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The articles [32], [15], [38], [29], [39], [12], [14], [40], [11], [18], [2], [31], [28], [42], [30], [16],
[1], [34], [26], [27], [37], [3], [17], [4], [5], [21], [13], [23], [6], [41], [24], [35], [36], [7], [33],
[22], [20], [25], [9], [8], and [10] provide the notation and terminology for this paper.

1. PRELIMINARIES

The following propositions are true:

(1) Let S, T be non empty relational structures andf be a map fromS into T. Supposef is
one-to-one and onto. Thenf · f−1 = idT and f−1 · f = idS and f−1 is one-to-one and onto.

(2) Let X, Y be non empty sets,Z be a non empty relational structure,S be a non empty
relational substructure ofZ[:X,Y :], T be a non empty relational substructure of(ZY)X, and f
be a map fromS into T. If f is currying, one-to-one, and onto, thenf−1 is uncurrying.

(3) Let X, Y be non empty sets,Z be a non empty relational structure,S be a non empty
relational substructure ofZ[:X,Y :], T be a non empty relational substructure of(ZY)X, and f
be a map fromT into S. If f is uncurrying, one-to-one, and onto, thenf−1 is currying.

(4) Let X, Y be non empty sets,Z be a non empty poset,S be a non empty full relational
substructure ofZ[:X,Y :], T be a non empty full relational substructure of(ZY)X, and f be a
map fromS into T. If f is currying, one-to-one, and onto, thenf is isomorphic.

(5) Let X, Y be non empty sets,Z be a non empty poset,T be a non empty full relational
substructure ofZ[:X,Y :], S be a non empty full relational substructure of(ZY)X, and f be a
map fromS into T. If f is uncurrying, one-to-one, and onto, thenf is isomorphic.

(6) LetS1, S2, T1, T2 be relational structures. Suppose that

(i) the relational structure ofS1 = the relational structure ofS2, and

(ii) the relational structure ofT1 = the relational structure ofT2.

Let f be a map fromS1 into T1. Supposef is isomorphic. Letg be a map fromS2 into T2. If
g = f , theng is isomorphic.

1This work has been supported by KBN Grant 8 T11C 018 12.
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(7) LetR, S, T be relational structures andf be a map fromR into S. Supposef is isomorphic.
Let g be a map fromS into T. Supposeg is isomorphic. Leth be a map fromR into T. If
h = g· f , thenh is isomorphic.

(10)1 Let X, Y, X1, Y1 be topological spaces. Suppose that

(i) the topological structure ofX = the topological structure ofX1, and

(ii) the topological structure ofY = the topological structure ofY1.

Then[:X, Y :] = [:X1, Y1 :].

(11) Let X be a non empty topological space,L be a Scott up-complete non empty top-poset,
andF be a non empty directed subset of[X → L]. Then

⊔
(Lthe carrier ofX) F is a continuous map

from X into L.

(12) LetX be a non empty topological space andL be a Scott up-complete non empty top-poset.
Then[X → L] is a directed-sups-inheriting relational substructure ofLthe carrier ofX.

(13) LetS1, S2 be topological structures. Suppose the topological structure ofS1 = the topolog-
ical structure ofS2. Let T1, T2 be non empty FR-structures. If the FR-structure ofT1 = the
FR-structure ofT2, then[S1 → T1] = [S2 → T2].

Let us mention that every complete continuous top-lattice which is Scott is also injective andT0.
One can verify that there exists a top-lattice which is Scott, continuous, and complete.
Let X be a non empty topological space and letL be a Scott up-complete non empty top-poset.

Note that[X → L] is up-complete.
One can prove the following two propositions:

(14) Let I be a non empty set andJ be a poset-yielding nonempty many sorted set indexed
by I . Suppose that for every elementi of I holdsJ(i) is up-complete. ThenI -prodPOSJ is
up-complete.

(15) LetI be a non empty set andJ be a poset-yielding nonempty reflexive-yielding many sorted
set indexed byI . Suppose that for every elementi of I holdsJ(i) is up-complete and lower-
bounded. Letx, y be elements of∏J. Thenx� y if and only if the following conditions are
satisfied:

(i) for every elementi of I holdsx(i)� y(i), and

(ii) there exists a finite subsetK of I such that for every elementi of I such thati /∈ K holds
x(i) =⊥J(i).

Let X be a set and letL be a lower-bounded non empty reflexive antisymmetric relational struc-
ture. Observe thatLX is lower-bounded.

Let X be a non empty topological space and letL be a lower-bounded non empty top-poset.
Note that[X → L] is lower-bounded.

Let L be an up-complete non empty poset. One can verify that every topological augmentation
of L is up-complete and every topological augmentation ofL which is Scott is also correct.

Let L be an up-complete non empty poset. Observe that there exists a topological augmentation
of L which is strict and Scott.

Next we state two propositions:

(17)2 Let L be an up-complete non empty poset andS1, S2 be Scott topological augmentations
of L. Then the topology ofS1 = the topology ofS2.

(18) LetS1, S2 be up-complete antisymmetric non empty reflexive FR-structures. Suppose the
FR-structure ofS1 = the FR-structure ofS2 andS1 is Scott. ThenS2 is Scott.

Let L be an up-complete non empty poset.

1 The propositions (8) and (9) have been removed.
2 The proposition (16) has been removed.
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(Def. 1) ΣL is a strict Scott topological augmentation ofL.

We now state two propositions:

(19) For every Scott up-complete non empty top-posetSholdsΣS= the FR-structure ofS.

(20) LetL1, L2 be up-complete non empty posets. Suppose the relational structure ofL1 = the
relational structure ofL2. ThenΣL1 = ΣL2.

Let S, T be up-complete non empty posets and letf be a map fromS into T. The functorΣ f
yielding a map fromΣS into ΣT is defined by:

(Def. 2) Σ f = f .

Let S, T be up-complete non empty posets and letf be a directed-sups-preserving map fromS
into T. Observe thatΣ f is continuous.

One can prove the following two propositions:

(21) Let S, T be up-complete non empty posets andf be a map fromS into T. Then f is
isomorphic if and only ifΣ f is isomorphic.

(22) For every non empty topological spaceX and for every Scott complete top-latticeSholds
[X → S] = [X → S].

Let X, Y be non empty topological spaces. The functorΘ(X,Y) yields a map from〈the topology
of [:X, Y :],⊆〉 into [X → Σ〈the topology ofY,⊆〉] and is defined by:

(Def. 3) For every open subsetW of [:X, Y :] holds(Θ(X,Y))(W) = Θthe carrier ofX(W).

2. SOME NATURAL ISOMORPHISMS

Let X be a non empty topological space. The functorα(X) yields a map from[X → the Sierpínski
space] into 〈the topology ofX,⊆〉 and is defined by:

(Def. 4) For every continuous mapg from X into the Sierpínski space holds(α(X))(g) = g−1({1}).

We now state the proposition

(23) For every non empty topological spaceX and for every open subsetV of X holds
(α(X))−1(V) = χV,the carrier ofX.

Let X be a non empty topological space. Note thatα(X) is isomorphic.
Let X be a non empty topological space. Observe that(α(X))−1 is isomorphic.
Let Sbe an injectiveT0-space. Observe thatΩS is Scott.
Let X be a non empty topological space. Note that[X → the Sierpínski space] is complete.
The following proposition is true

(24) Ω(the Sierpínski space)= Σ21
⊆.

Let M be a non empty set and letSbe an injectiveT0-space. Note thatM -prodTOP(M 7−→ S) is
injective.

We now state two propositions:

(25) For every non empty setM and for every complete continuous latticeL holds
Ω(M -prodTOP(M 7−→ ΣL)) = ΣM -prodPOS(M 7−→ L).

(26) For every non empty setM and for every injectiveT0-spaceT holdsΩ(M -prodTOP(M 7−→
T)) = ΣM -prodPOS(M 7−→ΩT).

LetM be a non empty set and letX,Y be non empty topological spaces. The functor commute(X,M,Y)
yielding a map from[X →M -prodTOP(M 7−→Y)] into ([X →Y])M is defined as follows:
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(Def. 5) For every continuous mapf fromX intoM -prodTOP(M 7−→Y) holds(commute(X,M,Y))( f )=
commute( f ).

LetM be a non empty set and letX,Y be non empty topological spaces. Note that commute(X,M,Y)
is one-to-one and onto.

LetM be a non empty set and letX be a non empty topological space. Observe that commute(X,M, the
Sierpínski space) is isomorphic.

We now state the proposition

(27) LetX, Y be non empty topological spaces,S be a Scott topological augmentation of〈the
topology ofY,⊆〉, and f1, f2 be elements of[X → S]. If f1 ≤ f2, thenGf1 ⊆Gf2.

3. THE POSET OFOPEN SETS

We now state several propositions:

(28) LetY be aT0-space. Then the following statements are equivalent

(i) for every non empty topological spaceX and for every Scott continuous complete top-
latticeL and for every Scott topological augmentationT of [Y→ L] there exists a mapf from
[X → T] into [[:X, Y :]→ L] and there exists a mapg from [[:X, Y :]→ L] into [X → T] such
that f is uncurrying, one-to-one, and onto andg is currying, one-to-one, and onto,

(ii) for every non empty topological spaceX and for every Scott continuous complete top-
latticeL and for every Scott topological augmentationT of [Y→ L] there exists a mapf from
[X → T] into [[:X, Y :]→ L] and there exists a mapg from [[:X, Y :]→ L] into [X → T] such
that f is uncurrying and isomorphic andg is currying and isomorphic.

(29) LetY be aT0-space. Then〈the topology ofY,⊆〉 is continuous if and only if for every non
empty topological spaceX holdsΘ(X,Y) is isomorphic.

(30) LetY be aT0-space. Then〈the topology ofY,⊆〉 is continuous if and only if for every non
empty topological spaceX and for every continuous mapf from X into Σ〈the topology ofY,
⊆〉 holdsGf is an open subset of[:X, Y :].

(31) LetY be aT0-space. Then〈the topology ofY, ⊆〉 is continuous if and only if{〈〈W, y〉〉;W
ranges over open subsets ofY, y ranges over elements ofY: y ∈W} is an open subset of
[:Σ〈the topology ofY,⊆〉, Y :].

(32) LetY be aT0-space. Then〈the topology ofY, ⊆〉 is continuous if and only if for every
elementy of Y and for every open neighbourhoodV of y there exists an open subsetH of
Σ〈the topology ofY,⊆〉 such thatV ∈ H and

⋂
H is a neighbourhood ofy.

4. THE POSET OFSCOTT OPEN SETS

The following propositions are true:

(33) LetR1, R2, R3 be non empty relational structures andf1 be a map fromR1 into R3. Suppose
f1 is isomorphic. Letf2 be a map fromR2 into R3. Supposef2 = f1 and f2 is isomorphic.
Then the relational structure ofR1 = the relational structure ofR2.

(34) LetL be a complete lattice. Then〈σ(L),⊆〉 is continuous if and only if for every complete
latticeSholdsσ([:S, L :]) = the topology of[:ΣS, ΣL :].

(35) LetL be a complete lattice. Then the following statements are equivalent

(i) for every complete latticeSholdsσ([:S, L :]) = the topology of[:ΣS, ΣL :],
(ii) for every complete latticeSholds the topological structure ofΣ[:S, L :] = [:ΣS, ΣL :].

(36) LetL be a complete lattice. Then for every complete latticeSholdsσ([:S, L :]) = the topol-
ogy of [:ΣS, ΣL :] if and only if for every complete latticeSholdsΣ[:S, L :] = Ω[:ΣS, ΣL :].

(37) LetL be a complete lattice. Then〈σ(L),⊆〉 is continuous if and only if for every complete
latticeSholdsΣ[:S, L :] = Ω[:ΣS, ΣL :].
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[41] MariuszŻynel. The equational characterization of continuous lattices.Journal of Formalized Mathematics, 8, 1996.http://mizar.
org/JFM/Vol8/waybel_5.html.
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