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Summary. This article contains definitions of the “pentagon” lattide and the “di-
amond” latticeMs. It is followed by the characterization of modular and distributive lattices
depending on the possible shape of substructures. The last part treats of interval-like sublat-
tices of any lattice.
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The articles[[11],[[10],[23],.[14],[15].[16],[112], 12],(18],1°],[[15],[171,[18],[[4], and ]1] provide the
notation and terminology for this paper.

1. PRELIMINARIES

The following propositions are true:

(1) 3={0,1,2}.
(2 2\1={1}.
(3) 3\1={12}.
@) 3\2={2}.

2. MAIN PART
One can prove the following propositions:

(5) LetL be an antisymmetric reflexive relational structure with g.l.b.’s and |.u.b.’saahde
elements of.. Thenamb=bifand only ifallb=a.

(6) For every latticd and for all elements, b, c of L holds(amb) L (arc) < af(bLc).
(7) For every latticd and for all elements, b, c of L holdsall (brc) < (aub) M (aLlc).

(8) For every lattice and for all elements, b, ¢ of L such thata < ¢ holdsaLl (brc) <
(aub)nec.

The relational structurlls is defined as follows:

(Def. 1) Ns=({0,3\1,2,3\2,3},C).
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Let us note thals is strict, reflexive, transitive, and antisymmetric &fichas g.l.b.’s and l.u.b.’s.
The relational structur®s is defined by:

(Def.2) Ms=({0,1,2\1,3\2,3},C).
Let us note thaMs is strict, reflexive, transitive, and antisymmetric add has g.l.b.'s and

l.u.b.’s.
One can prove the following propositions:

(9) LetL be alattice. Then the following statements are equivalent
(i) there exists a full sublattick of L such thalNs andK are isomorphic,

(i) there exist elements, b, ¢, d, e of L such thaia # b anda # c anda # d anda # e and
b # candb #d andb # eandc # d andc # eandd # eandanb =aandarnc=aand

cfe=canddNe=dandbrnc=aandbnd=bandcnd=aandbuUc=eandcUd=e
(10) LetL be alattice. Then the following statements are equivalent
(i) there exists a full sublattick of L such thatMs andK are isomorphic,

(i) there exist elements, b, ¢, d, e of L such thata # b anda # c anda # d anda # e and

b # candb # d andb # e andc # d andc # eandd # eandanb =a andarnc = a and
arid=aandbre=>bandcrie=canddne=dandbric=aandbnd =aandcrid=a

andbUc=eandbud =eandcLid=e.
3. DIAMOND AND PENTAGON

LetL be a non empty relational structure. We say tha modular if and only if:
(Def. 3) For all elements, b, c of L such that < c holdsall (bmc) = (aUb)mc.

One can check that every non empty antisymmetric reflexive relational structure with g.l.b.'s

which is distributive is also modular.
The following two propositions are true:

(11) LetL be a lattice. Ther is modular if and only if it is not true that there exists a full
sublatticeK of L such thalNs andK are isomorphic.

(12) LetL be a lattice. Suppodeis modular. Therk is distributive if and only if it is not true
that there exists a full sublatti¢é of L such thaMz andK are isomorphic.

4. INTERVALS OF ALATTICE

Let L be a non empty relational structure anddeb be elements of. The functorfa,b] yields a
subset oL and is defined by:
(Def. 4) For every elemerttof L holdsc € [a,b] iff a< candc<h.
LetL be a non empty relational structure andliebe a subset df. We say that; is interval if
and only if:
(Def. 5) There exist elemengs b of L such thal; = [a,b].

Let L be a non empty reflexive transitive relational structure. One can check that every subset
of L which is non empty and interval is also directed and every subdewdfich is non empty and

interval is also filtered.
Let L be a non empty relational structure anddeb be elements df. One can check thaa, b

is interval.
The following proposition is true

(13) For every non empty reflexive transitive relational structuaad for all elementa, b of L
holds[a,b] = Tan |b.
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Let L be a poset with g.l.b.s and let b be elements oE. One can check that s(,b]) is

meet-inheriting.

Let L be a poset with l.u.bs and let b be elements oE. One can check that s(, b)) is

join-inheriting.

We now state the proposition

(14) LetL be a lattice andy, b be elements of.. If L is modular, then suffb,allb]) and
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sul([arb,a]) are isomorphic.

Let us note that there exists a lattice which is finite and non empty.
Let us note that every semilattice which is finite is also lower-bounded.
Let us note that every lattice which is finite is also complete.
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