b be elements of L. One can check that sub([a,b]) is join-inheriting.

We now state the proposition

(14) Let L be a lattice and a, b be elements of L. If L is modular, then $sub([b, a \sqcup b])$ and $sub([a \sqcap b, a])$ are isomorphic.

Let us note that there exists a lattice which is finite and non empty.

Let us note that every semilattice which is finite is also lower-bounded.

Let us note that every lattice which is finite is also complete.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.
- [2] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [3] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [4] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [7] Czesław Byliński. Galois connections. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_1.html.
- [8] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [9] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [10] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/enumsetl.html.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [12] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [13] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [14] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/
- [15] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_2.html.

Received April 3, 1998

Published January 2, 2004