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Summary. This article contains definitions of the “pentagon” latticeN5 and the “di-
amond” latticeM3. It is followed by the characterization of modular and distributive lattices
depending on the possible shape of substructures. The last part treats of interval-like sublat-
tices of any lattice.
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The articles [11], [10], [13], [14], [5], [6], [12], [2], [3], [9], [15], [7], [8], [4], and [1] provide the
notation and terminology for this paper.

1. PRELIMINARIES

The following propositions are true:

(1) 3= {0,1,2}.

(2) 2\1 = {1}.

(3) 3\1 = {1,2}.

(4) 3\2 = {2}.

2. MAIN PART

One can prove the following propositions:

(5) Let L be an antisymmetric reflexive relational structure with g.l.b.’s and l.u.b.’s anda, b be
elements ofL. Thenaub = b if and only if atb = a.

(6) For every latticeL and for all elementsa, b, c of L holds(aub)t (auc)≤ au (btc).

(7) For every latticeL and for all elementsa, b, c of L holdsat (buc)≤ (atb)u (atc).

(8) For every latticeL and for all elementsa, b, c of L such thata≤ c holdsat (bu c) ≤
(atb)uc.

The relational structureN5 is defined as follows:

(Def. 1) N5 = 〈{0,3\1,2,3\2,3},⊆〉.
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Let us note thatN5 is strict, reflexive, transitive, and antisymmetric andN5 has g.l.b.’s and l.u.b.’s.
The relational structureM3 is defined by:

(Def. 2) M3 = 〈{0,1,2\1,3\2,3},⊆〉.

Let us note thatM3 is strict, reflexive, transitive, and antisymmetric andM3 has g.l.b.’s and
l.u.b.’s.

One can prove the following propositions:

(9) LetL be a lattice. Then the following statements are equivalent

(i) there exists a full sublatticeK of L such thatN5 andK are isomorphic,

(ii) there exist elementsa, b, c, d, e of L such thata 6= b anda 6= c anda 6= d anda 6= e and
b 6= c andb 6= d andb 6= e andc 6= d andc 6= e andd 6= e andaub = a andau c = a and
cue= c anddue= d andbuc = a andbud = b andcud = a andbtc = eandctd = e.

(10) LetL be a lattice. Then the following statements are equivalent

(i) there exists a full sublatticeK of L such thatM3 andK are isomorphic,

(ii) there exist elementsa, b, c, d, e of L such thata 6= b anda 6= c anda 6= d anda 6= e and
b 6= c andb 6= d andb 6= e andc 6= d andc 6= e andd 6= e andaub = a andau c = a and
aud = a andbue= b andcue= c anddue= d andbuc = a andbud = a andcud = a
andbtc = eandbtd = eandctd = e.

3. DIAMOND AND PENTAGON

Let L be a non empty relational structure. We say thatL is modular if and only if:

(Def. 3) For all elementsa, b, c of L such thata≤ c holdsat (buc) = (atb)uc.

One can check that every non empty antisymmetric reflexive relational structure with g.l.b.’s
which is distributive is also modular.

The following two propositions are true:

(11) Let L be a lattice. ThenL is modular if and only if it is not true that there exists a full
sublatticeK of L such thatN5 andK are isomorphic.

(12) LetL be a lattice. SupposeL is modular. ThenL is distributive if and only if it is not true
that there exists a full sublatticeK of L such thatM3 andK are isomorphic.

4. INTERVALS OF A LATTICE

Let L be a non empty relational structure and leta, b be elements ofL. The functor[a,b] yields a
subset ofL and is defined by:

(Def. 4) For every elementc of L holdsc∈ [a,b] iff a≤ c andc≤ b.

Let L be a non empty relational structure and letI1 be a subset ofL. We say thatI1 is interval if
and only if:

(Def. 5) There exist elementsa, b of L such thatI1 = [a,b].

Let L be a non empty reflexive transitive relational structure. One can check that every subset
of L which is non empty and interval is also directed and every subset ofL which is non empty and
interval is also filtered.

Let L be a non empty relational structure and leta, b be elements ofL. One can check that[a,b]
is interval.

The following proposition is true

(13) For every non empty reflexive transitive relational structureL and for all elementsa, b of L
holds[a,b] = ↑a∩↓b.
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Let L be a poset with g.l.b.’s and leta, b be elements ofL. One can check that sub([a,b]) is
meet-inheriting.

Let L be a poset with l.u.b.’s and leta, b be elements ofL. One can check that sub([a,b]) is
join-inheriting.

We now state the proposition

(14) Let L be a lattice anda, b be elements ofL. If L is modular, then sub([b,at b]) and
sub([aub,a]) are isomorphic.

Let us note that there exists a lattice which is finite and non empty.
Let us note that every semilattice which is finite is also lower-bounded.
Let us note that every lattice which is finite is also complete.
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