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1. PRELIMINARIES

Let L1, L2 be non empty 1-sorted structures and letf be a map fromL1 into L2. Let us observe that
f is one-to-one if and only if:

(Def. 1) For all elementsx, y of L1 such thatf (x) = f (y) holdsx = y.

Next we state the proposition

(1) LetL be a non empty 1-sorted structure andf be a map fromL into L. If for every element
x of L holds f (x) = x, then f = idL.

Let L1, L2 be non empty relational structures and letf be a map fromL1 into L2. Let us observe
that f is monotone if and only if:

(Def. 2) For all elementsx, y of L1 such thatx≤ y holds f (x)≤ f (y).

The following four propositions are true:

(2) LetL be an antisymmetric transitive relational structure with g.l.b.’s andx, y, zbe elements
of L. If x≤ y, thenxuz≤ yuz.

(3) LetL be an antisymmetric transitive relational structure with l.u.b.’s andx, y, zbe elements
of L. If x≤ y, thenxtz≤ ytz.

(4) LetL be a non empty lower-bounded antisymmetric relational structure andx be an element
of L. Then

(i) if L has g.l.b.’s, then⊥Lux =⊥L, and

(ii) if L is reflexive and transitive and has l.u.b.’s, then⊥Ltx = x.

1This work was partially supported by Office of Naval Research Grant N00014-95-1-1336.
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(5) LetL be a non empty upper-bounded antisymmetric relational structure andx be an element
of L. Then

(i) if L is transitive and reflexive and has g.l.b.’s, then>Lux = x, and

(ii) if L has l.u.b.’s, then>Ltx =>L.

Let L be a non empty relational structure. We say thatL is distributive if and only if:

(Def. 3) For all elementsx, y, z of L holdsxu (ytz) = (xuy)t (xuz).

Next we state the proposition

(6) For every latticeL holdsL is distributive iff for all elementsx, y, z of L holdsxt (yuz) =
(xty)u (xtz).

Let X be a set. Observe that 2X
⊆ is distributive.

Let Sbe a non empty relational structure and letX be a set. We say that minX exists inS if and
only if:

(Def. 4) Inf X exists inSandd−eSX ∈ X.

We introduceX has the minimum inSas a synonym of minX exists inS. We say that maxX exists
in S if and only if:

(Def. 5) SupX exists inSand
⊔

SX ∈ X.

We introduceX has the maximum inSas a synonym of maxX exists inS.
Let S be a non empty relational structure, lets be an element ofS, and letX be a set. We say

thats is a minimum ofX if and only if:

(Def. 6) Inf X exists inSands= d−eSX andd−eSX ∈ X.

We say thats is a maximum ofX if and only if:

(Def. 7) SupX exists inSands=
⊔

SX and
⊔

SX ∈ X.

Let L be a relational structure. Note that idL is isomorphic.
Let L1, L2 be relational structures. We say thatL1 andL2 are isomorphic if and only if:

(Def. 8) There exists a map fromL1 into L2 which is isomorphic.

Let us note that the predicateL1 andL2 are isomorphic is reflexive.
The following two propositions are true:

(7) For all non empty relational structuresL1, L2 such thatL1 andL2 are isomorphic holdsL2

andL1 are isomorphic.

(8) Let L1, L2, L3 be relational structures. SupposeL1 andL2 are isomorphic andL2 andL3

are isomorphic. ThenL1 andL3 are isomorphic.

2. GALOIS CONNECTIONS

Let S, T be relational structures. A set is called a connection betweenSandT if:

(Def. 9) There exists a mapg from S into T and there exists a mapd from T into Ssuch that it= 〈〈g,
d〉〉.

Let S, T be relational structures, letg be a map fromS into T, and letd be a map fromT into S.
Then〈〈g, d〉〉 is a connection betweenSandT.

Let S, T be non empty relational structures and letg1 be a connection betweenSandT. We say
thatg1 is Galois if and only if the condition (Def. 10) is satisfied.
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(Def. 10) There exists a mapg from S into T and there exists a mapd from T into Ssuch that

(i) g1 = 〈〈g, d〉〉,
(ii) g is monotone,

(iii) d is monotone, and

(iv) for every elementt of T and for every elements of Sholdst ≤ g(s) iff d(t)≤ s.

We now state the proposition

(9) Let S, T be non empty posets,g be a map fromS into T, andd be a map fromT into S.
Then〈〈g, d〉〉 is Galois if and only if the following conditions are satisfied:

(i) g is monotone,

(ii) d is monotone, and

(iii) for every elementt of T and for every elements of Sholdst ≤ g(s) iff d(t)≤ s.

Let S, T be non empty relational structures and letg be a map fromS into T. We say thatg is
upper adjoint if and only if:

(Def. 11) There exists a mapd from T into Ssuch that〈〈g, d〉〉 is Galois.

We introduceg has a lower adjoint as a synonym ofg is upper adjoint.
Let S, T be non empty relational structures and letd be a map fromT into S. We say thatd is

lower adjoint if and only if:

(Def. 12) There exists a mapg from S into T such that〈〈g, d〉〉 is Galois.

We introduced has an upper adjoint as a synonym ofd is lower adjoint.
The following four propositions are true:

(10) LetS, T be non empty posets,g be a map fromS into T, andd be a map fromT into S. If
〈〈g, d〉〉 is Galois, theng is upper adjoint andd is lower adjoint.

(11) LetS, T be non empty posets,g be a map fromS into T, andd be a map fromT into S.
Then〈〈g, d〉〉 is Galois if and only if the following conditions are satisfied:

(i) g is monotone, and

(ii) for every elementt of T holdsd(t) is a minimum ofg−1(↑t).

(12) LetS, T be non empty posets,g be a map fromS into T, andd be a map fromT into S.
Then〈〈g, d〉〉 is Galois if and only if the following conditions are satisfied:

(i) d is monotone, and

(ii) for every elements of Sholdsg(s) is a maximum ofd−1(↓s).

(13) LetS, T be non empty posets andg be a map fromS into T. If g is upper adjoint, theng is
infs-preserving.

Let S, T be non empty posets. Observe that every map fromS into T which is upper adjoint is
also infs-preserving.

Next we state the proposition

(14) LetS, T be non empty posets andd be a map fromT into S. If d is lower adjoint, thend is
sups-preserving.

Let S, T be non empty posets. Observe that every map fromS into T which is lower adjoint is
also sups-preserving.

Next we state a number of propositions:
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(15) LetS, T be non empty posets andg be a map fromS into T. SupposeS is complete andg
is infs-preserving. Then there exists a mapd from T into Ssuch that〈〈g, d〉〉 is Galois and for
every elementt of T holdsd(t) is a minimum ofg−1(↑t).

(16) LetS, T be non empty posets andd be a map fromT into S. SupposeT is complete andd
is sups-preserving. Then there exists a mapg from S into T such that〈〈g, d〉〉 is Galois and for
every elements of Sholdsg(s) is a maximum ofd−1(↓s).

(17) LetS, T be non empty posets andg be a map fromS into T. SupposeS is complete. Then
g is infs-preserving if and only ifg is monotone andg has a lower adjoint.

(18) LetS, T be non empty posets andd be a map fromT into S. SupposeT is complete. Then
d is sups-preserving if and only ifd is monotone andd has an upper adjoint.

(19) LetS, T be non empty posets,g be a map fromS into T, andd be a map fromT into S. If
〈〈g, d〉〉 is Galois, thend ·g≤ idS and idT ≤ g·d.

(20) Let S, T be non empty posets,g be a map fromS into T, andd be a map fromT into
S. Supposeg is monotone andd is monotone andd ·g≤ idS and idT ≤ g ·d. Then〈〈g, d〉〉 is
Galois.

(21) LetS, T be non empty posets,g be a map fromS into T, andd be a map fromT into S.
Supposeg is monotone andd is monotone andd ·g≤ idS and idT ≤ g ·d. Thend = d ·g ·d
andg = g·d ·g.

(22) LetS, T be non empty relational structures,g be a map fromS into T, andd be a map from
T into S. If d = d ·g·d andg = g·d ·g, theng·d is idempotent andd ·g is idempotent.

(23) LetS, T be non empty posets,g be a map fromS into T, andd be a map fromT into S.
Suppose〈〈g, d〉〉 is Galois andg is onto. Lett be an element ofT. Thend(t) is a minimum of
g−1({t}).

(24) LetS, T be non empty posets,g be a map fromS into T, andd be a map fromT into S. If
for every elementt of T holdsd(t) is a minimum ofg−1({t}), theng·d = idT .

(25) LetL1, L2 be non empty 1-sorted structures,g3 be a map fromL1 into L2, andg2 be a map
from L2 into L1. If g2 ·g3 = id(L1), theng3 is one-to-one andg2 is onto.

(26) LetS, T be non empty posets,g be a map fromS into T, andd be a map fromT into S. If
〈〈g, d〉〉 is Galois, theng is onto iff d is one-to-one.

(27) LetS, T be non empty posets,g be a map fromS into T, andd be a map fromT into S.
Suppose〈〈g, d〉〉 is Galois andd is onto. Lets be an element ofS. Theng(s) is a maximum of
d−1({s}).

(28) LetS, T be non empty posets,g be a map fromS into T, andd be a map fromT into S. If
for every elements of Sholdsg(s) is a maximum ofd−1({s}), thend ·g = idS.

(29) LetS, T be non empty posets,g be a map fromS into T, andd be a map fromT into S. If
〈〈g, d〉〉 is Galois, theng is one-to-one iffd is onto.

Let L be a non empty relational structure and letp be a map fromL into L. We say thatp is
projection if and only if:

(Def. 13) p is idempotent and monotone.

We introducep is a projection operator as a synonym ofp is projection.
Let L be a non empty relational structure. One can verify that idL is projection.
Let L be a non empty relational structure. Note that there exists a map fromL into L which is

projection.
Let L be a non empty relational structure and letc be a map fromL into L. We say thatc is

closure if and only if:
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(Def. 14) c is projection and idL ≤ c.

We introducec is a closure operator as a synonym ofc is closure.
Let L be a non empty relational structure. One can verify that every map fromL into L which is

closure is also projection.
Let L be a non empty reflexive relational structure. One can verify that there exists a map from

L into L which is closure.
Let L be a non empty reflexive relational structure. One can verify that idL is closure.
Let L be a non empty relational structure and letk be a map fromL into L. We say thatk is

kernel if and only if:

(Def. 15) k is projection andk≤ idL.

We introducek is a kernel operator as a synonym ofk is kernel.
Let L be a non empty relational structure. One can check that every map fromL into L which is

kernel is also projection.
Let L be a non empty reflexive relational structure. Note that there exists a map fromL into L

which is kernel.
Let L be a non empty reflexive relational structure. Note that idL is kernel.
Next we state two propositions:

(30) LetL be a non empty poset,c be a map fromL into L, andX be a subset ofL. Supposec is
a closure operator and infX exists inL andX ⊆ rngc. Then infX = c(inf X).

(31) LetL be a non empty poset,k be a map fromL into L, andX be a subset ofL. Supposek is
a kernel operator and supX exists inL andX ⊆ rngk. Then supX = k(supX).

Let L1, L2 be non empty relational structures and letg be a map fromL1 into L2. The functorg◦

yields a map fromL1 into Img and is defined as follows:

(Def. 16) g◦ = (the carrier of Img)�g.

The following proposition is true

(32) For all non empty relational structuresL1, L2 and for every mapg from L1 into L2 holds
g◦ = g.

Let L1, L2 be non empty relational structures and letg be a map fromL1 into L2. One can verify
thatg◦ is onto.

The following proposition is true

(33) Let L1, L2 be non empty relational structures andg be a map fromL1 into L2. If g is
monotone, theng◦ is monotone.

Let L1, L2 be non empty relational structures and letg be a map fromL1 into L2. The functorg◦
yields a map from Img into L2 and is defined as follows:

(Def. 17) g◦ = idImg.

We now state the proposition

(34) Let L1, L2 be non empty relational structures,g be a map fromL1 into L2, ands be an
element of Img. Theng◦(s) = s.

Let L1, L2 be non empty relational structures and letg be a map fromL1 into L2. Observe that
g◦ is one-to-one and monotone.

Next we state a number of propositions:

(35) For every non empty relational structureL and for every mapf from L into L holds f◦ · f ◦ =
f .
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(36) For every non empty posetL and for every mapf from L into L such thatf is idempotent
holds f ◦ · f◦ = idIm f .

(37) Let L be a non empty poset andf be a map fromL into L. Supposef is a projection
operator. Then there exists a non empty posetT and there exists a mapq from L into T and
there exists a mapi from T into L such thatq is monotone and onto andi is monotone and
one-to-one andf = i ·q and idT = q· i.

(38) LetL be a non empty poset andf be a map fromL into L. Given a non empty posetT and
a mapq from L into T and a mapi from T into L such thatq is monotone andi is monotone
and f = i ·q and idT = q· i. Then f is a projection operator.

(39) For every non empty posetL and for every mapf from L into L such thatf is a closure
operator holds〈〈 f◦, f ◦〉〉 is Galois.

(40) LetL be a non empty poset andf be a map fromL into L. Supposef is a closure operator.
Then there exists a non empty posetSand there exists a mapg from S into L and there exists
a mapd from L into Ssuch that〈〈g, d〉〉 is Galois andf = g·d.

(41) LetL be a non empty poset andf be a map fromL into L. Suppose that

(i) f is monotone, and

(ii) there exists a non empty posetSand there exists a mapg from S into L and there exists a
mapd from L into Ssuch that〈〈g, d〉〉 is Galois andf = g·d.

Then f is a closure operator.

(42) For every non empty posetL and for every mapf from L into L such thatf is a kernel
operator holds〈〈 f ◦, f◦〉〉 is Galois.

(43) LetL be a non empty poset andf be a map fromL into L. Supposef is a kernel operator.
Then there exists a non empty posetT and there exists a mapg from L into T and there exists
a mapd from T into L such that〈〈g, d〉〉 is Galois andf = d ·g.

(44) LetL be a non empty poset andf be a map fromL into L. Suppose that

(i) f is monotone, and

(ii) there exists a non empty posetT and there exists a mapg from L into T and there exists a
mapd from T into L such that〈〈g, d〉〉 is Galois andf = d ·g.
Then f is a kernel operator.

(45) Let L be a non empty poset andp be a map fromL into L. Supposep is a projection
operator. Then rngp= {c;c ranges over elements ofL: c≤ p(c)}∩{k;k ranges over elements
of L: p(k)≤ k}.

(46) Let L be a non empty poset andp be a map fromL into L. Supposep is a projection
operator. Then

(i) {c;c ranges over elements ofL: c≤ p(c)} is a non empty subset ofL, and

(ii) {k;k ranges over elements ofL: p(k)≤ k} is a non empty subset ofL.

(47) Let L be a non empty poset andp be a map fromL into L. Supposep is a projection
operator. Then rng(p�{c;c ranges over elements ofL: c≤ p(c)}) = rngp and rng(p�{k;k
ranges over elements ofL: p(k)≤ k}) = rngp.

(48) Let L be a non empty poset andp be a map fromL into L. Supposep is a projection
operator. LetL4 be a non empty subset ofL andL5 be a non empty subset ofL. Suppose
L4 = {c;c ranges over elements ofL: c ≤ p(c)}. Then p�L4 is a map from sub(L4) into
sub(L4).
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(49) Let L be a non empty poset andp be a map fromL into L. Supposep is a projection
operator. LetL5 be a non empty subset ofL. SupposeL5 = {k;k ranges over elements ofL:
p(k)≤ k}. Thenp�L5 is a map from sub(L5) into sub(L5).

(50) Let L be a non empty poset andp be a map fromL into L. Supposep is a projection
operator. LetL4 be a non empty subset ofL. SupposeL4 = {c;c ranges over elements ofL:
c≤ p(c)}. Let p1 be a map from sub(L4) into sub(L4). If p1 = p�L4, then p1 is a closure
operator.

(51) Let L be a non empty poset andp be a map fromL into L. Supposep is a projection
operator. LetL5 be a non empty subset ofL. SupposeL5 = {k;k ranges over elements of
L: p(k) ≤ k}. Let p2 be a map from sub(L5) into sub(L5). If p2 = p�L5, thenp2 is a kernel
operator.

(52) LetL be a non empty poset andp be a map fromL into L. Supposep is monotone. Let
L4 be a subset ofL. If L4 = {c;c ranges over elements ofL: c ≤ p(c)}, then sub(L4) is
sups-inheriting.

(53) LetL be a non empty poset andp be a map fromL into L. Supposep is monotone. Let
L5 be a subset ofL. If L5 = {k;k ranges over elements ofL: p(k) ≤ k}, then sub(L5) is
infs-inheriting.

(54) Let L be a non empty poset andp be a map fromL into L. Supposep is a projection
operator. LetL4 be a non empty subset ofL such thatL4 = {c;c ranges over elements ofL:
c≤ p(c)}. Then

(i) if p is infs-preserving, then sub(L4) is infs-inheriting and Imp is infs-inheriting, and

(ii) if p is filtered-infs-preserving, then sub(L4) is filtered-infs-inheriting and Imp is filtered-
infs-inheriting.

(55) Let L be a non empty poset andp be a map fromL into L. Supposep is a projection
operator. LetL5 be a non empty subset ofL such thatL5 = {k;k ranges over elements ofL:
p(k)≤ k}. Then

(i) if p is sups-preserving, then sub(L5) is sups-inheriting and Imp is sups-inheriting, and

(ii) if p is directed-sups-preserving, then sub(L5) is directed-sups-inheriting and Imp is
directed-sups-inheriting.

(56) LetL be a non empty poset andp be a map fromL into L. Then

(i) if p is a closure operator, then Imp is infs-inheriting, and

(ii) if p is a kernel operator, then Imp is sups-inheriting.

(57) LetL be a complete non empty poset andp be a map fromL into L. If p is a projection
operator, then Imp is complete.

(58) LetL be a non empty poset andc be a map fromL into L. Supposec is a closure operator.
Then

(i) c◦ is sups-preserving, and

(ii) for every subsetX of L such thatX ⊆ the carrier of Imc and supX exists inL holds supX
exists in Imc and

⊔
ImcX = c(

⊔
L X).

(59) LetL be a non empty poset andk be a map fromL into L. Supposek is a kernel operator.
Then

(i) k◦ is infs-preserving, and

(ii) for every subsetX of L such thatX ⊆ the carrier of Imk and infX exists inL holds infX
exists in Imk andd−eImkX = k(d−eLX).
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3. HEYTING ALGEBRA

One can prove the following propositions:

(60) For every complete non empty posetL holds 〈〈 IdsMap(L), SupMap(L)〉〉 is Galois and
SupMap(L) is sups-preserving.

(61) For every complete non empty posetL holds IdsMap(L) ·SupMap(L) is a closure operator
and Im(IdsMap(L) ·SupMap(L)) andL are isomorphic.

Let Sbe a non empty relational structure and letx be an element ofS. The functorxu� yielding
a map fromS into S is defined by:

(Def. 18) For every elements of Sholds(xu�)(s) = xus.

The following two propositions are true:

(62) For every non empty relational structureSand for all elementsx, t of Sholds{s;s ranges
over elements ofS: xus≤ t}= (xu�)−1(↓t).

(63) For every semilatticeSand for every elementx of Sholdsxu� is monotone.

Let Sbe a semilattice and letx be an element ofS. Observe thatxu� is monotone.
Next we state several propositions:

(64) Let S be a non empty relational structure,x be an element ofS, andX be a subset ofS.
Then(xu�)◦X = {xuy;y ranges over elements ofS: y∈ X}.

(65) LetSbe a semilattice. Then for every elementx of Sholdsxu� has an upper adjoint if and
only if for all elementsx, t of Sholds max{s;s ranges over elements ofS: xus≤ t} exists in
S.

(66) Let S be a semilattice. Suppose that for every elementx of S holdsxu� has an upper
adjoint. LetX be a subset ofS. Suppose supX exists inS. Let x be an element ofS. Then
xu

⊔
SX =

⊔
S{xuy;y ranges over elements ofS: y∈ X}.

(67) Let S be a complete non empty poset. Then for every elementx of S holds xu� has
an upper adjoint if and only if for every subsetX of S and for every elementx of S holds
xu

⊔
SX =

⊔
S{xuy;y ranges over elements ofS: y∈ X}.

(68) LetSbe a lattice. Suppose that for every subsetX of Ssuch that supX exists inSand for
every elementx of Sholdsxu

⊔
SX =

⊔
S{xuy;y ranges over elements ofS: y∈ X}. ThenS

is distributive.

Let H be a non empty relational structure. We say thatH is Heyting if and only if:

(Def. 19) H is a lattice and for every elementx of H holdsxu� has an upper adjoint.

We introduceH is a Heyting algebra as a synonym ofH is Heyting.
Let us mention that every non empty relational structure which is Heyting is also reflexive,

transitive, and antisymmetric and has g.l.b.’s and l.u.b.’s.
Let H be a non empty relational structure and leta be an element ofH. Let us assume thatH is

Heyting. The functora⇒� yields a map fromH into H and is defined as follows:

(Def. 20) 〈〈a⇒�, au�〉〉 is Galois.

The following proposition is true

(69) For every non empty relational structureH such thatH is a Heyting algebra holdsH is
distributive.
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Let us mention that every non empty relational structure which is Heyting is also distributive.
Let H be a non empty relational structure and leta, y be elements ofH. The functora⇒ y

yielding an element ofH is defined as follows:

(Def. 21) a⇒ y = (a⇒�)(y).

One can prove the following propositions:

(70) LetH be a non empty relational structure. SupposeH is a Heyting algebra. Letx, a, y be
elements ofH. Thenx≥ auy if and only if a⇒ x≥ y.

(71) For every non empty relational structureH such thatH is a Heyting algebra holdsH is
upper-bounded.

Let us observe that every non empty relational structure which is Heyting is also upper-bounded.
Next we state a number of propositions:

(72) Let H be a non empty relational structure. SupposeH is a Heyting algebra. Leta, b be
elements ofH. Then>H = a⇒ b if and only if a≤ b.

(73) For every non empty relational structureH such thatH is a Heyting algebra and for every
elementa of H holds>H = a⇒ a.

(74) Let H be a non empty relational structure. SupposeH is a Heyting algebra. Leta, b be
elements ofH. If >H = a⇒ b and>H = b⇒ a, thena = b.

(75) LetH be a non empty relational structure. IfH is a Heyting algebra, then for all elements
a, b of H holdsb≤ a⇒ b.

(76) LetH be a non empty relational structure. IfH is a Heyting algebra, then for every element
a of H holds>H = a⇒>H .

(77) For every non empty relational structureH such thatH is a Heyting algebra and for every
elementb of H holdsb =>H ⇒ b.

(78) LetH be a non empty relational structure. SupposeH is a Heyting algebra. Leta, b, c be
elements ofH. If a≤ b, thenb⇒ c≤ a⇒ c.

(79) LetH be a non empty relational structure. SupposeH is a Heyting algebra. Leta, b, c be
elements ofH. If b≤ c, thena⇒ b≤ a⇒ c.

(80) Let H be a non empty relational structure. SupposeH is a Heyting algebra. Leta, b be
elements ofH. Thenau (a⇒ b) = aub.

(81) LetH be a non empty relational structure. SupposeH is a Heyting algebra. Leta, b, c be
elements ofH. Thenatb⇒ c = (a⇒ c)u (b⇒ c).

Let H be a non empty relational structure and leta be an element ofH. The functor¬a yields
an element ofH and is defined as follows:

(Def. 22) ¬a = a⇒⊥H .

One can prove the following propositions:

(82) Let H be a non empty relational structure. SupposeH is a Heyting algebra and lower-
bounded. Leta be an element ofH. Then¬a is a maximum of{x;x ranges over elements of
H: aux =⊥H}.

(83) LetH be a non empty relational structure. IfH is a Heyting algebra and lower-bounded,
then¬(⊥H) =>H and¬(>H) =⊥H .

(84) LetH be a non empty lower-bounded relational structure. SupposeH is a Heyting algebra.
Let a, b be elements ofH. Then¬a≥ b if and only if¬b≥ a.
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(85) LetH be a non empty lower-bounded relational structure. SupposeH is a Heyting algebra.
Let a, b be elements ofH. Then¬a≥ b if and only if aub =⊥H .

(86) LetH be a non empty lower-bounded relational structure. SupposeH is a Heyting algebra.
Let a, b be elements ofH. If a≤ b, then¬b≤ ¬a.

(87) LetH be a non empty lower-bounded relational structure. SupposeH is a Heyting algebra.
Let a, b be elements ofH. Then¬(atb) = ¬au¬b.

(88) LetH be a non empty lower-bounded relational structure. SupposeH is a Heyting algebra.
Let a, b be elements ofH. Then¬(aub)≥ ¬at¬b.

Let L be a non empty relational structure and letx, y be elements ofL. We say thaty is a
complement ofx if and only if:

(Def. 23) xty =>L andxuy =⊥L.

Let L be a non empty relational structure. We say thatL is complemented if and only if:

(Def. 24) For every elementx of L holds there exists an element ofL which is a complement ofx.

Let X be a set. Note that 2X
⊆ is complemented.

One can prove the following two propositions:

(89) LetL be a bounded lattice. SupposeL is a Heyting algebra and for every elementx of L
holds¬¬x = x. Let x be an element ofL. Then¬x is a complement ofx.

(90) LetL be a bounded lattice. ThenL is distributive and complemented if and only ifL is a
Heyting algebra and for every elementx of L holds¬¬x = x.

Let B be a non empty relational structure. We say thatB is Boolean if and only if:

(Def. 25) B is a lattice, bounded, distributive, and complemented.

We introduceB is a Boolean algebra andB is a Boolean lattice as synonyms ofB is Boolean.
Let us note that every non empty relational structure which is Boolean is also reflexive, transi-

tive, antisymmetric, bounded, distributive, and complemented and has g.l.b.’s and l.u.b.’s.
Let us note that every non empty relational structure which is reflexive, transitive, antisymmet-

ric, bounded, distributive, and complemented and has g.l.b.’s and l.u.b.’s is also Boolean.
Let us note that every non empty relational structure which is Boolean is also Heyting.
Let us observe that there exists a lattice which is strict, Boolean, and non empty.
Let us observe that there exists a lattice which is strict, Heyting, and non empty.
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[6] Czesław Bylínski. Functions from a set to a set.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/funct_
2.html.
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