Prime Ideals and Filters¹

Grzegorz Bancerek Warsaw University Białystok

Summary. The part of [11, pp. 73–77], i.e. definitions and propositions 3.16–3.27, is formalized in the paper.

MML Identifier: WAYBEL_7.

WWW: http://mizar.org/JFM/Vol8/waybel_7.html

The articles [20], [8], [22], [17], [23], [24], [7], [10], [6], [18], [14], [19], [1], [21], [2], [3], [4], [13], [9], [15], [5], [16], and [12] provide the notation and terminology for this paper.

1. The lattice of subsets

The following propositions are true:

- (3)¹ For every complete lattice L and for all sets X, Y such that $X \subseteq Y$ holds $\bigsqcup_L X \leq \bigsqcup_L Y$ and $\bigcap_L X \geq \bigcap_L Y$.
- (4) For every set *X* holds the carrier of $2^X_{\subset} = 2^X$.
- (5) For every bounded antisymmetric non empty relational structure L holds L is trivial iff $\top_L = \bot_L$.

Let *X* be a set. Note that 2^X_{\subset} is Boolean.

Let *X* be a non empty set. Note that 2^X_{\subset} is non trivial.

One can prove the following proposition

(8)² For every lower-bounded non empty poset L and for every filter F of L holds F is proper iff $\perp_L \notin F$.

One can check that there exists a lattice which is non trivial, Boolean, and strict.

Let *X* be a set. Observe that there exists a family of subsets of *X* which is finite and non empty. Let *S* be a 1-sorted structure. One can check that there exists a family of subsets of *S* which is finite and non empty.

Let L be a non trivial upper-bounded non empty poset. Note that there exists a filter of L which is proper.

We now state several propositions:

(9) For every set *X* and for every element *a* of $2 \subseteq A$ holds $\neg a = X \setminus a$.

¹This work has been partially supported by the Office of Naval Research Grant N00014-95-1-1336.

¹ The propositions (1) and (2) have been removed.

² The propositions (6) and (7) have been removed.

- (10) Let X be a set and Y be a subset of 2_{\subseteq}^X . Then Y is lower if and only if for all sets x, y such that $x \subseteq y$ and $y \in Y$ holds $x \in Y$.
- (11) Let X be a set and Y be a subset of 2^X_{\subseteq} . Then Y is upper if and only if for all sets x, y such that $x \subseteq y$ and $y \subseteq X$ and $x \in Y$ holds $y \in Y$.
- (12) Let X be a set and Y be a lower subset of 2^X_{\subseteq} . Then Y is directed if and only if for all sets x, y such that $x \in Y$ and $y \in Y$ holds $x \cup y \in Y$.
- (13) Let *X* be a set and *Y* be an upper subset of 2^X_{\subseteq} . Then *Y* is filtered if and only if for all sets x, y such that $x \in Y$ and $y \in Y$ holds $x \cap y \in Y$.
- (14) Let X be a set and Y be a non empty lower subset of 2_{\subseteq}^X . Then Y is directed if and only if for every finite family Z of subsets of X such that $Z \subseteq Y$ holds $\bigcup Z \in Y$.
- (15) Let X be a set and Y be a non empty upper subset of 2^X_{\subseteq} . Then Y is filtered if and only if for every finite family Z of subsets of X such that $Z \subseteq Y$ holds Intersect(Z) $\in Y$.

2. PRIME IDEALS AND FILTERS

Let L be a poset with g.l.b.'s and let I be an ideal of L. We say that I is prime if and only if:

(Def. 1) For all elements x, y of L such that $x \sqcap y \in I$ holds $x \in I$ or $y \in I$.

One can prove the following proposition

(16) Let L be a poset with g.l.b.'s and I be an ideal of L. Then I is prime if and only if for every finite non empty subset A of L such that $\inf A \in I$ there exists an element a of L such that $a \in A$ and $a \in I$.

Let L be a lattice. Note that there exists an ideal of L which is prime. The following proposition is true

(17) Let L_1 , L_2 be lattices. Suppose the relational structure of L_1 = the relational structure of L_2 . Let x be a set. If x is a prime ideal of L_1 , then x is a prime ideal of L_2 .

Let L be a poset with l.u.b.'s and let F be a filter of L. We say that F is prime if and only if:

(Def. 2) For all elements x, y of L such that $x \sqcup y \in F$ holds $x \in F$ or $y \in F$.

One can prove the following proposition

(18) Let L be a poset with l.u.b.'s and F be a filter of L. Then F is prime if and only if for every finite non empty subset A of L such that $\sup A \in F$ there exists an element a of L such that $a \in A$ and $a \in F$.

Let L be a lattice. Observe that there exists a filter of L which is prime. One can prove the following propositions:

- (19) Let L_1 , L_2 be lattices. Suppose the relational structure of L_1 = the relational structure of L_2 . Let x be a set. If x is a prime filter of L_1 , then x is a prime filter of L_2 .
- (20) Let L be a lattice and x be a set. Then x is a prime ideal of L if and only if x is a prime filter of L^{op} .
- (21) Let L be a lattice and x be a set. Then x is a prime filter of L if and only if x is a prime ideal of L^{op} .
- (22) Let *L* be a poset with g.l.b.'s and *I* be an ideal of *L*. Then *I* is prime if and only if one of the following conditions is satisfied:
 - (i) I^c is a filter of L, or
- (ii) $I^c = \emptyset$.

- (23) For every lattice *L* and for every ideal *I* of *L* holds *I* is prime iff $I \in PRIME(\langle Ids(L), \subseteq \rangle)$.
- (24) Let *L* be a Boolean lattice and *F* be a filter of *L*. Then *F* is prime if and only if for every element *a* of *L* holds $a \in F$ or $\neg a \in F$.
- (25) Let *X* be a set and *F* be a filter of 2_{\subseteq}^{X} . Then *F* is prime if and only if for every subset *A* of *X* holds $A \in F$ or $X \setminus A \in F$.

Let L be a non empty poset and let F be a filter of L. We say that F is ultra if and only if:

- (Def. 3) F is proper and for every filter G of L such that $F \subseteq G$ holds F = G or G = the carrier of L. Let L be a non empty poset. One can check that every filter of L which is ultra is also proper. One can prove the following propositions:
 - (26) For every Boolean lattice L and for every filter F of L holds F is proper and prime iff F is ultra.
 - (27) Let *L* be a distributive lattice, *I* be an ideal of *L*, and *F* be a filter of *L*. Suppose *I* misses *F*. Then there exists an ideal *P* of *L* such that *P* is prime and $I \subseteq P$ and *P* misses *F*.
 - (28) Let *L* be a distributive lattice, *I* be an ideal of *L*, and *x* be an element of *L*. If $x \notin I$, then there exists an ideal *P* of *L* such that *P* is prime and $I \subseteq P$ and $x \notin P$.
 - (29) Let *L* be a distributive lattice, *I* be an ideal of *L*, and *F* be a filter of *L*. Suppose *I* misses *F*. Then there exists a filter *P* of *L* such that *P* is prime and $F \subseteq P$ and *I* misses *P*.
 - (30) Let *L* be a non trivial Boolean lattice and *F* be a proper filter of *L*. Then there exists a filter *G* of *L* such that $F \subseteq G$ and *G* is ultra.

3. Cluster points of a filter of sets

Let T be a topological space and let F, x be sets. We say that x is a cluster point of F, T if and only if:

(Def. 4) For every subset A of T such that A is open and $x \in A$ and for every set B such that $B \in F$ holds A meets B.

We say that x is a convergence point of F, T if and only if:

(Def. 5) For every subset *A* of *T* such that *A* is open and $x \in A$ holds $A \in F$.

Let *X* be a non empty set. Note that there exists a filter of 2_{\subseteq}^X which is ultra. One can prove the following propositions:

- (31) Let T be a non empty topological space, F be an ultra filter of $2^{\text{the carrier of }T}$, and p be a set. Then p is a cluster point of F, T if and only if p is a convergence point of F, T.
- (32) Let T be a non empty topological space and x, y be elements of \langle the topology of T, $\subseteq \rangle$. Suppose $x \ll y$. Let F be a proper filter of $2^{\text{the carrier of }T}$. Suppose $x \in F$. Then there exists an element p of T such that $p \in y$ and p is a cluster point of F, T.
- (33) Let T be a non empty topological space and x, y be elements of \langle the topology of T, $\subseteq \rangle$. Suppose $x \ll y$. Let F be an ultra filter of $2^{\text{the carrier of }T}$. Suppose $x \in F$. Then there exists an element p of T such that $p \in y$ and p is a convergence point of F, T.
- (34) Let T be a non empty topological space and x, y be elements of \langle the topology of T, $\subseteq \rangle$. Suppose that
 - (i) $x \subseteq y$, and
- (ii) for every ultra filter F of $2^{\text{the carrier of }T}$ such that $x \in F$ there exists an element p of T such that $p \in y$ and p is a convergence point of F, T.

Then $x \ll y$.

- (35) Let T be a non empty topological space, B be a prebasis of T, and x, y be elements of \langle the topology of T, $\subseteq \rangle$. Suppose $x \subseteq y$. Then $x \ll y$ if and only if for every subset F of B such that $y \subseteq \bigcup F$ there exists a finite subset G of F such that $x \subseteq \bigcup G$.
- (36) Let *L* be a distributive complete lattice and *x*, *y* be elements of *L*. Then $x \ll y$ if and only if for every prime ideal *P* of *L* such that $y \leq \sup P$ holds $x \in P$.
- (37) For every lattice L and for every element p of L such that p is prime holds $\downarrow p$ is prime.

4. PSEUDO PRIME ELEMENTS

Let L be a lattice and let p be an element of L. We say that p is pseudoprime if and only if:

(Def. 6) There exists a prime ideal P of L such that $p = \sup P$.

Next we state several propositions:

- (38) For every lattice L and for every element p of L such that p is prime holds p is pseudoprime.
- (39) Let *L* be a continuous lattice and *p* be an element of *L*. Suppose *p* is pseudoprime. Let *A* be a finite non empty subset of *L*. If $\inf A \ll p$, then there exists an element *a* of *L* such that $a \in A$ and $a \le p$.
- (40) Let L be a continuous lattice and p be an element of L. Suppose that
 - (i) $p \neq \top_L$ or \top_L is not compact, and
- (ii) for every finite non empty subset A of L such that $\inf A \ll p$ there exists an element a of L such that $a \in A$ and $a \le p$.

Then \uparrow fininfs $((\downarrow p)^c)$ misses $\downarrow p$.

- (41) Let *L* be a continuous lattice. Suppose \top_L is compact. Then
 - (i) for every finite non empty subset A of L such that $\inf A \ll \top_L$ there exists an element a of L such that $a \in A$ and $a \leq \top_L$, and
- (ii) \uparrow fininfs $((\downarrow(\top_L))^c)$ meets $\downarrow(\top_L)$.
- (42) Let L be a continuous lattice and p be an element of L. Suppose $\uparrow \text{fininfs}((\downarrow p)^c)$ misses $\downarrow p$. Let A be a finite non empty subset of L. If $\inf A \ll p$, then there exists an element a of L such that $a \in A$ and $a \le p$.
- (43) Let *L* be a distributive continuous lattice and *p* be an element of *L*. If \uparrow fininfs($(\downarrow p)^c$) misses $\downarrow p$, then *p* is pseudoprime.

Let L be a non empty relational structure and let R be a binary relation on the carrier of L. We say that R is multiplicative if and only if:

(Def. 7) For all elements a, x, y of L such that $\langle a, x \rangle \in R$ and $\langle a, y \rangle \in R$ holds $\langle a, x \sqcap y \rangle \in R$.

Let *L* be a lower-bounded sup-semilattice, let *R* be an auxiliary binary relation on *L*, and let *x* be an element of *L*. Observe that $\uparrow_R x$ is upper.

Next we state several propositions:

- (44) Let L be a lower-bounded lattice and R be an auxiliary binary relation on L. Then R is multiplicative if and only if for every element x of L holds $\uparrow_R x$ is filtered.
- (45) Let L be a lower-bounded lattice and R be an auxiliary binary relation on L. Then R is multiplicative if and only if for all elements a, b, x, y of L such that $\langle a, x \rangle \in R$ and $\langle b, y \rangle \in R$ holds $\langle a \sqcap b, x \sqcap y \rangle \in R$.
- (46) Let L be a lower-bounded lattice and R be an auxiliary binary relation on L. Then R is multiplicative if and only if for every full relational substructure S of [:L,L:] such that the carrier of S=R holds S is meet-inheriting.

- (47) Let L be a lower-bounded lattice and R be an auxiliary binary relation on L. Then R is multiplicative if and only if $\mbox{\ }\mbox{\ }\mbox{$
- (48) Let L be a continuous lower-bounded lattice. Suppose \ll_L is multiplicative. Let p be an element of L. Then p is pseudoprime if and only if for all elements a, b of L such that $a \sqcap b \ll p$ holds $a \leq p$ or $b \leq p$.
- (49) Let *L* be a continuous lower-bounded lattice. Suppose \ll_L is multiplicative. Let *p* be an element of *L*. If *p* is pseudoprime, then *p* is prime.
- (50) Let *L* be a distributive continuous lower-bounded lattice. Suppose that for every element *p* of *L* such that *p* is pseudoprime holds *p* is prime. Then \ll_L is multiplicative.

REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [2] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [3] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [4] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [5] Grzegorz Bancerek. The "way-below" relation. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 3.html.
- [6] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/realsetl. html.
- [7] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [8] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [9] Czesław Byliński. Galois connections. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_1.html.
- [10] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [11] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [12] Adam Grabowski. Auxiliary and approximating relations. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_4.html.
- [13] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [14] Zbigniew Karno. Maximal discrete subspaces of almost discrete topological spaces. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/tex_2.html.
- [15] Artur Korniłowicz. Cartesian products of relations and relational structures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_3.html.
- [16] Beata Madras. Irreducible and prime elements. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_6.html.
- [17] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [19] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/cantor_1.html.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [21] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [22] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [23] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

[24] Edmund Woronowicz. Relations defined on sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relset_l.html.

Received December 1, 1996

Published January 2, 2004
