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The articles [32], [15], [38], [33], [19], [39], [13], [40], [18], [12], [16], [1], [10], [30], [2], [35],
[27], [28], [29], [37], [3], [14], [31], [24], [11], [42], [34], [4], [5], [6], [22], [41], [17], [8], [7],
[25], [36], [23], [21], [26], and [9] provide the notation and terminology for this paper.

Let I be a set and letJ be a relational structure yielding many sorted set indexed byI . We
introduceI -prodPOSJ as a synonym of∏J.

Let I be a set and letJ be a relational structure yielding nonempty many sorted set indexed byI .
Observe thatI -prodPOSJ is constituted functions.

Let I be a set and letJ be a topological space yielding nonempty many sorted set indexed byI .
We introduceI -prodTOPJ as a synonym of∏J.

Let X, Y be non empty topological spaces. The functor[X → Y] yields a non empty strict
relational structure and is defined as follows:

(Def. 1) [X →Y] = [X → ΩY].

Let X, Y be non empty topological spaces. One can check that[X →Y] is reflexive, transitive,
and constituted functions.

Let X be a non empty topological space and letY be a non emptyT0 topological space. Observe
that[X →Y] is antisymmetric.

One can prove the following three propositions:

(1) Let X, Y be non empty topological spaces anda be a set. Thena is an element of[X →Y]
if and only if a is a continuous map fromX into ΩY.

(2) Let X, Y be non empty topological spaces anda be a set. Thena is an element of[X →Y]
if and only if a is a continuous map fromX into Y.

(3) Let X, Y be non empty topological spaces,a, b be elements of[X →Y], and f , g be maps
from X into ΩY. If a = f andb = g, thena≤ b iff f ≤ g.

Let X, Y be non empty topological spaces, letx be a point ofX, and letA be a subset of[X →Y].
ThenπxA is a subset ofΩY.

Let X, Y be non empty topological spaces, letx be a set, and letA be a non empty subset of
[X →Y]. Observe thatπxA is non empty.

The following propositions are true:

(4) Ω(the Sierpínski space) is a topological augmentation of 21
⊆.
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(5) Let X be a non empty topological space. Then there exists a mapf from 〈the topology of
X, ⊆〉 into [X → the Sierpínski space] such thatf is isomorphic and for every open subsetV
of X holds f (V) = χV,the carrier ofX.

(6) Let X be a non empty topological space. Then〈the topology ofX, ⊆〉 and [X → the
Sierpínski space] are isomorphic.

Let X, Y, Z be non empty topological spaces and letf be a continuous map fromY into Z. The
functor[X → f ] yields a map from[X →Y] into [X → Z] and is defined by:

(Def. 2) For every continuous mapg from X into Y holds([X → f ])(g) = f ·g.

The functor[ f → X] yielding a map from[Z→ X] into [Y → X] is defined by:

(Def. 3) For every continuous mapg from Z into X holds([ f → X])(g) = g· f .

We now state a number of propositions:

(7) LetX be a non empty topological space andY be a monotone convergenceT0-space. Then
[X →Y] is a directed-sups-inheriting relational substructure of(ΩY)the carrier ofX.

(8) For every non empty topological spaceX and for every monotone convergenceT0-spaceY
holds[X →Y] is up-complete.

(9) For all non empty topological spacesX, Y, Z and for every continuous mapf from Y into
Z holds[X → f ] is monotone.

(10) LetX, Y be non empty topological spaces andf be a continuous map fromY into Y. If f
is idempotent, then[X → f ] is idempotent.

(11) For all non empty topological spacesX, Y, Z and for every continuous mapf from Y into
Z holds[ f → X] is monotone.

(12) LetX, Y be non empty topological spaces andf be a continuous map fromY into Y. If f
is idempotent, then[ f → X] is idempotent.

(13) LetX, Y, Z be non empty topological spaces,f be a continuous map fromY into Z, x be
an element ofX, andA be a subset of[X →Y]. Thenπx([X → f ])◦A = f ◦πxA.

(14) LetX be a non empty topological space,Y, Z be monotone convergenceT0-spaces, andf
be a continuous map fromY into Z. Then[X → f ] is directed-sups-preserving.

(15) LetX, Y, Z be non empty topological spaces,f be a continuous map fromY into Z, x be
an element ofY, andA be a subset of[Z→ X]. Thenπx([ f → X])◦A = π f (x)A.

(16) LetY, Z be non empty topological spaces,X be a monotone convergenceT0-space, andf
be a continuous map fromY into Z. Then[ f → X] is directed-sups-preserving.

(17) Let X, Z be non empty topological spaces andY be a non empty subspace ofZ. Then
[X →Y] is a full relational substructure of[X → Z].

(18) Let Z be a monotone convergenceT0-space,Y be a non empty subspace ofZ, and f be
a continuous map fromZ into Y. Supposef is a retraction. ThenΩY is a directed-sups-
inheriting relational substructure ofΩZ.

(19) Let X be a non empty topological space,Z be a monotone convergenceT0-space,Y be a
non empty subspace ofZ, and f be a continuous map fromZ into Y. If f is a retraction, then
[X → f ] is a retraction of[X → Z] into [X →Y].

(20) LetX be a non empty topological space,Z be a monotone convergenceT0-space, andY be
a non empty subspace ofZ. If Y is a retract ofZ, then[X →Y] is a retract of[X → Z].



CONTINUOUS LATTICES OF MAPS BETWEEN T0 . . . 3

(21) LetX, Y, Z be non empty topological spaces andf be a continuous map fromY into Z. If
f is a homeomorphism, then[X → f ] is isomorphic.

(22) LetX, Y, Z be non empty topological spaces. IfY andZ are homeomorphic, then[X →Y]
and[X → Z] are isomorphic.

(23) Let X be a non empty topological space,Z be a monotone convergenceT0-space, andY
be a non empty subspace ofZ. SupposeY is a retract ofZ and [X → Z] is complete and
continuous. Then[X →Y] is complete and continuous.

(24) Let X be a non empty topological space andY, Z be monotone convergenceT0-spaces.
SupposeY is a topological retract ofZ and[X→Z] is complete and continuous. Then[X→Y]
is complete and continuous.

(25) LetY be a non trivialT0-space. SupposeY is not aT1 space. Then the Sierpiński space is a
topological retract ofY.

(26) Let X be a non empty topological space andY be a non trivialT0-space. If[X → Y] has
l.u.b.’s, thenY is not aT1 space.

Let us observe that the Sierpiński space is non trivial and monotone convergence.
Let us observe that there exists aT0-space which is injective, monotone convergence, and non

trivial.
One can prove the following propositions:

(27) Let X be a non empty topological space andY be a monotone convergence non trivial
T0-space. If[X →Y] is complete and continuous, then〈the topology ofX,⊆〉 is continuous.

(28) LetX be a non empty topological space,x be a point ofX, andY be a monotone conver-
genceT0-space. Then there exists a directed-sups-preserving projection mapF from [X →Y]
into [X →Y] such that

(i) for every continuous mapf from X into Y holdsF( f ) = X 7−→ f (x), and

(ii) there exists a continuous maph from X into X such thath = X 7−→ x andF = [h→Y].

(29) Let X be a non empty topological space andY be a monotone convergenceT0-space. If
[X →Y] is complete and continuous, thenΩY is complete and continuous.

(30) Let X be a non empty 1-sorted structure,I be a non empty set,J be a topological space
yielding nonempty many sorted set indexed byI , f be a map fromX into I -prodTOPJ, andi
be an element ofI . Then(commute( f ))(i) = proj(J, i) · f .

(31) For every 1-sorted structureSand for every setM holds the support ofM 7−→S= M 7−→ the
carrier ofS.

(32) LetX, Y be non empty topological spaces,M be a non empty set, andf be a continuous
map fromX into M -prodTOP(M 7−→ Y). Then commute( f ) is a function fromM into the
carrier of([X →Y]).

(33) For all non empty topological spacesX, Y holds the carrier of([X →Y]) ⊆ (the carrier of
Y)the carrier ofX.

(34) Let X, Y be non empty topological spaces,M be a non empty set, andf be a function
from M into the carrier of([X → Y]). Then commute( f ) is a continuous map fromX into
M -prodTOP(M 7−→Y).

(35) LetX be a non empty topological space andM be a non empty set. Then there exists a map
F from [X → M -prodTOP(M 7−→ the Sierpínski space)] into M -prodPOS(M 7−→ ([X → the
Sierpínski space])) such thatF is isomorphic and for every continuous mapf from X into
M -prodTOP(M 7−→ the Sierpínski space) holdsF( f ) = commute( f ).
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(36) Let X be a non empty topological space andM be a non empty set. Then[X →
M -prodTOP(M 7−→ the Sierpínski space)] and M -prodPOS(M 7−→ ([X → the Sierpínski
space])) are isomorphic.

(37) Let X be a non empty topological space. Suppose〈the topology ofX, ⊆〉 is continuous.
Let Y be an injectiveT0-space. Then[X →Y] is complete and continuous.

Let us mention that there exists a top-lattice which is non trivial, complete, and Scott.
The following proposition is true

(38) LetX be a non empty topological space andL be a non trivial complete Scott top-lattice.
Then[X → L] is complete and continuous if and only if〈the topology ofX,⊆〉 is continuous
andL is continuous.

Let f be a function. One can verify that
⋃

disjoint f is relation-like.
Let f be a function. The functorGf yields a binary relation and is defined as follows:

(Def. 4) Gf = (
⋃

disjoint f )`.

In the sequelx, y are sets andf is a function.
One can prove the following three propositions:

(39) 〈〈x, y〉〉 ∈Gf iff x∈ dom f andy∈ f (x).

(40) For every finite setX holdsπ1(X) is finite andπ2(X) is finite.

(41) LetX, Y be non empty topological spaces,S be a Scott topological augmentation of〈the
topology ofY, ⊆〉, and f be a map fromX into S. If Gf is an open subset of[:X, Y :], then f
is continuous.

Let W be a binary relation and letX be a set. The functorΘX(W) yielding a function is defined
as follows:

(Def. 5) domΘX(W) = X and for everyx such thatx∈ X holds(ΘX(W))(x) = W◦{x}.

We now state the proposition

(42) For every binary relationW and for every setX such that domW ⊆ X holdsGΘX(W) = W.

Let X, Y be topological spaces. Observe that every subset of[:X, Y :] is relation-like and every
element of the topology of[:X, Y :] is relation-like.

Next we state four propositions:

(43) LetX, Y be non empty topological spaces,W be an open subset of[:X, Y :], andx be a point
of X. ThenW◦{x} is an open subset ofY.

(44) LetX, Y be non empty topological spaces,S be a Scott topological augmentation of〈the
topology ofY, ⊆〉, andW be an open subset of[:X, Y :]. ThenΘthe carrier ofX(W) is a continu-
ous map fromX into S.

(45) LetX, Y be non empty topological spaces,S be a Scott topological augmentation of〈the
topology ofY, ⊆〉, andW1, W2 be open subsets of[:X, Y :]. SupposeW1 ⊆W2. Let f1, f2 be
elements of[X → S]. If f1 = Θthe carrier ofX(W1) and f2 = Θthe carrier ofX(W2), then f1 ≤ f2.

(46) Let X, Y be non empty topological spaces andS be a Scott topological augmentation of
〈the topology ofY, ⊆〉. Then there exists a mapF from 〈the topology of[:X, Y :], ⊆〉 into
[X → S] such thatF is monotone and for every open subsetW of [:X, Y :] holds F(W) =
Θthe carrier ofX(W).
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