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Summary. In the article we deal with sets of trees and functions yielding trees. So,
we introduce the sets of all trees, all finite trees and of all trees decorated by elements from
some set. Next, the functions and the finite sequences yielding (finite, decorated) trees are
introduced. There are shown some convenient but technical lemmas and clusters concerning
with those concepts. In the fourth section we deal with trees decorated by Cartesian product
and we introduce the concept of a tree called a substitution of structure of some finite tree.
Finally, we introduce the operations of joining trees, i.e. for the finite sequence of trees we
define the tree which is made by joining the trees from the sequence by common root. For one
and two trees there are introduced the same operations.

MML Identifier: TREES_3.

WWW: http://mizar.org/JFM/Vol4/trees_3.html

The articles [14], [9], [17], [15], [1], [18], [7], [5], [11], [13], [16], [12], [19], [8], [6], [10], [2], [4],
and [3] provide the notation and terminology for this paper.

1. FINITE SETS

For simplicity, we adopt the following rules:x, y denote sets,i, n denote natural numbers,p, q
denote finite sequences,X, Y denote sets, andf denotes a function.

2. SETS OF TREES

The set Trees is defined as follows:

(Def. 1) x∈ Trees iffx is a tree.

One can check that Trees is non empty.
The subset FinTrees of Trees is defined as follows:

(Def. 2) x∈ FinTrees iffx is a finite tree.

Let us mention that FinTrees is non empty.
Let I1 be a set. We say thatI1 is constituted of trees if and only if:

(Def. 3) For everyx such thatx∈ I1 holdsx is a tree.

We say thatI1 is constituted of finite trees if and only if:
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(Def. 4) For everyx such thatx∈ I1 holdsx is a finite tree.

We say thatI1 is constituted of decorated trees if and only if:

(Def. 5) For everyx such thatx∈ I1 holdsx is a decorated tree.

We now state a number of propositions:

(1) X is constituted of trees iffX ⊆ Trees.

(2) X is constituted of finite trees iffX ⊆ FinTrees.

(3) X is constituted of trees andY is constituted of trees iffX∪Y is constituted of trees.

(4) If X is constituted of trees andY is constituted of trees, thenX−. Y is constituted of trees.

(5) SupposeX is constituted of trees. ThenX∩Y is constituted of trees andY∩X is constituted
of trees andX \Y is constituted of trees.

(6) X is constituted of finite trees andY is constituted of finite trees if and only ifX ∪Y is
constituted of finite trees.

(7) SupposeX is constituted of finite trees andY is constituted of finite trees. ThenX−. Y is
constituted of finite trees.

(8) SupposeX is constituted of finite trees. Then

(i) X∩Y is constituted of finite trees,

(ii) Y∩X is constituted of finite trees, and

(iii) X \Y is constituted of finite trees.

(9) X is constituted of decorated trees andY is constituted of decorated trees if and only if
X∪Y is constituted of decorated trees.

(10) SupposeX is constituted of decorated trees andY is constituted of decorated trees. Then
X−. Y is constituted of decorated trees.

(11) SupposeX is constituted of decorated trees. Then

(i) X∩Y is constituted of decorated trees,

(ii) Y∩X is constituted of decorated trees, and

(iii) X \Y is constituted of decorated trees.

(12) /0 is constituted of trees, constituted of finite trees, and constituted of decorated trees.

(13) {x} is constituted of trees iffx is a tree.

(14) {x} is constituted of finite trees iffx is a finite tree.

(15) {x} is constituted of decorated trees iffx is a decorated tree.

(16) {x,y} is constituted of trees iffx is a tree andy is a tree.

(17) {x,y} is constituted of finite trees iffx is a finite tree andy is a finite tree.

(18) {x,y} is constituted of decorated trees iffx is a decorated tree andy is a decorated tree.

(19) If X is constituted of trees andY ⊆ X, thenY is constituted of trees.

(20) If X is constituted of finite trees andY ⊆ X, thenY is constituted of finite trees.

(21) If X is constituted of decorated trees andY ⊆ X, thenY is constituted of decorated trees.
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One can verify that there exists a set which is finite, constituted of trees, constituted of finite
trees, and non empty and there exists a set which is finite, constituted of decorated trees, and non
empty.

Let us observe that every set which is constituted of finite trees is also constituted of trees.
Let X be a constituted of trees set. One can check that every subset ofX is constituted of trees.
Let X be a constituted of finite trees set. Observe that every subset ofX is constituted of finite

trees.
Let X be a constituted of decorated trees set. One can check that every subset ofX is constituted

of decorated trees.
Let D be a constituted of trees non empty set. We see that the element ofD is a tree.
Let D be a constituted of finite trees non empty set. We see that the element ofD is a finite tree.
Let D be a constituted of decorated trees non empty set. We see that the element ofD is a

decorated tree.
Let us observe that Trees is constituted of trees.
One can check that there exists a subset of Trees which is constituted of finite trees and non

empty.
Let us mention that FinTrees is constituted of finite trees.
Let D be a non empty set. A set is called a set of trees decorated with elements ofD if:

(Def. 6) For everyx such thatx∈ it holdsx is a tree decorated with elements ofD.

Let D be a non empty set. Observe that every set of trees decorated with elements ofD is
constituted of decorated trees.

Let D be a non empty set. Note that there exists a set of trees decorated with elements ofD
which is finite and non empty.

Let D be a non empty set and letE be a non empty set of trees decorated with elements ofD.
We see that the element ofE is a tree decorated with elements ofD.

Let T be a tree and letD be a non empty set. ThenDT is a non empty set of trees decorated with
elements ofD. We see that the relation betweenT andD is a ParametrizedSubset ofD.

Let T be a tree and letD be a non empty set. One can verify that every function fromT into D
is decorated tree-like.

Let D be a non empty set. The functor Trees(D) yields a set of trees decorated with elements of
D and is defined as follows:

(Def. 7) For every treeT decorated with elements ofD holdsT ∈ Trees(D).

Let D be a non empty set. Observe that Trees(D) is non empty.
Let D be a non empty set. The functor FinTrees(D) yielding a set of trees decorated with

elements ofD is defined by:

(Def. 8) For every treeT decorated with elements ofD holds domT is finite iff T ∈ FinTrees(D).

Let D be a non empty set. One can verify that FinTrees(D) is non empty.
We now state the proposition

(22) For every non empty setD holds FinTrees(D)⊆ Trees(D).

3. FUNCTIONS YIELDING TREES

Let I1 be a function. We say thatI1 is tree yielding if and only if:

(Def. 9) rngI1 is constituted of trees.

We say thatI1 is finite tree yielding if and only if:

(Def. 10) rngI1 is constituted of finite trees.

We say thatI1 is decorated tree yielding if and only if:

(Def. 11) rngI1 is constituted of decorated trees.
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Next we state a number of propositions:

(23) /0 is tree yielding, finite tree yielding, and decorated tree yielding.

(24) f is tree yielding iff for everyx such thatx∈ dom f holds f (x) is a tree.

(25) f is finite tree yielding iff for everyx such thatx∈ dom f holds f (x) is a finite tree.

(26) f is decorated tree yielding iff for everyx such thatx ∈ dom f holds f (x) is a decorated
tree.

(27) p is tree yielding andq is tree yielding iffpa q is tree yielding.

(28) p is finite tree yielding andq is finite tree yielding iffpa q is finite tree yielding.

(29) p is decorated tree yielding andq is decorated tree yielding iffp a q is decorated tree
yielding.

(30) 〈x〉 is tree yielding iffx is a tree.

(31) 〈x〉 is finite tree yielding iffx is a finite tree.

(32) 〈x〉 is decorated tree yielding iffx is a decorated tree.

(33) 〈x,y〉 is tree yielding iffx is a tree andy is a tree.

(34) 〈x,y〉 is finite tree yielding iffx is a finite tree andy is a finite tree.

(35) 〈x,y〉 is decorated tree yielding iffx is a decorated tree andy is a decorated tree.

(36) If i 6= 0, theni 7→ x is tree yielding iffx is a tree.

(37) If i 6= 0, theni 7→ x is finite tree yielding iffx is a finite tree.

(38) If i 6= 0, theni 7→ x is decorated tree yielding iffx is a decorated tree.

Let us observe that there exists a finite sequence which is tree yielding, finite tree yielding, and
non empty and there exists a finite sequence which is decorated tree yielding and non empty.

One can verify that there exists a function which is tree yielding, finite tree yielding, and non
empty and there exists a function which is decorated tree yielding and non empty.

One can check that every function which is finite tree yielding is also tree yielding.
Let D be a constituted of trees non empty set. One can verify that every finite sequence of

elements ofD is tree yielding.
Let p, q be tree yielding finite sequences. One can verify thatpa q is tree yielding.
Let D be a constituted of finite trees non empty set. One can verify that every finite sequence of

elements ofD is finite tree yielding.
Let p, q be finite tree yielding finite sequences. Note thatpa q is finite tree yielding.
Let D be a constituted of decorated trees non empty set. Observe that every finite sequence of

elements ofD is decorated tree yielding.
Let p, q be decorated tree yielding finite sequences. One can verify thatpa q is decorated tree

yielding.
Let T be a tree. One can check that〈T〉 is tree yielding and non empty. LetSbe a tree. Observe

that〈T,S〉 is tree yielding and non empty.
Let n be a natural number and letT be a tree. Note thatn 7→ T is tree yielding.
Let T be a finite tree. Observe that〈T〉 is finite tree yielding. LetSbe a finite tree. Observe that

〈T,S〉 is finite tree yielding.
Let n be a natural number and letT be a finite tree. Note thatn 7→ T is finite tree yielding.
Let T be a decorated tree. Note that〈T〉 is decorated tree yielding and non empty. LetSbe a

decorated tree. Note that〈T,S〉 is decorated tree yielding and non empty.
Let n be a natural number and letT be a decorated tree. Note thatn 7→ T is decorated tree

yielding.
Next we state the proposition
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(39) For every decorated tree yielding functionf holds dom(domκ f (κ)) = dom f and
domκ f (κ) is tree yielding.

Let p be a decorated tree yielding finite sequence. Note that domκ p(κ) is tree yielding and finite
sequence-like.

One can prove the following proposition

(40) For every decorated tree yielding finite sequencep holds len(domκ p(κ)) = lenp.

4. TREES DECORATED BYCARTESIAN PRODUCT AND STRUCTURE OF SUBSTITUTION

Let D, E be non empty sets. A tree decorated with elements ofD andE is a tree decorated with
elements of[:D, E :]. A set of trees decorated with elements ofD andE is a set of trees decorated
with elements of[:D, E :].

Let T1, T2 be decorated trees. Observe that〈T1,T2〉 is decorated tree-like.
Let D1, D2 be non empty sets, letT1 be a tree decorated with elements ofD1, and letT2 be a tree

decorated with elements ofD2. Then〈T1,T2〉 is a tree decorated with elements ofD1 andD2.
Let D, E be non empty sets, letT be a tree decorated with elements ofD, and letf be a function

from D into E. Then f ·T is a tree decorated with elements ofE.
Let D1, D2 be non empty sets. Thenπ1(D1×D2) is a function from[:D1, D2 :] into D1. Then

π2(D1×D2) is a function from[:D1, D2 :] into D2.
Let D1, D2 be non empty sets and letT be a tree decorated with elements ofD1 andD2. The

functorT1 yields a tree decorated with elements ofD1 and is defined as follows:

(Def. 12) T1 = π1(D1×D2) ·T.

The functorT2 yielding a tree decorated with elements ofD2 is defined as follows:

(Def. 13) T2 = π2(D1×D2) ·T.

Next we state two propositions:

(41) LetD1, D2 be non empty sets,T be a tree decorated with elements ofD1 andD2, andt be
an element of domT. ThenT(t)1 = T1(t) andT2(t) = T(t)2.

(42) For all non empty setsD1, D2 and for every treeT decorated with elements ofD1 andD2

holds〈T1,T2〉= T.

Let T be a finite tree. Observe that Leaves(T) is finite and non empty.
Let T be a tree and letSbe a non empty subset ofT. We see that the element ofS is an element

of T.
Let T be a finite tree. We see that the leaf ofT is an element of Leaves(T).
Let T be a finite tree. A tree is called a substitution of structure ofT if:

(Def. 14) For every elementt of it holdst ∈ T or there exists a leafl of T such thatl ≺ t.

Let T be a finite tree, lett be a leaf ofT, and letSbe a tree. ThenT with-replacement(t,S) is a
substitution of structure ofT.

Let T be a finite tree. One can check that there exists a substitution of structure ofT which is
finite.

Let us considern. A substitution of structure ofn is a substitution of structure of the elementary
tree ofn.

The following propositions are true:

(43) Every tree is a substitution of structure of 0.

(44) For all treesT1, T2 such thatT1-level(1) ⊆ T2-level(1) and for everyn such that〈n〉 ∈ T1

holdsT1�〈n〉= T2�〈n〉 holdsT1 ⊆ T2.
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5. JOINING OF TREES

We now state four propositions:

(46)1 For all treesT, T ′ and for every finite sequencep of elements ofN such thatp∈ Leaves(T)
holdsT ⊆ T with-replacement(p,T ′).

(47) For all decorated treesT, T ′ and for every elementpof domT holds(T with-replacement(p,T ′))(p)=
T ′( /0).

(48) For all decorated treesT, T ′ and for all elementsp, q of domT such thatp � q holds
(T with-replacement(p,T ′))(q) = T(q).

(49) For all decorated treesT, T ′ and for every elementp of domT and for every elementq of
domT ′ holds(T with-replacement(p,T ′))(pa q) = T ′(q).

Let T1, T2 be trees. Observe thatT1∪T2 is non empty and tree-like.
One can prove the following proposition

(50) LetT1, T2 be trees andp be an element ofT1∪T2. Then

(i) if p∈ T1 andp∈ T2, then(T1∪T2)�p = T1�p∪T2�p,

(ii) if p /∈ T1, then(T1∪T2)�p = T2�p, and

(iii) if p /∈ T2, then(T1∪T2)�p = T1�p.

Let us considerp. Let us assume thatp is tree yielding. The functor
︷︸︸︷

p yielding a tree is
defined as follows:

(Def. 15) x∈
︷︸︸︷

p iff x = /0 or there existn, q such thatn < lenp andq∈ p(n+1) andx = 〈n〉a q.

Let T be a tree. The functor
︷︸︸︷

T yields a tree and is defined as follows:

(Def. 16)
︷︸︸︷

T =
︷︸︸︷
〈T〉 .

Let T1, T2 be trees. The functor
︷ ︸︸ ︷
T1,T2 yields a tree and is defined by:

(Def. 17)
︷ ︸︸ ︷
T1,T2 =

︷ ︸︸ ︷
〈T1,T2〉 .

We now state a number of propositions:

(51) If p is tree yielding, then〈n〉a q∈
︷︸︸︷

p iff n < lenp andq∈ p(n+1).

(52) If p is tree yielding, then
︷︸︸︷

p -level(1) = {〈n〉 : n < lenp} and for everyn such thatn <

lenp holds
︷︸︸︷

p �〈n〉= p(n+1).

(53) For all tree yielding finite sequencesp, q such that
︷︸︸︷

p =
︷︸︸︷

q holdsp = q.

(54) For all tree yielding finite sequencesp1, p2 and for every treeT holdsp∈ T iff 〈lenp1〉a

p∈
︷ ︸︸ ︷
p1

a 〈T〉a p2 .

(55)
︷︸︸︷

/0 = the elementary tree of 0.

(56) If p is tree yielding, then the elementary tree of lenp⊆
︷︸︸︷

p .

(57) The elementary tree ofi =
︷ ︸︸ ︷
i 7→ (the elementary tree of 0).

1 The proposition (45) has been removed.
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(58) LetT be a tree andp be a tree yielding finite sequence. Then
︷ ︸︸ ︷
pa 〈T〉= (

︷︸︸︷
p ∪the elemen-

tary tree of lenp+1)with-replacement(〈lenp〉,T).

(59) Let p be a tree yielding finite sequence. Then
︷ ︸︸ ︷
pa 〈the elementary tree of 0〉 =

︷︸︸︷
p ∪the

elementary tree of lenp+1.

(60) For all tree yielding finite sequencesp, q and for all treesT1, T2 holds
︷ ︸︸ ︷
pa 〈T1〉a q =︷ ︸︸ ︷

pa 〈T2〉a qwith-replacement(〈lenp〉,T1).

(61) For every treeT holds
︷︸︸︷

T = (the elementary tree of 1) with-replacement(〈0〉,T).

(62) For all treesT1, T2 holds
︷ ︸︸ ︷
T1,T2 = (the elementary tree of 2) with-replacement(〈0〉,T1)with-replacement(〈1〉,T2).

Let p be a finite tree yielding finite sequence. Observe that
︷︸︸︷

p is finite.

Let T be a finite tree. Observe that
︷︸︸︷

T is finite.

Let T1, T2 be finite trees. Observe that
︷ ︸︸ ︷
T1,T2 is finite.

Next we state a number of propositions:

(63) For every treeT and for every setx holdsx∈
︷︸︸︷

T iff x= /0 or there existsp such thatp∈ T
andx = 〈0〉a p.

(64) For every treeT and for every finite sequencep holdsp∈ T iff 〈0〉a p∈
︷︸︸︷

T .

(65) For every treeT holds the elementary tree of 1⊆
︷︸︸︷

T .

(66) For all treesT1, T2 such thatT1 ⊆ T2 holds
︷︸︸︷
T1 ⊆

︷︸︸︷
T2 .

(67) For all treesT1, T2 such that
︷︸︸︷
T1 =

︷︸︸︷
T2 holdsT1 = T2.

(68) For every treeT holds
︷︸︸︷

T �〈0〉= T.

(69) For all treesT1, T2 holds
︷︸︸︷
T1 with-replacement(〈0〉,T2) =

︷︸︸︷
T2 .

(70)
︷ ︸︸ ︷
the elementary tree of 0= the elementary tree of 1.

(71) Let T1, T2 be trees andx be a set. Thenx ∈
︷ ︸︸ ︷
T1,T2 if and only if one of the following

conditions is satisfied:

(i) x = /0, or

(ii) there existsp such thatp∈ T1 andx = 〈0〉a p or p∈ T2 andx = 〈1〉a p.

(72) For all treesT1, T2 and for every finite sequencep holdsp∈ T1 iff 〈0〉a p∈
︷ ︸︸ ︷
T1,T2 .

(73) For all treesT1, T2 and for every finite sequencep holdsp∈ T2 iff 〈1〉a p∈
︷ ︸︸ ︷
T1,T2 .

(74) For all treesT1, T2 holds the elementary tree of 2⊆
︷ ︸︸ ︷
T1,T2 .

(75) For all treesT1, T2, W1, W2 such thatT1 ⊆W1 andT2 ⊆W2 holds
︷ ︸︸ ︷
T1,T2 ⊆

︷ ︸︸ ︷
W1,W2 .

(76) For all treesT1, T2, W1, W2 such that
︷ ︸︸ ︷
T1,T2 =

︷ ︸︸ ︷
W1,W2 holdsT1 = W1 andT2 = W2.

(77) For all treesT1, T2 holds
︷ ︸︸ ︷
T1,T2�〈0〉= T1 and

︷ ︸︸ ︷
T1,T2�〈1〉= T2.
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(78) For all treesT, T1, T2 holds
︷ ︸︸ ︷
T1,T2with-replacement(〈0〉,T)=

︷︸︸︷
T,T2 and

︷ ︸︸ ︷
T1,T2with-replacement(〈1〉,T)=︷︸︸︷

T1,T .

(79)
︷ ︸︸ ︷
the elementary tree of 0,the elementary tree of 0= the elementary tree of 2.

In the sequelw denotes a finite tree yielding finite sequence.
One can prove the following propositions:

(80) For everyw such that for every finite treet such thatt ∈ rngw holds heightt ≤ n holds

height
︷︸︸︷

w ≤ n+1.

(81) For every finite treet such thatt ∈ rngw holds height
︷︸︸︷

w > heightt.

(82) For every finite treet such thatt ∈ rngw and for every finite treet ′ such thatt ′ ∈ rngw holds

heightt ′ ≤ heightt holds height
︷︸︸︷

w = heightt +1.

(83) For every finite treeT holds height
︷︸︸︷

T = heightT +1.

(84) For all finite treesT1, T2 holds height
︷ ︸︸ ︷
T1,T2 = max(heightT1,heightT2)+1.
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