The Characterization of the Continuity of Topologies¹

Grzegorz Bancerek University of Białystok Adam Naumowicz University of Białystok

Summary. Formalization of [19, pp. 128–130], chapter II, section 4 (4.10, 4.11).

MML Identifier: WAYBEL29.

WWW: http://mizar.org/JFM/Vol12/waybel29.html

The articles [32], [15], [38], [29], [39], [12], [14], [40], [11], [18], [2], [31], [28], [42], [30], [16], [1], [34], [26], [27], [37], [3], [17], [4], [5], [21], [13], [23], [6], [41], [24], [35], [36], [7], [33], [22], [20], [25], [9], [8], and [10] provide the notation and terminology for this paper.

1. Preliminaries

The following propositions are true:

- (1) Let S, T be non empty relational structures and f be a map from S into T. Suppose f is one-to-one and onto. Then $f \cdot f^{-1} = \mathrm{id}_T$ and $f^{-1} \cdot f = \mathrm{id}_S$ and f^{-1} is one-to-one and onto.
- (2) Let X, Y be non empty sets, Z be a non empty relational structure, S be a non empty relational substructure of $Z^{[X,Y]}$, T be a non empty relational substructure of $(Z^Y)^X$, and f be a map from S into T. If f is currying, one-to-one, and onto, then f^{-1} is uncurrying.
- (3) Let X, Y be non empty sets, Z be a non empty relational structure, S be a non empty relational substructure of $Z^{[X,Y]}$, T be a non empty relational substructure of $(Z^Y)^X$, and f be a map from T into S. If f is uncurrying, one-to-one, and onto, then f^{-1} is currying.
- (4) Let X, Y be non empty sets, Z be a non empty poset, S be a non empty full relational substructure of $Z^{[X,Y]}$, T be a non empty full relational substructure of $(Z^Y)^X$, and f be a map from S into T. If f is currying, one-to-one, and onto, then f is isomorphic.
- (5) Let X, Y be non empty sets, Z be a non empty poset, T be a non empty full relational substructure of $Z^{[X,Y:]}$, S be a non empty full relational substructure of $(Z^Y)^X$, and f be a map from S into T. If f is uncurrying, one-to-one, and onto, then f is isomorphic.
- (6) Let S_1 , S_2 , T_1 , T_2 be relational structures. Suppose that
- (i) the relational structure of S_1 = the relational structure of S_2 , and
- (ii) the relational structure of T_1 = the relational structure of T_2 .

Let f be a map from S_1 into T_1 . Suppose f is isomorphic. Let g be a map from S_2 into T_2 . If g = f, then g is isomorphic.

1

¹This work has been supported by KBN Grant 8 T11C 018 12.

- (7) Let R, S, T be relational structures and f be a map from R into S. Suppose f is isomorphic. Let g be a map from S into T. Suppose g is isomorphic. Let h be a map from R into T. If $h = g \cdot f$, then h is isomorphic.
- $(10)^1$ Let X, Y, X_1, Y_1 be topological spaces. Suppose that
 - (i) the topological structure of X = the topological structure of X_1 , and
- (ii) the topological structure of Y = the topological structure of Y_1 .

Then $[:X,Y:] = [:X_1,Y_1:].$

- (11) Let X be a non empty topological space, L be a Scott up-complete non empty top-poset, and F be a non empty directed subset of $[X \to L]$. Then $\bigsqcup_{(L^{\text{the carrier of } X})} F$ is a continuous map from X into L.
- (12) Let X be a non empty topological space and L be a Scott up-complete non empty top-poset. Then $[X \to L]$ is a directed-sups-inheriting relational substructure of L^{the carrier of X}.
- (13) Let S_1 , S_2 be topological structures. Suppose the topological structure of S_1 = the topological structure of S_2 . Let T_1 , T_2 be non empty FR-structures. If the FR-structure of T_1 = the FR-structure of T_2 , then $[S_1 \to T_1] = [S_2 \to T_2]$.

Let us mention that every complete continuous top-lattice which is Scott is also injective and T_0 . One can verify that there exists a top-lattice which is Scott, continuous, and complete.

Let X be a non empty topological space and let L be a Scott up-complete non empty top-poset. Note that $[X \to L]$ is up-complete.

One can prove the following two propositions:

- (14) Let I be a non empty set and J be a poset-yielding nonempty many sorted set indexed by I. Suppose that for every element i of I holds J(i) is up-complete. Then I-prod_{POS} J is up-complete.
- (15) Let I be a non empty set and J be a poset-yielding nonempty reflexive-yielding many sorted set indexed by I. Suppose that for every element i of I holds J(i) is up-complete and lower-bounded. Let x, y be elements of $\prod J$. Then $x \ll y$ if and only if the following conditions are satisfied:
 - (i) for every element *i* of *I* holds $x(i) \ll y(i)$, and
- (ii) there exists a finite subset K of I such that for every element i of I such that $i \notin K$ holds $x(i) = \bot_{J(i)}$.

Let X be a set and let L be a lower-bounded non empty reflexive antisymmetric relational structure. Observe that L^X is lower-bounded.

Let X be a non empty topological space and let L be a lower-bounded non empty top-poset. Note that $[X \to L]$ is lower-bounded.

Let L be an up-complete non empty poset. One can verify that every topological augmentation of L is up-complete and every topological augmentation of L which is Scott is also correct.

Let L be an up-complete non empty poset. Observe that there exists a topological augmentation of L which is strict and Scott.

Next we state two propositions:

- (17)² Let L be an up-complete non empty poset and S_1 , S_2 be Scott topological augmentations of L. Then the topology of S_1 = the topology of S_2 .
- (18) Let S_1 , S_2 be up-complete antisymmetric non empty reflexive FR-structures. Suppose the FR-structure of S_1 = the FR-structure of S_2 and S_1 is Scott. Then S_2 is Scott.

Let *L* be an up-complete non empty poset.

¹ The propositions (8) and (9) have been removed.

² The proposition (16) has been removed.

(Def. 1) ΣL is a strict Scott topological augmentation of L.

We now state two propositions:

- (19) For every Scott up-complete non empty top-poset *S* holds ΣS = the FR-structure of *S*.
- (20) Let L_1 , L_2 be up-complete non empty posets. Suppose the relational structure of L_1 = the relational structure of L_2 . Then $\Sigma L_1 = \Sigma L_2$.
- Let S, T be up-complete non empty posets and let f be a map from S into T. The functor Σf yielding a map from ΣS into ΣT is defined by:
- (Def. 2) $\Sigma f = f$.

Let S, T be up-complete non empty posets and let f be a directed-sups-preserving map from S into T. Observe that Σf is continuous.

One can prove the following two propositions:

- (21) Let S, T be up-complete non empty posets and f be a map from S into T. Then f is isomorphic if and only if Σf is isomorphic.
- (22) For every non empty topological space X and for every Scott complete top-lattice S holds $[X \to S] = [X \to S]$.

Let X, Y be non empty topological spaces. The functor $\Theta(X, Y)$ yields a map from \langle the topology of $[:X, Y:], \subseteq \rangle$ into $[X \to \Sigma \langle$ the topology of $Y, \subseteq \rangle$ and is defined by:

(Def. 3) For every open subset W of [:X,Y:] holds $(\Theta(X,Y))(W) = \Theta_{\text{the carrier of }X}(W)$.

2. Some Natural Isomorphisms

Let X be a non empty topological space. The functor $\alpha(X)$ yields a map from $[X \to \text{the Sierpiński space}]$ into $\langle \text{the topology of } X, \subseteq \rangle$ and is defined by:

(Def. 4) For every continuous map g from X into the Sierpiński space holds $(\alpha(X))(g) = g^{-1}(\{1\})$.

We now state the proposition

(23) For every non empty topological space X and for every open subset V of X holds $(\alpha(X))^{-1}(V) = \chi_{V,\text{the carrier of }X}.$

Let *X* be a non empty topological space. Note that $\alpha(X)$ is isomorphic.

Let *X* be a non empty topological space. Observe that $(\alpha(X))^{-1}$ is isomorphic.

Let *S* be an injective T_0 -space. Observe that ΩS is Scott.

Let X be a non empty topological space. Note that $[X \to \text{the Sierpiński space}]$ is complete.

The following proposition is true

(24) Ω (the Sierpiński space) = $\Sigma 2^1_{\subset}$.

Let M be a non empty set and let S be an injective T_0 -space. Note that M-prod_{TOP} $(M \longmapsto S)$ is injective.

We now state two propositions:

- (25) For every non empty set M and for every complete continuous lattice L holds $\Omega(M\operatorname{-prod}_{TOP}(M\longmapsto\Sigma L))=\Sigma M\operatorname{-prod}_{POS}(M\longmapsto L).$
- (26) For every non empty set M and for every injective T_0 -space T holds $\Omega(M\operatorname{-prod}_{TOP}(M \longmapsto T)) = \Sigma M\operatorname{-prod}_{POS}(M \longmapsto \Omega T)$.

Let M be a non empty set and let X, Y be non empty topological spaces. The functor commute (X, M, Y) yielding a map from $[X \to M\operatorname{-prod}_{\mathsf{TOP}}(M \longmapsto Y)]$ into $([X \to Y])^M$ is defined as follows:

(Def. 5) For every continuous map f from X into M-prod_{TOP} $(M \longmapsto Y)$ holds (commute(X, M, Y))(f) = commute(f).

Let M be a non empty set and let X, Y be non empty topological spaces. Note that commute(X, M, Y) is one-to-one and onto.

Let M be a non empty set and let X be a non empty topological space. Observe that commute (X, M), the Sierpiński space) is isomorphic.

We now state the proposition

(27) Let X, Y be non empty topological spaces, S be a Scott topological augmentation of \langle the topology of Y, $\subseteq \rangle$, and f_1 , f_2 be elements of $[X \to S]$. If $f_1 \leq f_2$, then $G_{f_1} \subseteq G_{f_2}$.

3. The Poset of Open Sets

We now state several propositions:

- (28) Let Y be a T_0 -space. Then the following statements are equivalent
 - (i) for every non empty topological space X and for every Scott continuous complete toplattice L and for every Scott topological augmentation T of $[Y \to L]$ there exists a map f from $[X \to T]$ into $[X \to T]$ and there exists a map g from $[X \to T]$ into $[X \to T]$ such that f is uncurrying, one-to-one, and onto and g is currying, one-to-one, and onto,
- (ii) for every non empty topological space X and for every Scott continuous complete toplattice L and for every Scott topological augmentation T of $[Y \to L]$ there exists a map f from $[X \to T]$ into $[X \to T]$ and there exists a map G from $[X \to T]$ into $[X \to T]$ such that G is uncurrying and isomorphic and G is currying and isomorphic.
- (29) Let *Y* be a T_0 -space. Then \langle the topology of $Y, \subseteq \rangle$ is continuous if and only if for every non empty topological space X holds $\Theta(X,Y)$ is isomorphic.
- (30) Let Y be a T_0 -space. Then \langle the topology of $Y, \subseteq \rangle$ is continuous if and only if for every non empty topological space X and for every continuous map f from X into $\Sigma \langle$ the topology of Y, $\subseteq \rangle$ holds G_f is an open subset of [:X,Y:].
- (31) Let Y be a T_0 -space. Then \langle the topology of $Y, \subseteq \rangle$ is continuous if and only if $\{\langle W, y \rangle; W \}$ ranges over open subsets of Y, y ranges over elements of Y: $y \in W \}$ is an open subset of $[: \Sigma \langle$ the topology of $Y, \subseteq \rangle, Y :]$.
- (32) Let Y be a T_0 -space. Then \langle the topology of $Y, \subseteq \rangle$ is continuous if and only if for every element y of Y and for every open neighbourhood V of y there exists an open subset H of $\Sigma \langle$ the topology of $Y, \subseteq \rangle$ such that $V \in H$ and $\bigcap H$ is a neighbourhood of y.

4. The Poset of Scott Open Sets

The following propositions are true:

- (33) Let R_1 , R_2 , R_3 be non empty relational structures and f_1 be a map from R_1 into R_3 . Suppose f_1 is isomorphic. Let f_2 be a map from R_2 into R_3 . Suppose $f_2 = f_1$ and f_2 is isomorphic. Then the relational structure of R_1 = the relational structure of R_2 .
- (34) Let *L* be a complete lattice. Then $\langle \sigma(L), \subseteq \rangle$ is continuous if and only if for every complete lattice *S* holds $\sigma([:S,L:]) =$ the topology of $[:\Sigma S, \Sigma L:]$.
- (35) Let L be a complete lattice. Then the following statements are equivalent
 - (i) for every complete lattice S holds $\sigma([:S,L:])$ = the topology of $[:\Sigma S, \Sigma L:]$,
- (ii) for every complete lattice S holds the topological structure of $\Sigma[:S,L:]=[:\Sigma S,\Sigma L:]$.
- (36) Let *L* be a complete lattice. Then for every complete lattice *S* holds $\sigma([:S, L:]) =$ the topology of $[:\Sigma S, \Sigma L:]$ if and only if for every complete lattice *S* holds $\Sigma[:S, L:] = \Omega[:\Sigma S, \Sigma L:]$.
- (37) Let *L* be a complete lattice. Then $\langle \sigma(L), \subseteq \rangle$ is continuous if and only if for every complete lattice *S* holds $\Sigma[:S,L:] = \Omega[:\Sigma S,\Sigma L:]$.

REFERENCES

- Grzegorz Bancerek. Curried and uncurried functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_5.html.
- [2] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [3] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [4] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [5] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [6] Grzegorz Bancerek. The "way-below" relation. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 3.html.
- [7] Grzegorz Bancerek. Bases and refinements of topologies. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/ Vol10/yellow_9.html.
- [8] Grzegorz Bancerek. Continuous lattices of maps between T₀ spaces. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Voll1/waybel26.html.
- [9] Grzegorz Bancerek. Retracts and inheritance. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Vol11/ yellow16.html.
- [10] Grzegorz Bancerek and Adam Naumowicz. Function spaces in the category of directed suprema preserving maps. *Journal of Formalized Mathematics*, 11, 1999. http://mizar.org/JFM/Vol11/waybel27.html.
- [11] Czesław Byliński. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/funct_3.html.
- [12] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [13] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [14] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/partfunl.html.
- [15] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [16] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [17] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [18] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [19] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [20] Adam Grabowski. Scott-continuous functions. Part II. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Vol11/waybe124.html.
- [21] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [22] Jarosław Gryko. Injective spaces. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/waybel18.html.
- [23] Artur Korniłowicz. Cartesian products of relations and relational structures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_3.html.
- [24] Artur Korniłowicz. On the topological properties of meet-continuous lattices. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/waybel_9.html.
- [25] Artur Korniłowicz and Jarosław Gryko. Injective spaces. Part II. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/ JFM/Voll1/waybel25.html.
- [26] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/pralg_1.html.
- [27] Beata Madras. Products of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/pralg_2.html.
- [28] Michał Muzalewski. Categories of groups. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/grcat_1.html.
- [29] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.

- [30] Beata Padlewska. Locally connected spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/connsp_2.html.
- [31] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [32] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [33] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/borsuk_1.html.
- [34] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [35] Andrzej Trybulec. Moore-Smith convergence. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_6.html.
- [36] Andrzej Trybulec. Scott topology. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vo19/waybell1.html.
- [37] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [38] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [39] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [40] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.
- [41] Mariusz Żynel. The equational characterization of continuous lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_5.html.
- [42] Mariusz Żynel and Adam Guzowski. To topological spaces. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/t_Otopsp.html.

Received January 6, 2000

Published January 2, 2004