Maximal Kolmogorov Subspaces of a Topological Space as Stone Retracts of the Ambient Space¹

Zbigniew Karno Warsaw University Białystok

Summary. Let X be a topological space. X is said to be T_0 -space (or Kolmogorov space) provided for every pair of distinct points $x, y \in X$ there exists an open subset of X containing exactly one of these points (see [1], [9], [5]). Such spaces and subspaces were investigated in Mizar formalism in [8]. A Kolmogorov subspace X_0 of a topological space X is said to be maximal provided for every Kolmogorov subspace Y of X if X_0 is subspace of Y then the topological structures of Y and X_0 are the same.

M.H. Stone proved in [11] that every topological space can be made into a Kolmogorov space by identifying points with the same closure (see also [12]). The purpose is to generalize the Stone result, using Mizar System. It is shown here that: (1) in every topological space X there exists a maximal Kolmogorov subspace X_0 of X, and (2) every maximal Kolmogorov subspace X_0 of X is a continuous retract of X. Moreover, if $r: X \to X_0$ is a continuous retraction of X onto a maximal Kolmogorov subspace X_0 of X, then $r^{-1}(x) = \text{MaxADSet}(x)$ for any point x of X belonging to X_0 , where MaxADSet(x) is a unique maximal anti-discrete subset of X containing X (see [7] for the precise definition of the set MaxADSet(x)). The retraction r from the last theorem is defined uniquely, and it is denoted in the text by "Stone-retraction". It has the following two remarkable properties: r is open, i.e., sends open sets in X to open sets in X_0 , and r is closed, i.e., sends closed sets in X to closed sets in X_0 .

These results may be obtained by the methods described by R.H. Warren in [16].

MML Identifier: TSP_2.

WWW: http://mizar.org/JFM/Vol6/tsp_2.html

The articles [13], [4], [15], [17], [2], [3], [10], [18], [14], [6], [7], and [8] provide the notation and terminology for this paper.

1. Maximal T_0 -Subsets

Let X be a non empty topological space and let A be a subset of X. Let us observe that A is T_0 if and only if:

(Def. 1) For all points a, b of X such that $a \in A$ and $b \in A$ holds if $a \neq b$, then MaxADSet(a) misses MaxADSet(b).

Let X be a non empty topological space and let A be a subset of X. Let us observe that A is T_0 if and only if:

(Def. 2) For every point a of X such that $a \in A$ holds $A \cap \text{MaxADSet}(a) = \{a\}$.

¹Presented at Mizar Conference: Mathematics in Mizar (Białystok, September 12–14, 1994).

Let X be a non empty topological space and let A be a subset of X. Let us observe that A is T_0 if and only if:

(Def. 3) For every point a of X such that $a \in A$ there exists a subset D of X such that D is maximal anti-discrete and $A \cap D = \{a\}$.

Let Y be a topological structure and let I_1 be a subset of Y. We say that I_1 is maximal T_0 if and only if:

(Def. 4) I_1 is T_0 and for every subset D of Y such that D is T_0 and $I_1 \subseteq D$ holds $I_1 = D$.

We now state the proposition

(1) Let Y_0 , Y_1 be topological structures, D_0 be a subset of Y_0 , and D_1 be a subset of Y_1 . Suppose the topological structure of Y_0 = the topological structure of Y_1 and $D_0 = D_1$. If D_0 is maximal T_0 , then D_1 is maximal T_0 .

Let X be a non empty topological space and let M be a subset of X. Let us observe that M is maximal T_0 if and only if:

(Def. 5) M is T_0 and MaxADSet(M) = the carrier of X.

In the sequel *X* denotes a non empty topological space.

We now state several propositions:

- (2) For every subset M of X such that M is maximal T_0 holds M is dense.
- (3) For every subset A of X such that A is open and closed holds if A is maximal T_0 , then A is not proper.
- (4) For every empty subset A of X holds A is not maximal T_0 .
- (5) Let M be a subset of X. Suppose M is maximal T_0 . Let A be a subset of X. If A is closed, then $A = \text{MaxADSet}(M \cap A)$.
- (6) Let M be a subset of X. Suppose M is maximal T_0 . Let A be a subset of X. If A is open, then $A = \text{MaxADSet}(M \cap A)$.
- (7) For every subset M of X such that M is maximal T_0 and for every subset A of X holds $\overline{A} = \text{MaxADSet}(M \cap \overline{A})$.
- (8) For every subset M of X such that M is maximal T_0 and for every subset A of X holds $IntA = MaxADSet(M \cap IntA)$.

Let X be a non empty topological space and let M be a subset of X. Let us observe that M is maximal T_0 if and only if:

(Def. 6) For every point x of X there exists a point a of X such that $a \in M$ and $M \cap \text{MaxADSet}(x) = \{a\}$.

One can prove the following two propositions:

- (9) For every subset *A* of *X* such that *A* is T_0 there exists a subset *M* of *X* such that $A \subseteq M$ and *M* is maximal T_0 .
- (10) There exists a subset of X which is maximal T_0 .

2. MAXIMAL KOLMOGOROV SUBSPACES

Let Y be a non empty topological structure and let I_1 be a subspace of Y. We say that I_1 is maximal I_0 if and only if:

(Def. 7) For every subset A of Y such that A = the carrier of I_1 holds A is maximal T_0 .

We now state the proposition

(11) Let Y be a non empty topological structure, Y_0 be a subspace of Y, and A be a subset of Y. Suppose A = the carrier of Y_0 . Then A is maximal T_0 if and only if Y_0 is maximal T_0 .

Let Y be a non empty topological structure. Observe that every non empty subspace of Y which is maximal T_0 is also T_0 and every non empty subspace of Y which is non T_0 is also non maximal T_0

Let X be a non empty topological space and let X_0 be a non empty subspace of X. Let us observe that X_0 is maximal T_0 if and only if the conditions (Def. 8) are satisfied.

(Def. 8)(i) X_0 is T_0 , and

(ii) for every T_0 non empty subspace Y_0 of X such that X_0 is a subspace of Y_0 holds the topological structure of X_0 = the topological structure of Y_0 .

In the sequel *X* is a non empty topological space.

The following proposition is true

(12) Let A_0 be a non empty subset of X. Suppose A_0 is maximal T_0 . Then there exists a strict non empty subspace X_0 of X such that X_0 is maximal T_0 and A_0 = the carrier of X_0 .

Let *X* be a non empty topological space. One can verify the following observations:

- * every subspace of X which is maximal T_0 is also dense,
- * every subspace of X which is non dense is also non maximal T_0 ,
- * every subspace of X which is open and maximal T_0 is also non proper,
- * every subspace of X which is open and proper is also non maximal T_0 ,
- * every subspace of X which is proper and maximal T_0 is also non open,
- * every subspace of X which is closed and maximal T_0 is also non proper,
- * every subspace of X which is closed and proper is also non maximal T_0 , and
- * every subspace of X which is proper and maximal T_0 is also non closed.

Next we state the proposition

(13) Let Y_0 be a T_0 non empty subspace of X. Then there exists a strict subspace X_0 of X such that Y_0 is a subspace of X_0 and X_0 is maximal T_0 .

Let X be a non empty topological space. One can check that there exists a subspace of X which is maximal T_0 , strict, and non empty.

Let X be a non empty topological space. A maximal Kolmogorov subspace of X is a maximal T_0 subspace of X.

The following four propositions are true:

- (14) Let X_0 be a maximal Kolmogorov subspace of X, G be a subset of X, and G_0 be a subset of X_0 . Suppose $G_0 = G$. Then G_0 is open if and only if the following conditions are satisfied:
 - (i) MaxADSet(G) is open, and
- (ii) $G_0 = \text{MaxADSet}(G) \cap \text{the carrier of } X_0.$

- (15) Let X_0 be a maximal Kolmogorov subspace of X and G be a subset of X. Then G is open if and only if the following conditions are satisfied:
 - (i) G = MaxADSet(G), and
 - (ii) there exists a subset G_0 of X_0 such that G_0 is open and $G_0 = G \cap$ the carrier of X_0 .
- (16) Let X_0 be a maximal Kolmogorov subspace of X, F be a subset of X, and F_0 be a subset of X_0 . Suppose $F_0 = F$. Then F_0 is closed if and only if the following conditions are satisfied:
 - (i) MaxADSet(F) is closed, and
- (ii) $F_0 = \text{MaxADSet}(F) \cap \text{the carrier of } X_0.$
- (17) Let X_0 be a maximal Kolmogorov subspace of X and F be a subset of X. Then F is closed if and only if the following conditions are satisfied:
 - (i) F = MaxADSet(F), and
- (ii) there exists a subset F_0 of X_0 such that F_0 is closed and $F_0 = F \cap$ the carrier of X_0 .

3. STONE RETRACTION MAPPING THEOREMS

In the sequel X is a non empty topological space and X_0 is a non empty maximal Kolmogorov subspace of X.

Next we state several propositions:

- (18) Let r be a map from X into X_0 and M be a subset of X. Suppose M = the carrier of X_0 . Suppose that for every point a of X holds $M \cap \text{MaxADSet}(a) = \{r(a)\}$. Then r is a continuous map from X into X_0 .
- (19) Let r be a map from X into X_0 . Suppose that for every point a of X holds $r(a) \in \text{MaxADSet}(a)$. Then r is a continuous map from X into X_0 .
- (20) Let r be a continuous map from X into X_0 and M be a subset of X. Suppose M = the carrier of X_0 . If for every point a of X holds $M \cap \text{MaxADSet}(a) = \{r(a)\}$, then r is a retraction.
- (21) For every continuous map r from X into X_0 such that for every point a of X holds $r(a) \in \text{MaxADSet}(a)$ holds r is a retraction.
- (22) There exists a continuous map from X into X_0 which is a retraction.
- (23) X_0 is a retract of X.

Let X be a non empty topological space and let X_0 be a non empty maximal Kolmogorov subspace of X. Stone-retraction of X onto X_0 is a continuous map from X into X_0 and is defined by:

(Def. 9) Stone-retraction of X onto X_0 is a retraction.

One can prove the following propositions:

- (24) Let a be a point of X and b be a point of X_0 . If a = b, then (Stone-retraction of X onto $X_0)^{-1}(\overline{\{b\}}) = \overline{\{a\}}$.
- (25) For every point a of X and for every point b of X_0 such that a = b holds (Stone-retraction of X onto $X_0)^{-1}(\{b\}) = \text{MaxADSet}(a)$.
- (26) For every subset E of X and for every subset F of X_0 such that F = E holds (Stone-retraction of X onto X_0)⁻¹(F) = MaxADSet(E).

Let X be a non empty topological space and let X_0 be a non empty maximal Kolmogorov subspace of X. Then Stone-retraction of X onto X_0 is a continuous map from X into X_0 and it can be characterized by the condition:

(Def. 10) Let M be a subset of X. Suppose M = the carrier of X_0 . Let a be a point of X. Then $M \cap \text{MaxADSet}(a) = \{(\text{Stone-retraction of } X \text{ onto } X_0)(a)\}.$

Let X be a non empty topological space and let X_0 be a non empty maximal Kolmogorov subspace of X. Then Stone-retraction of X onto X_0 is a continuous map from X into X_0 and it can be characterized by the condition:

(Def. 11) For every point a of X holds (Stone-retraction of X onto X_0)(a) \in MaxADSet(a).

We now state two propositions:

- (27) For every point a of X holds (Stone-retraction of X onto $X_0)^{-1}(\{(Stone-retraction of <math>X onto X_0)(a)\}) = MaxADSet(a)$.
- (28) For every point a of X holds (Stone-retraction of X onto X_0) $^{\circ}$ {a} = (Stone-retraction of X onto X_0) $^{\circ}$ MaxADSet(a).

Let X be a non empty topological space and let X_0 be a non empty maximal Kolmogorov subspace of X. Then Stone-retraction of X onto X_0 is a continuous map from X into X_0 and it can be characterized by the condition:

(Def. 12) Let M be a subset of X. Suppose M = the carrier of X_0 . Let A be a subset of X. Then $M \cap \text{MaxADSet}(A) = (\text{Stone-retraction of } X \text{ onto } X_0)^{\circ} A$.

The following propositions are true:

- (29) For every subset A of X holds (Stone-retraction of X onto X_0) $^{-1}$ ((Stone-retraction of X onto X_0) $^{\circ}A$) = MaxADSet(A).
- (30) For every subset *A* of *X* holds (Stone-retraction of *X* onto X_0) $^{\circ}A$ = (Stone-retraction of *X* onto X_0) $^{\circ}$ MaxADSet(*A*).
- (31) Let A, B be subsets of X. Then (Stone-retraction of X onto X_0) $^{\circ}(A \cup B) =$ (Stone-retraction of X onto X_0) $^{\circ}A \cup$ (Stone-retraction of X onto X_0) $^{\circ}B$.
- (32) Let A, B be subsets of X. Suppose A is open or B is open. Then (Stone-retraction of X onto $X_0)^{\circ}(A \cap B) = ($ Stone-retraction of X onto $X_0)^{\circ}A \cap ($ Stone-retraction of X onto $X_0)^{\circ}B$.
- (33) Let A, B be subsets of X. Suppose A is closed or B is closed. Then (Stone-retraction of X onto X_0) $^{\circ}(A \cap B) = ($ Stone-retraction of X onto X_0) $^{\circ}A \cap ($ Stone-retraction of X onto X_0) $^{\circ}B$.
- (34) For every subset *A* of *X* such that *A* is open holds (Stone-retraction of *X* onto X_0) $^{\circ}A$ is open.
- (35) For every subset A of X such that A is closed holds (Stone-retraction of X onto X_0) $^{\circ}A$ is closed.

REFERENCES

- [1] P. Alexandroff and H. H. Hopf. Topologie I. Springer-Verlag, Berlin, 1935.
- [2] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [4] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc 1.html.
- [5] Ryszard Engelking. General Topology, volume 60 of Monografie Matematyczne. PWN Polish Scientific Publishers, Warsaw, 1977.
- [6] Zbigniew Karno. Maximal discrete subspaces of almost discrete topological spaces. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/tex_2.html.
- [7] Zbigniew Karno. Maximal anti-discrete subspaces of topological spaces. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/tex_4.html.

- [8] Zbigniew Karno. On Kolmogorov topological spaces. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/tsp_1.html.
- [9] Kazimierz Kuratowski. Topology, volume I. PWN Polish Scientific Publishers, Academic Press, Warsaw, New York and London, 1966.
- [10] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [11] M. H. Stone. Application of Boolean algebras to topology. Math. Sb., 1:765-771, 1936.
- [12] W.J. Thron. Topological Structures. Holt, Rinehart and Winston, New York, 1966.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [14] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/borsuk_1.html.
- [15] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [16] R.H. Warren. Identification spaces and unique uniformity. Pacific Journal of Mathematics, 95:483-492, 1981.
- [17] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [18] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/tops_1.html.

Received July 26, 1994

Published January 2, 2004