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The articles [17], [9], [22], [23], [7], [8], [1], [2], [16], [18], [15], [21], [3], [19], [4], [10], [5], [12],
[24], [6], [14], [20], [11], and [13] provide the notation and terminology for this paper.

1. PRELIMINARIES

The following proposition is true

(1) Let S, T be up-complete Scott top-lattices andM be a subset of SCMaps(S,T). Then⊔
SCMaps(S,T) M is a continuous map fromS into T.

Let Sbe a non empty relational structure and letT be a non empty reflexive relational structure.
One can verify that every map fromS into T which is constant is also monotone.

Let Sbe a non empty relational structure, letT be a reflexive non empty relational structure, and
let a be an element ofT. One can check thatS 7−→ a is monotone.

One can prove the following propositions:

(2) LetSbe a non empty relational structure andT be a lower-bounded antisymmetric reflexive
non empty relational structure. Then⊥MonMaps(S,T) = S 7−→ ⊥T .

(3) LetSbe a non empty relational structure andT be an upper-bounded antisymmetric reflex-
ive non empty relational structure. Then>MonMaps(S,T) = S 7−→ >T .

(4) Let S, T be complete lattices,f be a monotone map fromS into T, andx be an element of
S. Then f (x) = sup( f ◦↓x).

(5) LetS, T be complete lower-bounded lattices,f be a monotone map fromS into T, andx be
an element ofS. Then f (x) =

⊔
T{ f (w);w ranges over elements ofS: w≤ x}.

(6) Let Sbe a relational structure,T be a non empty relational structure, andF be a subset of
T the carrier ofS. Then supF is a map fromS into T.

2. ON THE SCOTT CONTINUITY OF MAPS

Let X1, X2, Y be non empty relational structures, letf be a map from[:X1, X2 :] into Y, and letx be
an element ofX1. The functor Proj( f ,x) yields a map fromX2 into Y and is defined by:

(Def. 1) Proj( f ,x) = (curry f )(x).
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For simplicity, we adopt the following rules:X1, X2, Y denote non empty relational structures,
f denotes a map from[:X1, X2 :] into Y, x denotes an element ofX1, andy denotes an element ofX2.

We now state the proposition

(7) For every elementy of X2 holds(Proj( f ,x))(y) = f (〈〈x, y〉〉).

Let X1, X2, Y be non empty relational structures, letf be a map from[:X1, X2 :] into Y, and lety
be an element ofX2. The functor Proj( f ,y) yielding a map fromX1 into Y is defined as follows:

(Def. 2) Proj( f ,y) = (curry′ f )(y).

One can prove the following propositions:

(8) For every elementx of X1 holds(Proj( f ,y))(x) = f (〈〈x, y〉〉).

(9) Let R, S, T be non empty relational structures,f be a map from[:R, S:] into T, a be an
element ofR, andb be an element ofS. Then(Proj( f ,a))(b) = (Proj( f ,b))(a).

Let Sbe a non empty relational structure and letT be a non empty reflexive relational structure.
One can verify that there exists a map fromS into T which is antitone.

We now state two propositions:

(10) LetR, S, T be non empty reflexive relational structures,f be a map from[:R, S:] into T, a
be an element ofR, andb be an element ofS. If f is monotone, then Proj( f ,a) is monotone
and Proj( f ,b) is monotone.

(11) LetR, S, T be non empty reflexive relational structures,f be a map from[:R, S:] into T, a
be an element ofR, andb be an element ofS. If f is antitone, then Proj( f ,a) is antitone and
Proj( f ,b) is antitone.

Let R, S, T be non empty reflexive relational structures, letf be a monotone map from[:R, S:]
into T, and leta be an element ofR. Observe that Proj( f ,a) is monotone.

Let R, S, T be non empty reflexive relational structures, letf be a monotone map from[:R, S:]
into T, and letb be an element ofS. Observe that Proj( f ,b) is monotone.

Let R, S, T be non empty reflexive relational structures, letf be an antitone map from[:R, S:]
into T, and leta be an element ofR. Note that Proj( f ,a) is antitone.

Let R, S, T be non empty reflexive relational structures, letf be an antitone map from[:R, S:]
into T, and letb be an element ofS. One can check that Proj( f ,b) is antitone.

One can prove the following propositions:

(12) LetR, S, T be lattices andf be a map from[:R, S:] into T. Suppose that for every element
a of R and for every elementb of Sholds Proj( f ,a) is monotone and Proj( f ,b) is monotone.
Then f is monotone.

(13) LetR, S, T be lattices andf be a map from[:R, S:] into T. Suppose that for every elementa
of R and for every elementb of Sholds Proj( f ,a) is antitone and Proj( f ,b) is antitone. Then
f is antitone.

(14) LetR, S, T be lattices,f be a map from[:R, S:] into T, b be an element ofS, andX be a
subset ofR. Then(Proj( f ,b))◦X = f ◦[:X, {b} :].

(15) LetR, S, T be lattices,f be a map from[:R, S:] into T, b be an element ofR, andX be a
subset ofS. Then(Proj( f ,b))◦X = f ◦[:{b}, X :].

(16) Let R, S, T be lattices,f be a map from[:R, S:] into T, a be an element ofR, andb be
an element ofS. Supposef is directed-sups-preserving. Then Proj( f ,a) is directed-sups-
preserving and Proj( f ,b) is directed-sups-preserving.

(17) LetR, S, T be lattices,f be a monotone map from[:R, S:] into T, a be an element ofR, b be
an element ofS, andX be a directed subset of[:R, S:]. If sup f ◦X exists inT anda∈ π1(X)
andb∈ π2(X), then f (〈〈a, b〉〉)≤ sup( f ◦X).
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(18) LetR, S, T be complete lattices andf be a map from[:R, S:] into T. Suppose that for every
elementa of R and for every elementb of Sholds Proj( f ,a) is directed-sups-preserving and
Proj( f ,b) is directed-sups-preserving. Thenf is directed-sups-preserving.

(19) LetSbe a non empty 1-sorted structure,T be a non empty relational structure, andf be a
set. Thenf is an element ofT the carrier ofS if and only if f is a map fromS into T.

3. THE POSET OFCONTINUOUS MAPS

Let Sbe a topological structure and letT be a non empty FR-structure. The functor[S→ T] yields
a strict relational structure and is defined by the conditions (Def. 3).

(Def. 3)(i) [S→ T] is a full relational substructure ofT the carrier ofS, and

(ii) for every setx holdsx∈ the carrier of([S→ T]) iff there exists a mapf from Sinto T such
thatx = f and f is continuous.

Let S be a non empty topological space and letT be a non empty topological space-like FR-
structure. Note that[S→ T] is non empty.

Let S be a non empty topological space and letT be a non empty topological space-like FR-
structure. Note that[S→ T] is constituted functions.

Next we state two propositions:

(20) LetSbe a non empty topological space,T be a non empty reflexive topological space-like
FR-structure, andx, y be elements of[S→ T]. Thenx≤ y if and only if for every elementi
of Sholds〈〈x(i), y(i)〉〉 ∈ the internal relation ofT.

(21) LetSbe a non empty topological space,T be a non empty reflexive topological space-like
FR-structure, andx be a set. Thenx is a continuous map fromS into T if and only if x is an
element of[S→ T].

Let Sbe a non empty topological space and letT be a non empty reflexive topological space-like
FR-structure. Observe that[S→ T] is reflexive.

Let Sbe a non empty topological space and letT be a non empty transitive topological space-like
FR-structure. One can check that[S→ T] is transitive.

Let S be a non empty topological space and letT be a non empty antisymmetric topological
space-like FR-structure. Note that[S→ T] is antisymmetric.

Let S be a non empty 1-sorted structure and letT be a non empty topological space-like FR-
structure. Observe thatT the carrier ofS is constituted functions.

Next we state three propositions:

(22) LetS be a non empty 1-sorted structure,T be a complete lattice,f , g, h be maps fromS
into T, andi be an element ofS. If h =

⊔
(T the carrier ofS){ f ,g}, thenh(i) = sup{ f (i),g(i)}.

(23) LetI be a non empty set andJ be a relational structure yielding nonempty reflexive-yielding
many sorted set indexed byI . Suppose that for every elementi of I holdsJ(i) is a complete
lattice. LetX be a subset of∏J andi be an element ofI . Then(inf X)(i) = inf πiX.

(24) LetS be a non empty 1-sorted structure,T be a complete lattice,f , g, h be maps fromS
into T, andi be an element ofS. If h = d−e(T the carrier ofS){ f ,g}, thenh(i) = inf{ f (i),g(i)}.

Let S be a non empty 1-sorted structure and letT be a lattice. Observe that every element of
T the carrier ofS is function-like and relation-like.

Let S, T be top-lattices. Note that every element of[S→ T] is function-like and relation-like.
The following two propositions are true:

(25) LetSbe a non empty relational structure,T be a complete lattice,F be a non empty subset
of T the carrier ofS, andi be an element ofS. Then(supF)(i) =

⊔
T{ f (i); f ranges over elements

of T the carrier ofS: f ∈ F}.
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(26) LetS, T be complete top-lattices,F be a non empty subset of[S→ T], andi be an element
of S. Then(

⊔
(T the carrier ofS) F)(i) =

⊔
T{ f (i); f ranges over elements ofT the carrier ofS: f ∈ F}.

In the sequelSdenotes a non empty relational structure andT denotes a complete lattice.
The following propositions are true:

(27) Let F be a non empty subset ofT the carrier ofS andD be a non empty subset ofS. Then
(supF)◦D = {

⊔
T{ f (i); f ranges over elements ofT the carrier ofS: f ∈ F}; i ranges over ele-

ments ofS: i ∈ D}.

(28) Let S, T be complete Scott top-lattices,F be a non empty subset of[S→ T], andD be
a non empty subset ofS. Then(

⊔
(T the carrier ofS) F)◦D = {

⊔
T{ f (i); f ranges over elements of

T the carrier ofS: f ∈ F}; i ranges over elements ofS: i ∈ D}.

The schemeFraenkelF’RSSdeals with a non empty relational structureA , a unary functorF
yielding a set, a unary functorG yielding a set, and a unary predicateP , and states that:

{F (v1);v1 ranges over elements ofA : P [v1]}= {G(v2);v2 ranges over elements of
A : P [v2]}

provided the parameters have the following property:
• For every elementv of A such thatP [v] holdsF (v) = G(v).

We now state several propositions:

(29) Let S, T be complete Scott top-lattices andF be a non empty subset of[S→ T]. Then⊔
(T the carrier ofS) F is a monotone map fromS into T.

(30) LetS, T be complete Scott top-lattices,F be a non empty subset of[S→ T], andD be a
directed non empty subset ofS. Then

⊔
T{

⊔
T{g(i); i ranges over elements ofS: i ∈ D};g

ranges over elements ofT the carrier ofS: g ∈ F} =
⊔

T{
⊔

T{g′(i′);g′ ranges over elements of
T the carrier ofS: g′ ∈ F}; i′ ranges over elements ofS: i′ ∈ D}.

(31) LetS, T be complete Scott top-lattices,F be a non empty subset of[S→ T], andD be a
directed non empty subset ofS. Then

⊔
T((

⊔
(T the carrier ofS) F)◦D) = (

⊔
(T the carrier ofS) F)(supD).

(32) Let S, T be complete Scott top-lattices andF be a non empty subset of[S→ T]. Then⊔
(T the carrier ofS) F ∈ the carrier of([S→ T]).

(33) Let S be a non empty relational structure andT be a lower-bounded antisymmetric non
empty relational structure. Then⊥T the carrier ofS = S 7−→ ⊥T .

(34) Let S be a non empty relational structure andT be an upper-bounded antisymmetric non
empty relational structure. Then>T the carrier ofS = S 7−→ >T .

Let Sbe a non empty reflexive relational structure, letT be a complete lattice, and leta be an
element ofT. Note thatS 7−→ a is directed-sups-preserving.

Next we state the proposition

(35) LetS, T be complete Scott top-lattices. Then[S→ T] is a sups-inheriting relational sub-
structure ofT the carrier ofS.

Let S, T be complete Scott top-lattices. Note that[S→ T] is complete.
The following three propositions are true:

(36) For all non empty Scott complete top-latticesS, T holds⊥[S→T] = S 7−→ ⊥T .

(37) For all non empty Scott complete top-latticesS, T holds>[S→T] = S 7−→ >T .

(38) For all Scott complete top-latticesS, T holds SCMaps(S,T) = [S→ T].



SCOTT-CONTINUOUS FUNCTIONS. PART II 5

REFERENCES

[1] Grzegorz Bancerek. Curried and uncurried functions.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/
funct_5.html.

[2] Grzegorz Bancerek. K̈onig’s theorem.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/card_3.html.

[3] Grzegorz Bancerek. Complete lattices.Journal of Formalized Mathematics, 4, 1992.http://mizar.org/JFM/Vol4/lattice3.html.

[4] Grzegorz Bancerek. Bounds in posets and relational substructures.Journal of Formalized Mathematics, 8, 1996.http://mizar.org/
JFM/Vol8/yellow_0.html.

[5] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps.Journal of Formalized Mathematics, 8, 1996.http://mizar.org/
JFM/Vol8/waybel_0.html.

[6] Grzegorz Bancerek. The “way-below” relation.Journal of Formalized Mathematics, 8, 1996.http://mizar.org/JFM/Vol8/waybel_
3.html.
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