Continuous Lattices of Maps between T₀ **Spaces**¹

Grzegorz Bancerek University of Białystok

Summary. Formalization of [20, pp. 128–130], chapter II, section 4(4.1-4.9).

MML Identifier: WAYBEL26.

WWW: http://mizar.org/JFM/Vol11/waybel26.html

The articles [32], [15], [38], [33], [19], [39], [13], [40], [18], [12], [16], [1], [10], [30], [2], [35], [27], [28], [29], [37], [3], [14], [31], [24], [11], [42], [34], [4], [5], [6], [22], [41], [17], [8], [7], [25], [36], [23], [21], [26], and [9] provide the notation and terminology for this paper.

Let I be a set and let J be a relational structure yielding many sorted set indexed by I. We introduce I-prod_{POS} J as a synonym of $\prod J$.

Let I be a set and let J be a relational structure yielding nonempty many sorted set indexed by I. Observe that I-prod_{POS} J is constituted functions.

Let I be a set and let J be a topological space yielding nonempty many sorted set indexed by I. We introduce I-prod_{TOP} J as a synonym of $\prod J$.

Let X, Y be non empty topological spaces. The functor $[X \to Y]$ yields a non empty strict relational structure and is defined as follows:

(Def. 1)
$$[X \rightarrow Y] = [X \rightarrow \Omega Y].$$

Let X, Y be non empty topological spaces. One can check that $[X \to Y]$ is reflexive, transitive, and constituted functions.

Let *X* be a non empty topological space and let *Y* be a non empty T_0 topological space. Observe that $[X \to Y]$ is antisymmetric.

One can prove the following three propositions:

- (1) Let X, Y be non empty topological spaces and a be a set. Then a is an element of $[X \to Y]$ if and only if a is a continuous map from X into ΩY .
- (2) Let X, Y be non empty topological spaces and a be a set. Then a is an element of $[X \to Y]$ if and only if a is a continuous map from X into Y.
- (3) Let X, Y be non empty topological spaces, a, b be elements of $[X \to Y]$, and f, g be maps from X into ΩY . If a = f and b = g, then $a \le b$ iff $f \le g$.

Let X, Y be non empty topological spaces, let x be a point of X, and let A be a subset of $[X \to Y]$. Then $\pi_x A$ is a subset of ΩY .

Let X, Y be non empty topological spaces, let x be a set, and let A be a non empty subset of $[X \to Y]$. Observe that $\pi_x A$ is non empty.

The following propositions are true:

(4) Ω (the Sierpiński space) is a topological augmentation of 2^1_{\subset} .

¹This work has been supported by KBN Grant 8 T11C 018 12.

- (5) Let X be a non empty topological space. Then there exists a map f from ⟨the topology of X, ⊆⟩ into [X → the Sierpiński space] such that f is isomorphic and for every open subset V of X holds f(V) = X_{V,the carrier of X}.
- (6) Let X be a non empty topological space. Then \langle the topology of X, $\subseteq \rangle$ and $[X \to \text{the Sierpiński space}]$ are isomorphic.
- Let X, Y, Z be non empty topological spaces and let f be a continuous map from Y into Z. The functor $[X \to f]$ yields a map from $[X \to Y]$ into $[X \to Z]$ and is defined by:
- (Def. 2) For every continuous map g from X into Y holds $([X \to f])(g) = f \cdot g$.

The functor $[f \to X]$ yielding a map from $[Z \to X]$ into $[Y \to X]$ is defined by:

(Def. 3) For every continuous map g from Z into X holds $([f \rightarrow X])(g) = g \cdot f$.

We now state a number of propositions:

- (7) Let X be a non empty topological space and Y be a monotone convergence T_0 -space. Then $[X \to Y]$ is a directed-sups-inheriting relational substructure of $(\Omega Y)^{\text{the carrier of } X}$.
- (8) For every non empty topological space X and for every monotone convergence T_0 -space Y holds $[X \to Y]$ is up-complete.
- (9) For all non empty topological spaces X, Y, Z and for every continuous map f from Y into Z holds $[X \to f]$ is monotone.
- (10) Let X, Y be non empty topological spaces and f be a continuous map from Y into Y. If f is idempotent, then $[X \to f]$ is idempotent.
- (11) For all non empty topological spaces X, Y, Z and for every continuous map f from Y into Z holds $[f \rightarrow X]$ is monotone.
- (12) Let X, Y be non empty topological spaces and f be a continuous map from Y into Y. If f is idempotent, then $[f \rightarrow X]$ is idempotent.
- (13) Let X, Y, Z be non empty topological spaces, f be a continuous map from Y into Z, x be an element of X, and A be a subset of $[X \to Y]$. Then $\pi_X([X \to f])^{\circ}A = f^{\circ}\pi_XA$.
- (14) Let X be a non empty topological space, Y, Z be monotone convergence T_0 -spaces, and f be a continuous map from Y into Z. Then $[X \to f]$ is directed-sups-preserving.
- (15) Let X, Y, Z be non empty topological spaces, f be a continuous map from Y into Z, x be an element of Y, and A be a subset of $[Z \to X]$. Then $\pi_X([f \to X])^{\circ}A = \pi_{f(x)}A$.
- (16) Let Y, Z be non empty topological spaces, X be a monotone convergence T_0 -space, and f be a continuous map from Y into Z. Then $[f \rightarrow X]$ is directed-sups-preserving.
- (17) Let X, Z be non empty topological spaces and Y be a non empty subspace of Z. Then $[X \to Y]$ is a full relational substructure of $[X \to Z]$.
- (18) Let Z be a monotone convergence T_0 -space, Y be a non empty subspace of Z, and f be a continuous map from Z into Y. Suppose f is a retraction. Then ΩY is a directed-sups-inheriting relational substructure of ΩZ .
- (19) Let X be a non empty topological space, Z be a monotone convergence T_0 -space, Y be a non empty subspace of Z, and f be a continuous map from Z into Y. If f is a retraction, then $[X \to f]$ is a retraction of $[X \to Z]$ into $[X \to Y]$.
- (20) Let X be a non empty topological space, Z be a monotone convergence T_0 -space, and Y be a non empty subspace of Z. If Y is a retract of Z, then $[X \to Y]$ is a retract of $[X \to Z]$.

- (21) Let X, Y, Z be non empty topological spaces and f be a continuous map from Y into Z. If f is a homeomorphism, then $[X \to f]$ is isomorphic.
- (22) Let X, Y, Z be non empty topological spaces. If Y and Z are homeomorphic, then $[X \to Y]$ and $[X \to Z]$ are isomorphic.
- (23) Let X be a non empty topological space, Z be a monotone convergence T_0 -space, and Y be a non empty subspace of Z. Suppose Y is a retract of Z and $[X \to Z]$ is complete and continuous. Then $[X \to Y]$ is complete and continuous.
- (24) Let X be a non empty topological space and Y, Z be monotone convergence T_0 -spaces. Suppose Y is a topological retract of Z and $[X \to Z]$ is complete and continuous. Then $[X \to Y]$ is complete and continuous.
- (25) Let Y be a non trivial T_0 -space. Suppose Y is not a T_1 space. Then the Sierpiński space is a topological retract of Y.
- (26) Let X be a non empty topological space and Y be a non trivial T_0 -space. If $[X \to Y]$ has l.u.b.'s, then Y is not a T_1 space.

Let us observe that the Sierpiński space is non trivial and monotone convergence.

Let us observe that there exists a T_0 -space which is injective, monotone convergence, and non trivial.

One can prove the following propositions:

- (27) Let X be a non empty topological space and Y be a monotone convergence non trivial T_0 -space. If $[X \to Y]$ is complete and continuous, then \langle the topology of $X, \subseteq \rangle$ is continuous.
- (28) Let X be a non empty topological space, x be a point of X, and Y be a monotone convergence T_0 -space. Then there exists a directed-sups-preserving projection map F from $[X \to Y]$ into $[X \to Y]$ such that
 - (i) for every continuous map f from X into Y holds $F(f) = X \longmapsto f(x)$, and
 - (ii) there exists a continuous map h from X into X such that $h = X \longmapsto x$ and $F = [h \mapsto Y]$.
- (29) Let X be a non empty topological space and Y be a monotone convergence T_0 -space. If $[X \to Y]$ is complete and continuous, then ΩY is complete and continuous.
- (30) Let X be a non empty 1-sorted structure, I be a non empty set, J be a topological space yielding nonempty many sorted set indexed by I, f be a map from X into I-prod_{TOP}J, and i be an element of I. Then $(\text{commute}(f))(i) = \text{proj}(J, i) \cdot f$.
- (31) For every 1-sorted structure *S* and for every set *M* holds the support of $M \longmapsto S = M \longmapsto$ the carrier of *S*.
- (32) Let X, Y be non empty topological spaces, M be a non empty set, and f be a continuous map from X into M-prod_{TOP}($M \longmapsto Y$). Then commute(f) is a function from M into the carrier of $([X \to Y])$.
- (33) For all non empty topological spaces X, Y holds the carrier of $([X \to Y]) \subseteq$ (the carrier of Y) the carrier of X.
- (34) Let X, Y be non empty topological spaces, M be a non empty set, and f be a function from M into the carrier of $([X \to Y])$. Then commute (f) is a continuous map from X into M-prod_{TOP} $(M \longmapsto Y)$.
- (35) Let X be a non empty topological space and M be a non empty set. Then there exists a map F from $[X \to M\text{-prod}_{TOP}(M \longmapsto \text{the Sierpiński space})]$ into $M\text{-prod}_{POS}(M \longmapsto ([X \to \text{the Sierpiński space}]))$ such that F is isomorphic and for every continuous map f from X into $M\text{-prod}_{TOP}(M \longmapsto \text{the Sierpiński space})$ holds F(f) = commute(f).

- (36) Let X be a non empty topological space and M be a non empty set. Then $[X \to M\operatorname{-prod}_{TOP}(M \longmapsto \text{the Sierpiński space})]$ and $M\operatorname{-prod}_{POS}(M \longmapsto ([X \to \text{the Sierpiński space}]))$ are isomorphic.
- (37) Let X be a non empty topological space. Suppose \langle the topology of X, $\subseteq \rangle$ is continuous. Let Y be an injective T_0 -space. Then $[X \to Y]$ is complete and continuous.

Let us mention that there exists a top-lattice which is non trivial, complete, and Scott. The following proposition is true

(38) Let X be a non empty topological space and L be a non trivial complete Scott top-lattice. Then $[X \to L]$ is complete and continuous if and only if \langle the topology of X, $\subseteq \rangle$ is continuous and L is continuous.

Let f be a function. One can verify that \bigcup disjoint f is relation-like. Let f be a function. The functor G_f yields a binary relation and is defined as follows:

(Def. 4) $G_f = (\bigcup \operatorname{disjoint} f)^{\smile}$.

In the sequel x, y are sets and f is a function. One can prove the following three propositions:

- (39) $\langle x, y \rangle \in G_f \text{ iff } x \in \text{dom } f \text{ and } y \in f(x).$
- (40) For every finite set *X* holds $\pi_1(X)$ is finite and $\pi_2(X)$ is finite.
- (41) Let X, Y be non empty topological spaces, S be a Scott topological augmentation of \langle the topology of Y, $\subseteq \rangle$, and f be a map from X into S. If G_f is an open subset of [:X,Y:], then f is continuous.

Let W be a binary relation and let X be a set. The functor $\Theta_X(W)$ yielding a function is defined as follows:

(Def. 5) $\operatorname{dom} \Theta_X(W) = X$ and for every x such that $x \in X$ holds $(\Theta_X(W))(x) = W^{\circ}\{x\}$.

We now state the proposition

(42) For every binary relation W and for every set X such that dom $W \subseteq X$ holds $G_{\Theta_X(W)} = W$.

Let X, Y be topological spaces. Observe that every subset of [:X,Y:] is relation-like and every element of the topology of [:X,Y:] is relation-like.

Next we state four propositions:

- (43) Let X, Y be non empty topological spaces, W be an open subset of [:X, Y:], and x be a point of X. Then $W^{\circ}\{x\}$ is an open subset of Y.
- (44) Let X, Y be non empty topological spaces, S be a Scott topological augmentation of \langle the topology of Y, $\subseteq \rangle$, and W be an open subset of [:X,Y:]. Then $\Theta_{\text{the carrier of }X}(W)$ is a continuous map from X into S.
- (45) Let X, Y be non empty topological spaces, S be a Scott topological augmentation of \langle the topology of Y, $\subseteq \rangle$, and W_1 , W_2 be open subsets of [:X,Y:]. Suppose $W_1 \subseteq W_2$. Let f_1 , f_2 be elements of $[X \to S]$. If $f_1 = \Theta_{\text{the carrier of } X}(W_1)$ and $f_2 = \Theta_{\text{the carrier of } X}(W_2)$, then $f_1 \leq f_2$.
- (46) Let X, Y be non empty topological spaces and S be a Scott topological augmentation of \langle the topology of Y, $\subseteq \rangle$. Then there exists a map F from \langle the topology of [:X,Y:], $\subseteq \rangle$ into $[X \to S]$ such that F is monotone and for every open subset W of [:X,Y:] holds $F(W) = \Theta_{\text{the carrier of }X}(W)$.

REFERENCES

- Grzegorz Bancerek. Curried and uncurried functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_5.html.
- [2] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [3] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [4] Grzegorz Bancerek. Quantales. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/quantal1.html.
- [5] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [6] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [7] Grzegorz Bancerek. The "way-below" relation. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_
- [8] Grzegorz Bancerek. Bases and refinements of topologies. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/ Vol10/yellow_9.html.
- [9] Grzegorz Bancerek. Retracts and inheritance. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Vol11/ yellow16.html.
- [10] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/realset1. html.
- [11] Józef Białas and Yatsuka Nakamura. Dyadic numbers and T₄ topological spaces. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/urysohnl.html.
- [12] Czesław Byliński. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/funct_3.html.
- [13] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [14] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [15] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [16] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [17] Czesław Byliński. Galois connections. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_1.html.
- [18] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [19] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [20] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [21] Adam Grabowski. Scott-continuous functions. Part II. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Vol11/waybe124.html.
- [22] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [23] Jarosław Gryko. Injective spaces. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/waybel18.html.
- [24] Zbigniew Karno. On Kolmogorov topological spaces. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/tsp_1.html.
- [25] Artur Komiłowicz. On the topological properties of meet-continuous lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_9.html.
- [26] Artur Korniłowicz and Jarosław Gryko. Injective spaces. Part II. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/ JFM/Vol11/waybe125.html.
- [27] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/pralg_1.html.
- [28] Beata Madras. Products of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/pralg_ 2.html.
- [29] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/pre_circ.html.

- [30] Andrzej Nędzusiak. σ-fields and probability. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/prob_1. html.
- [31] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [32] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [33] Andrzej Trybulec. Tuples, projections and Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/
- [34] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/borsuk_1.html.
- [35] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [36] Andrzej Trybulec. Scott topology. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/waybel11.html.
- [37] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [38] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [39] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [40] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.
- [41] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_2.html.
- [42] Mariusz Żynel and Adam Guzowski. To topological spaces. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/t_Otopsp.html.

Received September 24, 1999

Published January 2, 2004
