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1. PRELIMINARIES

LetLs, Lo be non empty 1-sorted structures andfldte a map froni; into L. Let us observe that
f is one-to-one if and only if:

(Def. 1) For all elementg, y of L1 such thatf (x) = f(y) holdsx =Y.

Next we state the proposition

(1) LetL be a non empty 1-sorted structure anbde a map froni into L. If for every element
xof L holds f (x) = x, thenf =id,.

LetL,, Lo be non empty relational structures andfléte a map fronk; into L,. Let us observe
that f is monotone if and only if:

(Def. 2) For all elements, y of L3 such thax <y holdsf(x) < f(y).

The following four propositions are true:

(2) LetL be an antisymmetric transitive relational structure with g.l.b.’sxaryiz be elements
of L. If x<y, thenxMz<ynz

(3) LetL be an antisymmetric transitive relational structure with l.u.b.’sxaiyglz be elements
of L. If x<y, thenxuz<ylLlz

(4) LetL be anonempty lower-bounded antisymmetric relational structurg baén element
of L. Then

(i) if Lhasg.l.b’s,then Mx=_1,,and
(iiy if Lis reflexive and transitive and has l.u.b.’s, thenlix = x.
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1 © Association of Mizar Users


http://mizar.org/JFM/Vol8/waybel_1.html

GALOIS CONNECTIONS 2

(5) LetL be anonempty upper-bounded antisymmetric relational structurelzmdn element
of L. Then

(i) if Lis transitive and reflexive and has g.l.b.'s, thenr1x = x, and

(i) if Lhaslu.b’s,thed Lix=T.

LetL be a non empty relational structure. We say that distributive if and only if:
(Def. 3) For all elements, y, zof L holdsxM (yL'z) = (xMy) U (XM z).

Next we state the proposition

(6) For every latticd holdsL is distributive iff for all elements, y, zof L holdsxLI (yMz) =
(xUy)n(xuz).

Let X be a set. Observe thaf 2s distributive.
Let Sbe a non empty relational structure andXetbe a set. We say that mK exists inSif and
only if:

(Def. 4) InfX exists inSand[ ]sX € X.

We introduceX has the minimum irSas a synonym of miX exists inS. We say that maX exists
in Sif and only if:

(Def. 5) SupX exists inSand| |sX € X.

We introduceX has the maximum i as a synonym of maX exists inS,
Let Sbe a non empty relational structure, $dbe an element of, and letX be a set. We say
thatsis a minimum ofX if and only if:

(Def. 6) InfX exists inSands= [ ]sX and[ |sX € X.
We say thasis a maximum ofX if and only if:
(Def. 7) SupX exists inSands= | |gX and|_|sX € X.

LetL be a relational structure. Note that id isomorphic.
LetLs, Lo be relational structures. We say thatandL, are isomorphic if and only if:

(Def. 8) There exists a map frolm into L, which is isomorphic.

Let us note that the predicate andL, are isomorphic is reflexive.
The following two propositions are true:

(7) For all non empty relational structurkes, L, such thatl.; andL, are isomorphic holdk;
andL; are isomorphic.

(8) Letly, Ly, L3 be relational structures. SuppdsgandL, are isomorphic andl, andLs
are isomorphic. Theh; andL3 are isomorphic.

2. GaLoIS CONNECTIONS

LetS T be relational structures. A set is called a connection bet8eam T if:

(Def. 9) There exists a mapfrom Sinto T and there exists a mapfrom T into Ssuch that it= (g,
d).

LetS T be relational structures, Igtbe a map fronginto T, and letd be a map fronT into S.
Then(g, d) is a connection betweeBiandT.

LetS T be non empty relational structures anddebe a connection betwe&andT. We say
thatg; is Galois if and only if the condition (Def. 10) is satisfied.
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(Def. 10) There exists a mapfrom Sinto T and there exists a mapfrom T into Ssuch that
) g1=(g,d),
(i)  gis monotone,
(i)  dis monotone, and
(iv) for every element of T and for every elemergtof Sholdst < g(s) iff d(t) <s.

We now state the proposition

(9) LetS T be non empty posetg,be a map fronSinto T, andd be a map fronfl into S.
Then(g, d) is Galois if and only if the following conditions are satisfied:

() gis monotone,
(i)  dis monotone, and
(iiiy  for every element of T and for every elemergof Sholdst < g(s) iff d(t) <s.

Let S, T be non empty relational structures andddie a map fronSinto T. We say thag is
upper adjoint if and only if:

(Def. 11) There exists a mapfrom T into Ssuch that{g, d) is Galois.

We introduceg has a lower adjoint as a synonymgis upper adjoint.
LetS T be non empty relational structures andddie a map fronT into S. We say thatl is
lower adjoint if and only if:

(Def. 12) There exists a mapfrom Sinto T such thafg, d) is Galois.

We introduced has an upper adjoint as a synonyndaé lower adjoint.
The following four propositions are true:

(10) LetS T be non empty posetg,be a map fronSinto T, andd be a map fronT into S. If
(g, d) is Galois, therg is upper adjoint and is lower adjoint.

(11) LetS T be non empty posetg,be a map fronSinto T, andd be a map fronT into S
Then(g, d) is Galois if and only if the following conditions are satisfied:
(i) gis monotone, and
(i) for every element of T holdsd(t) is a minimum ofg~2(1t).
(12) LetS T be non empty posetg,be a map fronSinto T, andd be a map fronT into S.
Then(g, d} is Galois if and only if the following conditions are satisfied:
(i) dis monotone, and
(i) for every elemensof Sholdsg(s) is a maximum ofi~%(|s).

(13) LetS T be non empty posets aigbe a map fronSinto T. If g is upper adjoint, theg is
infs-preserving.

LetS T be non empty posets. Observe that every map féomo T which is upper adjoint is
also infs-preserving.
Next we state the proposition

(14) LetS T be non empty posets amdbe a map fronT into S. If d is lower adjoint, ther is
sups-preserving.

LetS, T be non empty posets. Observe that every map f&amo T which is lower adjoint is
also sups-preserving.
Next we state a number of propositions:
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(15) LetS T be non empty posets agdbe a map fronSinto T. Supposesis complete and
is infs-preserving. Then there exists a nthfvom T into Ssuch that(g, d) is Galois and for
every element of T holdsd(t) is a minimum ofg~2(1t).

(16) LetS T be non empty posets anidbe a map fronT into S. Supposd is complete andl
is sups-preserving. Then there exists a @&mm Sinto T such thafg, d) is Galois and for
every elemens of Sholdsg(s) is a maximum ofd—(|s).

(17) LetS T be non empty posets aigbe a map fronSinto T. Supposeis complete. Then
gis infs-preserving if and only ifjis monotone angd has a lower adjoint.

(18) LetS T be non empty posets andbe a map fronT into S. Supposd is complete. Then
d is sups-preserving if and only df is monotone and has an upper adjoint.

(19) LetS T be non empty posetg,be a map fronSinto T, andd be a map fronT into S. If
(g, d) is Galois, therd-g < idsand idr <g-d.

(20) LetS T be non empty posetsg, be a map fronSinto T, andd be a map fromT into
S Supposey is monotone and is monotone and - g < ids and idr < g-d. Then(g, d) is
Galois.

(21) LetS T be non empty posetg,be a map fronSinto T, andd be a map fronT into S.
Suppose is monotone and is monotone and - g < idsand idr <g-d. Thend=d-g-d
andg=g-d-g.

(22) LetS T be non empty relational structureghe a map fronsinto T, andd be a map from
TintoS Ifd=d-g-dandg=g-d-g, theng-d is idempotent and - g is idempotent.

(23) LetS T be non empty posetg,be a map fronSinto T, andd be a map fronT into S.
Suppos€g, d) is Galois andy is onto. Lett be an element of . Thend(t) is a minimum of

g t({t}h).

(24) LetS T be non empty posetg,be a map fronginto T, andd be a map fronT into S. If
for every element of T holdsd(t) is a minimum ofg~*({t}), theng-d = idr.

(25) LetLs, Lo be non empty 1-sorted structurgg,be a map froni; into L, andg, be a map
fromLyintoLs. If g2-g3 =id((,), thengs is one-to-one ang is onto.

(26) LetS T be non empty posetg,be a map fronSinto T, andd be a map fronT into S If
(g, d) is Galois, therg is onto iff d is one-to-one.

(27) LetS T be non empty posetg,be a map fronSinto T, andd be a map fronT into S.
Suppos€g, d) is Galois andl is onto. Letsbe an element d. Theng(s) is a maximum of

dY({s}).

(28) LetS T be non empty posetg,be a map fronSinto T, andd be a map fronT into S. If
for every elemens of Sholdsg(s) is a maximum ofdl—%({s}), thend - g = ids.

(29) LetS T be non empty posetg,be a map fron8into T, andd be a map fronT into S. If
(g, d} is Galois, therg is one-to-one iffd is onto.

Let L be a non empty relational structure and iebe a map fronil into L. We say thatp is
projection if and only if:

(Def. 13) pis idempotent and monotone.

We introducep is a projection operator as a synonympgoi projection.

LetL be a non empty relational structure. One can verify thatsgrojection.

Let L be a non empty relational structure. Note that there exists a maplfrioto L which is
projection.

Let L be a non empty relational structure andddie a map fronl into L. We say that is
closure if and only if:
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(Def. 14) cis projection and igd < c.

We introducec is a closure operator as a synonyncas$ closure.

LetL be a non empty relational structure. One can verify that every maplfrioto L which is
closure is also projection.

Let L be a non empty reflexive relational structure. One can verify that there exists a map from
L into L which is closure.

LetL be a non empty reflexive relational structure. One can verify thasidlosure.

Let L be a non empty relational structure andkdte a map fronl into L. We say thak is
kernel if and only if:

(Def. 15) kis projection ank < id, .

We introducek is a kernel operator as a synonymkds kernel.

Let L be a non empty relational structure. One can check that every mag.faotm L which is
kernel is also projection.

Let L be a non empty reflexive relational structure. Note that there exists a map.fiotm L
which is kernel.

LetL be a non empty reflexive relational structure. Note thaisdkernel.

Next we state two propositions:

(30) LetL be a non empty poseatbe a map froni into L, andX be a subset df. Suppose is
a closure operator and inf exists inL andX C rngc. Then infX = c(inf X).

(31) LetL be a non empty poset,be a map fronk into L, andX be a subset df. Supposé is
a kernel operator and svpexists inL andX C rngk. Then suX = k(supX).

LetL,, Lo be non empty relational structures andddte a map froni, into L,. The functorg®
yields a map fromn; into Img and is defined as follows:

(Def. 16) g¢° = (the carrier of Img)|g.

The following proposition is true

(32) For all non empty relational structures, L, and for every mag from L1 into L, holds
9°=0

LetLy, Lo be non empty relational structures andgédste a map froni; into L,. One can verify
thatg® is onto.
The following proposition is true

(33) Letly, Lo be non empty relational structures agde a map froml; into L. If gis
monotone, theg® is monotone.

LetLs, Lo be non empty relational structures andddte a map froni; into L,. The functorg,
yields a map from Ing into L, and is defined as follows:

We now state the proposition

(34) LetLy, Lo be non empty relational structuregpe a map froni; into Ly, ands be an
element of Iny. Theng.(s) =s.

Let L, Lo be non empty relational structures andddie a map fromni; into L,. Observe that
U, is one-to-one and monotone.
Next we state a number of propositions:

(35) Forevery non empty relational structlrand for every mag fromL into L holdsf, - f° =
f.
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(36) For every non empty posktand for every mag from L into L such thatf is idempotent
holdsf°- f, = idim+.

(37) LetL be a non empty poset anfdbe a map fronL into L. Supposef is a projection
operator. Then there exists a non empty pdsand there exists a mapfrom L into T and
there exists a mapfrom T into L such thaig is monotone and onto annds monotone and
one-to-oneand =i-qandid =q-i.

(38) LetL be a non empty poset arfdbe a map froni into L. Given a non empty posétand
amapg fromLinto T and a map from T into L such thaiy is monotone andis monotone
andf =i-gandidr =q-i. Thenf is a projection operator.

(39) For every non empty posktand for every magf from L into L such thatf is a closure
operator holdg f,, f°) is Galois.

(40) LetL be a non empty poset arfdbe a map fronk into L. Suppose is a closure operator.
Then there exists a non empty poSe&tnd there exists a magpfrom Sinto L and there exists
a mapd from L into Ssuch that{g, d} is Galois andf = g-d.
(41) LetL be a non empty poset arfcbe a map fronk into L. Suppose that
(i) fis monotone, and

(i) there exists a non empty poséand there exists a mapfrom Sinto L and there exists a
mapd from L into Ssuch thatg, d) is Galois andf = g-d.

Thenf is a closure operator.

(42) For every non empty posktand for every magf from L into L such thatf is a kernel
operator holdg f°, f.) is Galois.

(43) LetL be a non empty poset arfdoe a map froni into L. Suppose is a kernel operator.
Then there exists a non empty po$ednd there exists a mapfrom L into T and there exists
amapd from T into L such thatg, d) is Galois andf =d-g.

(44) LetL be a non empty poset arfcbe a map fronk into L. Suppose that
(i) fis monotone, and

(i) there exists a non empty posetand there exists a mapfrom L into T and there exists a
mapd from T into L such that{g, d) is Galois andf =d-g.

Thenf is a kernel operator.

(45) LetL be a non empty poset amuibe a map fronmL into L. Supposep is a projection
operator. Then rng= {c; cranges over elements bf ¢ < p(c) } N{k; k ranges over elements
of L: p(k) <k}.

(46) LetL be a non empty poset aquibe a map fronL into L. Supposep is a projection
operator. Then

(i) {c;cranges over elements bf c < p(c)} is a non empty subset &f and
(i) {kkranges over elements bf p(k) <k} is a non empty subset bf

(47) LetL be a non empty poset amulbe a map fronL into L. Supposep is a projection
operator. Then rng[{c;c ranges over elements bf c < p(c)}) = rngp and rnd p[{k; k
ranges over elements bf p(k) <k}) =rngp.

(48) LetL be a non empty poset amuibe a map fronmL into L. Supposep is a projection
operator. LetLs be a non empty subset bfandLs be a non empty subset &f Suppose
Ls = {c;c ranges over elements &f ¢ < p(c)}. Then p[Ls is @ map from sufl4) into
SUk(L4).
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(49) LetL be a non empty poset amuibe a map fronmL into L. Supposep is a projection
operator. Lels be a non empty subset bf Supposé s = {k; k ranges over elements bf
p(k) <k}. Thenp|Ls is a map from sufls) into sul{Ls).

(50) LetL be a non empty poset arquibe a map fronL into L. Supposep is a projection
operator. LeL4 be a non empty subset bf Suppose.4 = {c;c ranges over elements bf
c < p(c)}. Let p1 be a map from sulh4) into sul{Ls). If p1 = plLa4, thenpy is a closure
operator.

(51) LetL be a non empty poset amuibe a map fronmL into L. Supposep is a projection
operator. Let s be a non empty subset bf Supposd.s = {k;k ranges over elements of
L: p(k) <k}. Let pp be a map from sulhs) into sul{Ls). If p, = p[Ls, thenp, is a kernel
operator.

(52) LetL be a non empty poset amqlbe a map fronL into L. Supposep is monotone. Let
L4 be a subset of. If Ly = {c;c ranges over elements &f c < p(c)}, then sulfLy) is
sups-inheriting.

(53) LetL be a non empty poset ambe a map fronl into L. Supposep is monotone. Let
Ls be a subset of. If Ls = {k;k ranges over elements af p(k) < k}, then sulfLs) is
infs-inheriting.

(54) LetL be a non empty poset ammuibe a map fronmL into L. Supposep is a projection
operator. Lel4 be a non empty subset bfsuch that., = {c;c ranges over elements bf
c< p(c)}. Then

(i) if pisinfs-preserving, then sqby) is infs-inheriting and Inp is infs-inheriting, and
(i) if pis filtered-infs-preserving, then s(lhy) is filtered-infs-inheriting and Irp is filtered-
infs-inheriting.

(55) LetL be a non empty poset amuibe a map fronmL into L. Supposep is a projection
operator. Lels be a non empty subset bfsuch thalLs = {k;k ranges over elements bf
p(k) <k}. Then

(i) if pis sups-preserving, then sliy) is sups-inheriting and Impis sups-inheriting, and
(i) if pis directed-sups-preserving, then 84) is directed-sups-inheriting and Imis
directed-sups-inheriting.
(56) LetL be a non empty poset amcbe a map fronk into L. Then
(i) if pisa closure operator, then Ipris infs-inheriting, and
(i) if pisakernel operator, then Imis sups-inheriting.

(57) LetL be a complete non empty poset aotbe a map fronl into L. If pis a projection
operator, then Inp is complete.

(58) LetL be a non empty poset aitbe a map fronk into L. Suppose is a closure operator.
Then
(i) c°issups-preserving, and
(i)  for every subseX of L such thaiX C the carrier of Int and supX exists inL holds supX
exists in Imc and||;m X = c(J. X).
(59) LetL be a non empty poset atkdbe a map fronk into L. Supposk is a kernel operator.
Then
(i) k°isinfs-preserving, and

(i) for every subseX of L such thatX C the carrier of Ink and infX exists inL holds infX
exists in Imk and[ JimkX = k([ LX).



GALOIS CONNECTIONS 8

3. HEYTING ALGEBRA
One can prove the following propositions:

(60) For every complete non empty podetolds (ldsMap(L), SupMagL)) is Galois and
SupMayL) is sups-preserving.

(61) For every complete non empty poketolds IdsMagL ) - SupMayiL) is a closure operator
and Im(ldsMap(L) - SupMagL)) andL are isomorphic.

Let She a non empty relational structure anddée an element d& The functorxM O yielding
a map fromSinto Sis defined by:

(Def. 18) For every elemestof Sholds(xMd)(s) = xMs.

The following two propositions are true:

(62) For every non empty relational struct®and for all elementg, t of Sholds{s;s ranges
over elements o8 xMs<t} = (xMO)~1(]t).

(63) For every semilatticB and for every elementof Sholdsxm [ is monotone.

Let Sbe a semilattice and |latbe an element db. Observe thax is monotone.
Next we state several propositions:

(64) LetSbe a non empty relational structusebe an element 0§, andX be a subset o8.
Then(xMDO)°X = {xMy;y ranges over elements 8f y € X}.

(65) LetSbe a semilattice. Then for every elememtf Sholdsx ] has an upper adjoint if and
only if for all elementsx, t of Sholds max{s;sranges over elements 8f xM1s<t} exists in
S

(66) LetSbe a semilattice. Suppose that for every elemeot S holdsxmM [ has an upper
adjoint. LetX be a subset o& Suppose sui exists inS. Let x be an element o6. Then
xMsX = [ s{xMy;y ranges over elements 8f y € X}.

(67) LetSbe a complete non empty poset. Then for every elemenft S holdsxO has
an upper adjoint if and only if for every subsétof S and for every element of S holds
xMUsX = s{xMy;y ranges over elements 8f y € X}.

(68) LetSbe a lattice. Suppose that for every subsetf Ssuch that suX exists inSand for
every elemenk of Sholdsxm| |sX = | |s{xMy;y ranges over elements 8f y € X}. ThenS
is distributive.

Let H be a non empty relational structure. We say thas Heyting if and only if:
(Def. 19) H is a lattice and for every elemexbf H holdsx 0 has an upper adjoint.

We introduceH is a Heyting algebra as a synonymtéfis Heyting.

Let us mention that every non empty relational structure which is Heyting is also reflexive,
transitive, and antisymmetric and has g.l.b.’s and l.u.b.’s.

LetH be a non empty relational structure andddte an element dfl. Let us assume that is
Heyting. The functoa = [ yields a map fronH into H and is defined as follows:

(Def. 20) (a=-0,amnd) is Galois.

The following proposition is true

(69) For every non empty relational structufesuch thatH is a Heyting algebra holdd is
distributive.
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Let us mention that every non empty relational structure which is Heyting is also distributive.
Let H be a non empty relational structure anddety be elements oH. The functora=-y
yielding an element ofl is defined as follows:

(Def. 21) a=y=(a=0O)(y).

One can prove the following propositions:

(70) LetH be a non empty relational structure. Suppbisis a Heyting algebra. Let, a, y be
elements oH. Thenx > anyifand only ifa=x>vy.

(71) For every non empty relational structiflesuch thatH is a Heyting algebra holdd is
upper-bounded.

Let us observe that every non empty relational structure which is Heyting is also upper-bounded.
Next we state a number of propositions:

(72) LetH be a non empty relational structure. Suppbsé a Heyting algebra. Led, b be
elements oH. ThenTy =a=-bifand onlyifa<h.

(73) For every non empty relational structittesuch thaH is a Heyting algebra and for every
elementaof H holdsTy =a=a.

(74) LetH be a non empty relational structure. Suppbsé a Heyting algebra. Led, b be
elementsoH. If Ty =a=bandTy =b=a thena=h.

(75) LetH be a non empty relational structure.Hfis a Heyting algebra, then for all elements
a, bofH holdsb<a=h.

(76) LetH be a non empty relational structure Hfis a Heyting algebra, then for every element
aofH holdsTy =a= Ty.

(77) For every non empty relational structutesuch thaH is a Heyting algebra and for every
elemento of H holdsb=TH = h.

(78) LetH be a non empty relational structure. Suppbisis a Heyting algebra. L&, b, ¢ be
elements oH. If a<b,thenb=c<a=c.

(79) LetH be a non empty relational structure. Suppbisis a Heyting algebra. L&, b, ¢ be
elements oH. If b<c, thena=b<a=rc.

(80) LetH be a non empty relational structure. Suppbké a Heyting algebra. Led, b be
elements oH. Thenaln(a=-b) =anhb.

(81) LetH be a non empty relational structure. Suppbisis a Heyting algebra. L&, b, ¢ be
elements oH. Thenallb=c= (a=-c)M(b=-c).

Let H be a non empty relational structure andddie an element afi. The functor—a yields
an element oH and is defined as follows:

(Def. 22) —a=a= ly.
One can prove the following propositions:

(82) LetH be a non empty relational structure. Suppbkés a Heyting algebra and lower-
bounded. Letn be an element dfi. Then—ais a maximum of{ x; x ranges over elements of
H:amnx=lu}.

(83) LetH be a non empty relational structure.Hfis a Heyting algebra and lower-bounded,
then—(Ly) =Ty and—(TH) = Ly.

(84) LetH be a non empty lower-bounded relational structure. Supidadsea Heyting algebra.
Leta, b be elements dofl. Then—a> bif and only if -b > a.
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(85) LetH be a non empty lower-bounded relational structure. Supddsea Heyting algebra.

Leta, b be elements ofl. Then—-a> bifand only ifarib= 14.

(86) LetH be a non empty lower-bounded relational structure. SupHadsea Heyting algebra.

Leta, b be elements ofl. If a<b, then-b < -a.

(87) LetH be a non empty lower-bounded relational structure. SupHdsea Heyting algebra.

Leta, b be elements ofi. Then—(alL/b) = -am-h.

(88) LetH be a non empty lower-bounded relational structure. Supbadsea Heyting algebra.

Leta, b be elements ofi. Then—(arb) > -aLl-b.

Let L be a non empty relational structure andxety be elements of.. We say that is a

complement ok if and only if:

(Def. 23) xUy=T_ andxMy= 1.

LetL be a non empty relational structure. We say tha& complemented if and only if:

(Def. 24) For every elememtof L holds there exists an elementlofvhich is a complement of.

Let X be a set. Note thatéZis complemented.
One can prove the following two propositions:

(89) LetL be a bounded lattice. Suppolsés a Heyting algebra and for every elemerf L

holds——x = x. Letx be an element df. Then—xis a complement of.

(90) LetL be a bounded lattice. Thenis distributive and complemented if and onlyifis a

Heyting algebra and for every elemetof L holds——x = x.

Let B be a non empty relational structure. We say & Boolean if and only if:

(Def. 25) Bis a lattice, bounded, distributive, and complemented.

We introduceB is a Boolean algebra aritlis a Boolean lattice as synonyms®fs Boolean.

Let us note that every non empty relational structure which is Boolean is also reflexive, transi-

tive, antisymmetric, bounded, distributive, and complemented and has g.l.b.’s and l.u.b.’s.
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Let us note that every non empty relational structure which is reflexive, transitive, antisymmet-
bounded, distributive, and complemented and has g.l.b.'s and l.u.b.’s is also Boolean.

Let us note that every non empty relational structure which is Boolean is also Heyting.

Let us observe that there exists a lattice which is strict, Boolean, and non empty.

Let us observe that there exists a lattice which is strict, Heyting, and non empty.
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