Injective Spaces. Part II¹

Artur Korniłowicz University of Białystok Jarosław Gryko University of Białystok

MML Identifier: WAYBEL25.

WWW: http://mizar.org/JFM/Vol11/waybel25.html

The articles [26], [11], [33], [34], [35], [8], [10], [9], [7], [28], [1], [21], [22], [24], [18], [25], [23], [14], [13], [27], [37], [15], [32], [2], [3], [4], [36], [12], [19], [29], [5], [30], [20], [31], [6], [17], and [16] provide the notation and terminology for this paper.

1. INJECTIVE SPACES

The following propositions are true:

- (1) For every point p of the Sierpiński space such that p = 0 holds $\{p\}$ is closed.
- (2) For every point p of the Sierpiński space such that p = 1 holds $\{p\}$ is non closed.

Let us observe that the Sierpiński space is non T_1 .

Let us note that every top-lattice which is complete and Scott is also discernible.

Let us mention that there exists a T_0 -space which is injective and strict.

Let us note that there exists a top-lattice which is complete, Scott, and strict.

The following propositions are true:

- (3) Let I be a non empty set and T be a Scott topological augmentation of $\prod(I \longmapsto 2^1_{\subseteq})$. Then the carrier of T = the carrier of $\prod(I \longmapsto 1$ the Sierpiński space).
- (4) Let L_1 , L_2 be complete lattices, T_1 be a Scott topological augmentation of L_1 , T_2 be a Scott topological augmentation of L_2 , h be a map from L_1 into L_2 , and H be a map from T_1 into T_2 . If h = H and h is isomorphic, then H is a homeomorphism.
- (5) Let L_1 , L_2 be complete lattices, T_1 be a Scott topological augmentation of L_1 , and T_2 be a Scott topological augmentation of L_2 . If L_1 and L_2 are isomorphic, then T_1 and T_2 are homeomorphic.
- (6) Let S, T be non empty topological spaces. If S is injective and S and T are homeomorphic, then T is injective.
- (7) Let L_1 , L_2 be complete lattices, T_1 be a Scott topological augmentation of L_1 , and T_2 be a Scott topological augmentation of L_2 . If L_1 and L_2 are isomorphic and T_1 is injective, then T_2 is injective.

Let *X*, *Y* be non empty topological spaces. Let us observe that *X* is a topological retract of *Y* if and only if:

¹This work has been supported by KBN Grant 8 T11C 018 12.

(Def. 1) There exists a continuous map c from X into Y and there exists a continuous map r from Y into X such that $r \cdot c = id_X$.

Next we state several propositions:

- (8) Let S, T, X, Y be non empty topological spaces. Suppose that
- (i) the topological structure of S = the topological structure of T,
- (ii) the topological structure of X = the topological structure of Y, and
- (iii) S is a topological retract of X.

Then *T* is a topological retract of *Y*.

- (9) Let T, S_1 , S_2 be non empty topological structures. Suppose S_1 and S_2 are homeomorphic and S_1 is a topological retract of T. Then S_2 is a topological retract of T.
- (10) Let S, T be non empty topological spaces. Suppose T is injective and S is a topological retract of T. Then S is injective.
- (11) Let *J* be an injective non empty topological space and *Y* be a non empty topological space. If *J* is a subspace of *Y*, then *J* is a topological retract of *Y*.
- (12) For every complete continuous lattice L holds every Scott topological augmentation of L is injective.

Let L be a complete continuous lattice. Note that every topological augmentation of L which is Scott is also injective.

Let T be an injective non empty topological space. Note that the topological structure of T is injective.

2. Specialization Order

Let T be a topological structure. The functor ΩT yields a strict FR-structure and is defined by the conditions (Def. 2).

- (Def. 2)(i) The topological structure of ΩT = the topological structure of T, and
 - (ii) for all elements x, y of ΩT holds $x \le y$ iff there exists a subset Y of T such that $Y = \{y\}$ and $x \in \overline{Y}$.

Let T be an empty topological structure. Observe that ΩT is empty.

Let T be a non empty topological structure. One can check that ΩT is non empty.

Let T be a topological space. One can check that ΩT is topological space-like.

Let T be a topological structure. Note that ΩT is reflexive.

Let T be a topological structure. Observe that ΩT is transitive.

Let T be a T_0 -space. One can verify that ΩT is antisymmetric.

We now state four propositions:

- (13) Let S, T be topological spaces. Suppose the topological structure of S = the topological structure of T. Then $\Omega S = \Omega T$.
- (14) Let M be a non empty set and T be a non empty topological space. Then the relational structure of $\Omega \prod (M \longmapsto T)$ = the relational structure of $\prod (M \longmapsto \Omega T)$.
- (15) For every Scott complete top-lattice S holds ΩS = the FR-structure of S.
- (16) Let L be a complete lattice and S be a Scott topological augmentation of L. Then the relational structure of ΩS = the relational structure of L.

Let S be a Scott complete top-lattice. Observe that ΩS is complete.

We now state four propositions:

- (17) Let T be a non empty topological space and S be a non empty subspace of T. Then ΩS is a full relational substructure of ΩT .
- (18) Let S, T be topological spaces, h be a map from S into T, and g be a map from ΩS into ΩT . If h = g and h is a homeomorphism, then g is isomorphic.
- (19) For all topological spaces S, T such that S and T are homeomorphic holds ΩS and ΩT are isomorphic.
- (20) For every injective T_0 -space T holds ΩT is a complete continuous lattice.

Let T be an injective T_0 -space. Note that ΩT is complete and continuous. The following proposition is true

- (21) For all non empty topological spaces X, Y holds every continuous map from ΩX into ΩY is monotone.
- Let X, Y be non empty topological spaces. Note that every map from ΩX into ΩY which is continuous is also monotone.

The following proposition is true

(22) For every non empty topological space T and for every element x of ΩT holds $\overline{\{x\}} = \downarrow x$.

Let T be a non empty topological space and let x be an element of ΩT . Note that $\overline{\{x\}}$ is non empty, lower, and directed and $\rfloor x$ is closed.

One can prove the following proposition

(23) For every topological space X holds every open subset of ΩX is upper.

Let T be a topological space. Observe that every subset of ΩT which is open is also upper.

Let I be a non empty set, let S, T be non empty relational structures, let S be a net in S, and let S be an element of S. Let us assume that the carrier of S the carrier of S. The functor commute S, S yields a strict net in S and is defined by the conditions (Def. 3).

- (Def. 3)(i) The relational structure of commute (N, i, S) = the relational structure of N, and
 - (ii) the mapping of commute (N, i, S) = (commute(the mapping of N))(i).

Next we state two propositions:

- (24) Let X, Y be non empty topological spaces, N be a net in $[X \to \Omega Y]$, i be an element of N, and x be a point of X. Then (the mapping of commute $(N, x, \Omega Y)$)(i) = (the mapping of N)(i)(x).
- (25) Let X, Y be non empty topological spaces, N be an eventually-directed net in $[X \to \Omega Y]$, and X be a point of X. Then commute $(N, x, \Omega Y)$ is eventually-directed.
- Let X, Y be non empty topological spaces, let N be an eventually-directed net in $[X \to \Omega Y]$, and let X be a point of X. Note that commute(N, X, X) is eventually-directed.
 - Let X, Y be non empty topological spaces. Note that every net in $[X \to \Omega Y]$ is function yielding. We now state the proposition
 - (26) Let X be a non empty topological space, Y be a T_0 -space, and N be a net in $[X \to \Omega Y]$. Suppose that for every point x of X holds sup commute $(N, x, \Omega Y)$ exists. Then sup rng (the mapping of N) exists in (ΩY) ^{the carrier of X}.

3. MONOTONE CONVERGENCE TOPOLOGICAL SPACES

Let *T* be a non empty topological space. We say that *T* is monotone convergence if and only if the condition (Def. 4) is satisfied.

(Def. 4) Let D be a non empty directed subset of ΩT . Then sup D exists in ΩT and for every open subset V of T such that sup $D \in V$ holds D meets V.

Next we state the proposition

(27) Let S, T be non empty topological spaces. Suppose the topological structure of S = the topological structure of T and S is monotone convergence. Then T is monotone convergence.

One can check that every T_0 -space which is trivial is also monotone convergence. Let us observe that there exists a topological space which is strict, trivial, and non empty. The following two propositions are true:

- (28) Let S be a monotone convergence T_0 -space and T be a T_0 -space. If S and T are homeomorphic, then T is monotone convergence.
- (29) Every Scott complete top-lattice is monotone convergence.

Let L be a complete lattice. One can verify that every Scott topological augmentation of L is monotone convergence.

Let L be a complete lattice and let S be a Scott topological augmentation of L. Note that the topological structure of S is monotone convergence.

We now state the proposition

(30) For every monotone convergence T_0 -space X holds ΩX is up-complete.

Let X be a monotone convergence T_0 -space. Note that ΩX is up-complete. The following three propositions are true:

- (31) Let X be a monotone convergence non empty topological space and N be an eventually-directed prenet over ΩX . Then sup N exists.
- (32) Let X be a monotone convergence non empty topological space and N be an eventually-directed net in ΩX . Then $\sup N \in \text{Lim } N$.
- (33) For every monotone convergence non empty topological space X holds every eventually-directed net in ΩX is convergent.

Let X be a monotone convergence non empty topological space. One can check that every eventually-directed net in ΩX is convergent.

We now state two propositions:

- (34) Let *X* be a non empty topological space. Suppose that for every eventually-directed net *N* in ΩX holds sup *N* exists and sup $N \in \text{Lim } N$. Then *X* is monotone convergence.
- (35) Let X be a monotone convergence non empty topological space and Y be a T_0 -space. Then every continuous map from ΩX into ΩY is directed-sups-preserving.

Let X be a monotone convergence non empty topological space and let Y be a T_0 -space. Note that every map from ΩX into ΩY which is continuous is also directed-sups-preserving.

One can prove the following four propositions:

- (36) Let T be a monotone convergence T_0 -space and R be a T_0 -space. If R is a topological retract of T, then R is monotone convergence.
- (37) Let T be an injective T_0 -space and S be a Scott topological augmentation of ΩT . Then the topological structure of S = the topological structure of T.

- (38) Every injective T_0 -space is compact, locally-compact, and sober.
- (39) Every injective T_0 -space is monotone convergence.

Let us note that every T_0 -space which is injective is also monotone convergence. We now state four propositions:

- (40) Let X be a non empty topological space, Y be a monotone convergence T_0 -space, N be a net in $[X \to \Omega Y]$, and f, g be maps from X into ΩY . Suppose that
 - (i) $f = \bigsqcup_{((\Omega Y)^{\text{the carrier of } X)}} \operatorname{rng}(\text{the mapping of } N),$
- (ii) sup rng (the mapping of N) exists in $(\Omega Y)^{\text{the carrier of } X}$, and
- (iii) $g \in \operatorname{rng}(\text{the mapping of } N)$.

Then $g \leq f$.

- (41) Let X be a non empty topological space, Y be a monotone convergence T_0 -space, N be a net in $[X \to \Omega Y]$, x be a point of X, and f be a map from X into ΩY . Suppose for every point a of X holds commute $(N, a, \Omega Y)$ is eventually-directed and $f = \bigsqcup_{((\Omega Y)^{\text{the carrier of } X)}} \operatorname{rng}$ (the mapping of N). Then $f(x) = \operatorname{supcommute}(N, x, \Omega Y)$.
- (42) Let X be a non empty topological space, Y be a monotone convergence T_0 -space, and N be a net in $[X \to \Omega Y]$. Suppose that for every point x of X holds commute $(N, x, \Omega Y)$ is eventually-directed. Then $\bigsqcup_{((\Omega Y)^{\text{the carrier of } X)}} \operatorname{rng}$ (the mapping of N) is a continuous map from X into Y.
- (43) Let X be a non empty topological space and Y be a monotone convergence T_0 -space. Then $[X \to \Omega Y]$ is a directed-sups-inheriting relational substructure of $(\Omega Y)^{\text{the carrier of } X}$.

REFERENCES

- [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [2] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [3] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow 0.html.
- [4] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [5] Grzegorz Bancerek. The "way-below" relation. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 3.html.
- [6] Grzegorz Bancerek. Bases and refinements of topologies. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Volloy_9.html.
- [7] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/realsetl.
- [8] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [9] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [10] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [11] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_1.html.
- [12] Czesław Byliński. Galois connections. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_1.html.
- [13] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [14] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [15] Adam Grabowski. Properties of the product of compact topological spaces. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Voll1/borsuk_3.html.

- [16] Adam Grabowski. Scott-continuous functions. Part II. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Vol11/waybe124.html.
- [17] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [18] Jarosław Gryko. Injective spaces. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/waybel18.html.
- [19] Artur Korniłowicz. Meet continuous lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 2.html.
- [20] Artur Korniłowicz. On the topological properties of meet-continuous lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_9.html.
- [21] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/pralq_1.html.
- [22] Beata Madras. Products of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/pralg_2 html
- [23] Michał Muzalewski. Categories of groups. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/grcat_1.html.
- [24] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/pre_circ.html.
- [25] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [26] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/
- [27] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/borsuk_1.html.
- [28] Andrzej Trybulec. Natural transformations. Discrete categories. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/Vol3/nattra_1.html.
- [29] Andrzej Trybulec. Moore-Smith convergence. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_6.html.
- [30] Andrzej Trybulec. Baire spaces, Sober spaces. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/yellow_ 8.html.
- [31] Andrzej Trybulec. Scott topology. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/waybell1.html.
- [32] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [33] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [34] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [35] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset 1.html.
- [36] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_2.html.
- [37] Mariusz Żynel and Adam Guzowski. To topological spaces. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/ Vol6/t_Otopsp.html.

Received July 3, 1999

Published January 2, 2004