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The articles [26], [11], [33], [34], [35], [8], [10], [9], [7], [28], [1], [21], [22], [24], [18], [25], [23],
[14], [13], [27], [37], [15], [32], [2], [3], [4], [36], [12], [19], [29], [5], [30], [20], [31], [6], [17],
and [16] provide the notation and terminology for this paper.

1. INJECTIVE SPACES

The following propositions are true:

(1) For every pointp of the Sierpínski space such thatp = 0 holds{p} is closed.

(2) For every pointp of the Sierpínski space such thatp = 1 holds{p} is non closed.

Let us observe that the Sierpiński space is nonT1.
Let us note that every top-lattice which is complete and Scott is also discernible.
Let us mention that there exists aT0-space which is injective and strict.
Let us note that there exists a top-lattice which is complete, Scott, and strict.
The following propositions are true:

(3) Let I be a non empty set andT be a Scott topological augmentation of∏(I 7−→ 21
⊆). Then

the carrier ofT = the carrier of∏(I 7−→ the Sierpínski space).

(4) LetL1, L2 be complete lattices,T1 be a Scott topological augmentation ofL1, T2 be a Scott
topological augmentation ofL2, h be a map fromL1 into L2, andH be a map fromT1 into T2.
If h = H andh is isomorphic, thenH is a homeomorphism.

(5) Let L1, L2 be complete lattices,T1 be a Scott topological augmentation ofL1, andT2 be
a Scott topological augmentation ofL2. If L1 and L2 are isomorphic, thenT1 and T2 are
homeomorphic.

(6) LetS, T be non empty topological spaces. IfS is injective andSandT are homeomorphic,
thenT is injective.

(7) Let L1, L2 be complete lattices,T1 be a Scott topological augmentation ofL1, andT2 be a
Scott topological augmentation ofL2. If L1 andL2 are isomorphic andT1 is injective, thenT2

is injective.

Let X, Y be non empty topological spaces. Let us observe thatX is a topological retract ofY if
and only if:
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(Def. 1) There exists a continuous mapc from X into Y and there exists a continuous mapr from Y
into X such thatr ·c = idX.

Next we state several propositions:

(8) LetS, T, X, Y be non empty topological spaces. Suppose that

(i) the topological structure ofS= the topological structure ofT,

(ii) the topological structure ofX = the topological structure ofY, and

(iii) S is a topological retract ofX.

ThenT is a topological retract ofY.

(9) Let T, S1, S2 be non empty topological structures. SupposeS1 andS2 are homeomorphic
andS1 is a topological retract ofT. ThenS2 is a topological retract ofT.

(10) Let S, T be non empty topological spaces. SupposeT is injective andS is a topological
retract ofT. ThenS is injective.

(11) LetJ be an injective non empty topological space andY be a non empty topological space.
If J is a subspace ofY, thenJ is a topological retract ofY.

(12) For every complete continuous latticeL holds every Scott topological augmentation ofL is
injective.

Let L be a complete continuous lattice. Note that every topological augmentation ofL which is
Scott is also injective.

Let T be an injective non empty topological space. Note that the topological structure ofT is
injective.

2. SPECIALIZATION ORDER

Let T be a topological structure. The functorΩT yields a strict FR-structure and is defined by the
conditions (Def. 2).

(Def. 2)(i) The topological structure ofΩT = the topological structure ofT, and

(ii) for all elementsx, y of ΩT holdsx≤ y iff there exists a subsetY of T such thatY = {y}
andx∈Y.

Let T be an empty topological structure. Observe thatΩT is empty.
Let T be a non empty topological structure. One can check thatΩT is non empty.
Let T be a topological space. One can check thatΩT is topological space-like.
Let T be a topological structure. Note thatΩT is reflexive.
Let T be a topological structure. Observe thatΩT is transitive.
Let T be aT0-space. One can verify thatΩT is antisymmetric.
We now state four propositions:

(13) Let S, T be topological spaces. Suppose the topological structure ofS= the topological
structure ofT. ThenΩS= ΩT.

(14) Let M be a non empty set andT be a non empty topological space. Then the relational
structure ofΩ∏(M 7−→ T) = the relational structure of∏(M 7−→ΩT).

(15) For every Scott complete top-latticeSholdsΩS= the FR-structure ofS.

(16) Let L be a complete lattice andS be a Scott topological augmentation ofL. Then the
relational structure ofΩS= the relational structure ofL.

Let Sbe a Scott complete top-lattice. Observe thatΩS is complete.
We now state four propositions:
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(17) LetT be a non empty topological space andSbe a non empty subspace ofT. ThenΩS is
a full relational substructure ofΩT.

(18) LetS, T be topological spaces,h be a map fromS into T, andg be a map fromΩS into ΩT.
If h = g andh is a homeomorphism, theng is isomorphic.

(19) For all topological spacesS, T such thatSandT are homeomorphic holdsΩSandΩT are
isomorphic.

(20) For every injectiveT0-spaceT holdsΩT is a complete continuous lattice.

Let T be an injectiveT0-space. Note thatΩT is complete and continuous.
The following proposition is true

(21) For all non empty topological spacesX, Y holds every continuous map fromΩX into ΩY
is monotone.

Let X, Y be non empty topological spaces. Note that every map fromΩX into ΩY which is
continuous is also monotone.

The following proposition is true

(22) For every non empty topological spaceT and for every elementx of ΩT holds{x}= ↓x.

Let T be a non empty topological space and letx be an element ofΩT. Note that{x} is non
empty, lower, and directed and↓x is closed.

One can prove the following proposition

(23) For every topological spaceX holds every open subset ofΩX is upper.

Let T be a topological space. Observe that every subset ofΩT which is open is also upper.
Let I be a non empty set, letS, T be non empty relational structures, letN be a net inT,

and leti be an element ofI . Let us assume that the carrier ofT ⊆ the carrier ofSI . The functor
commute(N, i,S) yields a strict net inSand is defined by the conditions (Def. 3).

(Def. 3)(i) The relational structure of commute(N, i,S) = the relational structure ofN, and

(ii) the mapping of commute(N, i,S) = (commute(the mapping ofN))(i).

Next we state two propositions:

(24) Let X, Y be non empty topological spaces,N be a net in[X → ΩY], i be an element of
N, andx be a point ofX. Then (the mapping of commute(N,x,ΩY))(i) = (the mapping of
N)(i)(x).

(25) LetX, Y be non empty topological spaces,N be an eventually-directed net in[X → ΩY],
andx be a point ofX. Then commute(N,x,ΩY) is eventually-directed.

Let X, Y be non empty topological spaces, letN be an eventually-directed net in[X →ΩY], and
let x be a point ofX. Note that commute(N,x,ΩY) is eventually-directed.

Let X, Y be non empty topological spaces. Note that every net in[X→ΩY] is function yielding.
We now state the proposition

(26) Let X be a non empty topological space,Y be aT0-space, andN be a net in[X → ΩY].
Suppose that for every pointx of X holds sup commute(N,x,ΩY) exists. Then sup rng(the
mapping ofN) exists in(ΩY)the carrier ofX.
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3. MONOTONECONVERGENCETOPOLOGICAL SPACES

Let T be a non empty topological space. We say thatT is monotone convergence if and only if the
condition (Def. 4) is satisfied.

(Def. 4) LetD be a non empty directed subset ofΩT. Then supD exists inΩT and for every open
subsetV of T such that supD ∈V holdsD meetsV.

Next we state the proposition

(27) Let S, T be non empty topological spaces. Suppose the topological structure ofS= the
topological structure ofT andS is monotone convergence. ThenT is monotone convergence.

One can check that everyT0-space which is trivial is also monotone convergence.
Let us observe that there exists a topological space which is strict, trivial, and non empty.
The following two propositions are true:

(28) LetSbe a monotone convergenceT0-space andT be aT0-space. IfSandT are homeomor-
phic, thenT is monotone convergence.

(29) Every Scott complete top-lattice is monotone convergence.

Let L be a complete lattice. One can verify that every Scott topological augmentation ofL is
monotone convergence.

Let L be a complete lattice and letS be a Scott topological augmentation ofL. Note that the
topological structure ofS is monotone convergence.

We now state the proposition

(30) For every monotone convergenceT0-spaceX holdsΩX is up-complete.

Let X be a monotone convergenceT0-space. Note thatΩX is up-complete.
The following three propositions are true:

(31) Let X be a monotone convergence non empty topological space andN be an eventually-
directed prenet overΩX. Then supN exists.

(32) Let X be a monotone convergence non empty topological space andN be an eventually-
directed net inΩX. Then supN ∈ Lim N.

(33) For every monotone convergence non empty topological spaceX holds every eventually-
directed net inΩX is convergent.

Let X be a monotone convergence non empty topological space. One can check that every
eventually-directed net inΩX is convergent.

We now state two propositions:

(34) LetX be a non empty topological space. Suppose that for every eventually-directed netN
in ΩX holds supN exists and supN ∈ Lim N. ThenX is monotone convergence.

(35) LetX be a monotone convergence non empty topological space andY be aT0-space. Then
every continuous map fromΩX into ΩY is directed-sups-preserving.

Let X be a monotone convergence non empty topological space and letY be aT0-space. Note
that every map fromΩX into ΩY which is continuous is also directed-sups-preserving.

One can prove the following four propositions:

(36) LetT be a monotone convergenceT0-space andRbe aT0-space. IfR is a topological retract
of T, thenR is monotone convergence.

(37) LetT be an injectiveT0-space andSbe a Scott topological augmentation ofΩT. Then the
topological structure ofS= the topological structure ofT.



INJECTIVE SPACES. PART II 5

(38) Every injectiveT0-space is compact, locally-compact, and sober.

(39) Every injectiveT0-space is monotone convergence.

Let us note that everyT0-space which is injective is also monotone convergence.
We now state four propositions:

(40) LetX be a non empty topological space,Y be a monotone convergenceT0-space,N be a
net in[X →ΩY], and f , g be maps fromX into ΩY. Suppose that

(i) f =
⊔

((ΩY)the carrier ofX) rng(the mapping ofN),

(ii) sup rng(the mapping ofN) exists in(ΩY)the carrier ofX, and

(iii) g∈ rng(the mapping ofN).

Theng≤ f .

(41) LetX be a non empty topological space,Y be a monotone convergenceT0-space,N be a net
in [X →ΩY], x be a point ofX, and f be a map fromX into ΩY. Suppose for every pointa of
X holds commute(N,a,ΩY) is eventually-directed andf =

⊔
((ΩY)the carrier ofX) rng(the mapping

of N). Then f (x) = supcommute(N,x,ΩY).

(42) Let X be a non empty topological space,Y be a monotone convergenceT0-space, and
N be a net in[X → ΩY]. Suppose that for every pointx of X holds commute(N,x,ΩY) is
eventually-directed. Then

⊔
((ΩY)the carrier ofX) rng(the mapping ofN) is a continuous map from

X into Y.

(43) LetX be a non empty topological space andY be a monotone convergenceT0-space. Then
[X →ΩY] is a directed-sups-inheriting relational substructure of(ΩY)the carrier ofX.
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