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Summary. In the article we deal with sets of trees and functions yielding trees. So,
we introduce the sets of all trees, all finite trees and of all trees decorated by elements from
some set. Next, the functions and the finite sequences yielding (finite, decorated) trees are
introduced. There are shown some convenient but technical lemmas and clusters concerning
with those concepts. In the fourth section we deal with trees decorated by Cartesian product
and we introduce the concept of a tree called a substitution of structure of some finite tree.
Finally, we introduce the operations of joining trees, i.e. for the finite sequence of trees we
define the tree which is made by joining the trees from the sequence by common root. For one
and two trees there are introduced the same operations.

MML Identifier: TREES_ 3.

WWW: http://mizar.org/JFM/Vol4d/trees_3.html

The articles([14],191,[[1/7],[[15B],14],[[18],171,[(5],[[11L],[11B3],[[16],[12] [ [19] /18], 6], 110] L 12] /141,
and [3] provide the notation and terminology for this paper.

1. FINITE SETS

For simplicity, we adopt the following rulest, y denote setsi, n denote natural numberg, g
denote finite sequences, Y denote sets, anfldenotes a function.

2. SETS OF TREES

The set Trees is defined as follows:
(Def. 1) xe€ Trees iffxis a tree.

One can check that Trees is non empty.
The subset FinTrees of Trees is defined as follows:

(Def. 2) xe€ FinTrees iffxis a finite tree.

Let us mention that FinTrees is non empty.
Letl; be a set. We say thét is constituted of trees if and only if:

(Def. 3) For every such that € |1 holdsx s a tree.

We say that; is constituted of finite trees if and only if:
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(Def. 4) For every such thai € I1 holdsx s a finite tree.

We say that; is constituted of decorated trees if and only if:

(Def. 5) For every such thai € I; holdsx is a decorated tree.

We now state a number of propositions:

@)
@)
®)
(4)
(®)

X is constituted of trees ifK C Trees

X is constituted of finite trees ik C FinTrees

X is constituted of trees andis constituted of trees ifK UY is constituted of trees.

If X is constituted of trees andis constituted of trees, thef=Y is constituted of trees.

Suppos« is constituted of trees. ThefNY is constituted of trees an€éin X is constituted

of trees anX \ Y is constituted of trees.

(6)

X is constituted of finite trees and is constituted of finite trees if and only XKUY is

constituted of finite trees.

)

SupposeX is constituted of finite trees andis constituted of finite trees. Thef-Y is

constituted of finite trees.

(8)
0]
(i)
(iii)
9)

Suppos« is constituted of finite trees. Then
XNY is constituted of finite trees,

Y N X is constituted of finite trees, and

X\ Y is constituted of finite trees.

X is constituted of decorated trees anids constituted of decorated trees if and only if

X UY is constituted of decorated trees.

(10)

Suppos« is constituted of decorated trees ands constituted of decorated trees. Then

X-=Y is constituted of decorated trees.

(11)

@)

(ii)
(iii)
(12)
(13)
(14)
(15)
(16)
17
(18)
(19)
(20)
(21)

Suppos« is constituted of decorated trees. Then
XNY is constituted of decorated trees,

Y N X is constituted of decorated trees, and

X\Y is constituted of decorated trees.

0 is constituted of trees, constituted of finite trees, and constituted of decorated trees.
{x} is constituted of trees ift is a tree.

{x} is constituted of finite trees iff is a finite tree.

{x} is constituted of decorated treesxffs a decorated tree.

{x,y} is constituted of trees iff is a tree ang is a tree.

{x,y} is constituted of finite trees i is a finite tree ang is a finite tree.

{x,y} is constituted of decorated trees:ffs a decorated tree aryds a decorated tree.

If X is constituted of trees and C X, thenY is constituted of trees.

If X is constituted of finite trees antiC X, thenY is constituted of finite trees.

If X is constituted of decorated trees and: X, thenY is constituted of decorated trees.
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One can verify that there exists a set which is finite, constituted of trees, constituted of finite
trees, and non empty and there exists a set which is finite, constituted of decorated trees, and non
empty.

Let us observe that every set which is constituted of finite trees is also constituted of trees.

Let X be a constituted of trees set. One can check that every subsés abnstituted of trees.

Let X be a constituted of finite trees set. Observe that every subdetsofonstituted of finite
trees.

Let X be a constituted of decorated trees set. One can check that every subsetohstituted
of decorated trees.

Let D be a constituted of trees non empty set. We see that the elemérnis aftree.

Let D be a constituted of finite trees non empty set. We see that the eleni@iig affinite tree.

Let D be a constituted of decorated trees non empty set. We see that the elerbeit af
decorated tree.

Let us observe that Trees is constituted of trees.

One can check that there exists a subset of Trees which is constituted of finite trees and non
empty.

Let us mention that FinTrees is constituted of finite trees.

Let D be a non empty set. A set is called a set of trees decorated with eleménit of

(Def. 6) For every such thai € it holdsx is a tree decorated with elementsaf

Let D be a non empty set. Observe that every set of trees decorated with eleménis of
constituted of decorated trees.

Let D be a non empty set. Note that there exists a set of trees decorated with elem@ents of
which is finite and non empty.

Let D be a non empty set and IEtbe a non empty set of trees decorated with elemeni. of
We see that the element Bfis a tree decorated with elementsinf

Let T be a tree and léd be a non empty set. Thé is a non empty set of trees decorated with
elements oD. We see that the relation betwe€randD is a ParametrizedSubsetDf

Let T be a tree and ldD be a non empty set. One can verify that every function fioto D
is decorated tree-like.

Let D be a non empty set. The functor Trée$ yields a set of trees decorated with elements of
D and is defined as follows:

(Def. 7) For every tred@ decorated with elements BfholdsT € TreegD).

Let D be a non empty set. Observe that T(@sis non empty.
Let D be a non empty set. The functor FinTré@} yielding a set of trees decorated with
elements oD is defined by:

(Def. 8) For every tred@ decorated with elements Bf holds donT is finite iff T € FinTreegD).

Let D be a non empty set. One can verify that FinT(&8ss non empty.
We now state the proposition

(22) For every non empty sétholds FinTree@®) C TreegD).

3. FUNCTIONS YIELDING TREES

LetI1 be a function. We say th#{ is tree yielding if and only if:
(Def. 9) rngdly is constituted of trees.
We say that; is finite tree yielding if and only if:
(Def. 10) rnd; is constituted of finite trees.
We say that; is decorated tree yielding if and only if:

(Def. 11) rnd1 is constituted of decorated trees.
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Next we state a number of propositions:
(23) 0is tree yielding, finite tree yielding, and decorated tree yielding.
(24) f is tree yielding iff for everyk such thak € domf holdsf(x) is a tree.
(25) f isfinite tree yielding iff for every such tha € domf holds f (x) is a finite tree.

(26) f is decorated tree yielding iff for evepysuch thatx € domf holds f(x) is a decorated
tree.

(27) pistree yielding andjis tree yielding iffp ™ q is tree yielding.
(28) pis finite tree yielding and is finite tree yielding iffp ™ q is finite tree yielding.

(29) p is decorated tree yielding arglis decorated tree yielding ifp ~ q is decorated tree
yielding.

(30)
(1)
(32)

X) is tree yielding iffx is a tree.
x) is finite tree yielding iffx is a finite tree.

x) is decorated tree yielding iffis a decorated tree.

(34)
(39)

(
(
(
(33) (xy) is tree yielding iffxis a tree ang is a tree.
(x,y) is finite tree yielding iffx is a finite tree ang is a finite tree.
(

X,Y) is decorated tree yielding iKis a decorated tree ayds a decorated tree.
(36) Ifi#0, theni — xis tree yielding iffx is a tree.

(37) Ifi #0, theni — xis finite tree yielding iffx is a finite tree.

(38) Ifi #0, theni — xis decorated tree yielding iis a decorated tree.

Let us observe that there exists a finite sequence which is tree yielding, finite tree yielding, and
non empty and there exists a finite sequence which is decorated tree yielding and non empty.

One can verify that there exists a function which is tree yielding, finite tree yielding, and non
empty and there exists a function which is decorated tree yielding and non empty.

One can check that every function which is finite tree yielding is also tree yielding.

Let D be a constituted of trees non empty set. One can verify that every finite sequence of
elements oD is tree yielding.

Let p, g be tree yielding finite sequences. One can verify irag is tree yielding.

Let D be a constituted of finite trees non empty set. One can verify that every finite sequence of
elements oD is finite tree yielding.

Let p, g be finite tree yielding finite sequences. Note thatq is finite tree yielding.

Let D be a constituted of decorated trees non empty set. Observe that every finite sequence of
elements oD is decorated tree yielding.

Let p, g be decorated tree yielding finite sequences. One can verifypthatis decorated tree
yielding.

LetT be atree. One can check tHa) is tree yielding and non empty. L8tbe a tree. Observe
that(T,S) is tree yielding and non empty.

Let n be a natural number and [Etbe a tree. Note that— T is tree yielding.

Let T be afinite tree. Observe th@k) is finite tree yielding. LeSbe a finite tree. Observe that
(T,S is finite tree yielding.

Let n be a natural number and [Etbe a finite tree. Note that— T is finite tree yielding.

Let T be a decorated tree. Note that) is decorated tree yielding and non empty. Bdie a
decorated tree. Note thé,S) is decorated tree yielding and non empty.

Let n be a natural number and I&t be a decorated tree. Note that— T is decorated tree
yielding.

Next we state the proposition
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(39) For every decorated tree yielding functidn holds dongdomy f(k)) = domf and
domy f (k) is tree yielding.

Let pbe a decorated tree yielding finite sequence. Note thaf g¢r) is tree yielding and finite
sequence-like.
One can prove the following proposition

(40) For every decorated tree yielding finite sequepbelds ler{domy p(k)) = lenp.

4. TREES DECORATED BYCARTESIAN PRODUCT AND STRUCTURE OF SUBSTITUTION

Let D, E be non empty sets. A tree decorated with elementd ahdE is a tree decorated with
elements of:D, E]. A set of trees decorated with elementdbandE is a set of trees decorated
with elements of:D, E J.

Let T3, T2 be decorated trees. Observe tfit T,) is decorated tree-like.

Let D4, D, be non empty sets, |18} be a tree decorated with elementdf and letT;, be a tree
decorated with elements Bf. Then(Ty, T,) is a tree decorated with elementsidf andDs.

LetD, E be non empty sets, I8t be a tree decorated with elementdpfand letf be a function
fromD into E. Thenf - T is a tree decorated with elementskaf

Let D3, D, be non empty sets. Them (D1 x D») is a function from[:D4, D2 into D1. Then
(D1 x D2) is a function from: D1, D2 ] into D».

Let D1, D2 be non empty sets and [€tbe a tree decorated with elementsaf andD,. The
functorT; yields a tree decorated with elementdgfand is defined as follows:

(Def. 12) Ty =m(DyxDy)-T.
The functorT; yielding a tree decorated with elementdnfis defined as follows:
(Def. 13) T, =Tp(Dy x Dy)-T.
Next we state two propositions:

(41) LetDq, D> be non empty set§, be a tree decorated with elementdxfandD,, andt be
an element of dom. ThenT (t); = T1(t) andTx(t) = T(t)2.

(42) For all non empty se®;, D, and for every tre§ decorated with elements 8f; andD;
holds(Ty, To) =T.

LetT be a finite tree. Observe that LeayEsis finite and non empty.

LetT be atree and ledbe a non empty subset ©f We see that the element 8fs an element
of T.

Let T be a finite tree. We see that the leaflofs an element of Leavés).

LetT be afinite tree. A tree is called a substitution of structur€ df

(Def. 14) For every elementof it holdst € T or there exists a ledfof T such that <t.

Let T be a finite tree, let be a leaf ofT, and letSbe a tree. Theil with-replacemert,S) is a
substitution of structure of.

Let T be a finite tree. One can check that there exists a substitution of structlirevioich is
finite.

Let us considen. A substitution of structure af is a substitution of structure of the elementary
tree ofn.

The following propositions are true:

(43) Every tree is a substitution of structure of 0.

(44) For all treedly, T, such thafl;-level(1) C T,-level(1) and for everyn such that(n) € Ty
holdsTy [(n) = T,[(n) holdsT; C T,.
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5. JOINING OF TREES
We now state four propositions:

(46@ For all treesT, T” and for every finite sequengxof elements olN such thaip € LeavesT)
holdsT C T with-replacemerip, T').

(47) Foralldecorated treds T’ and for every elemerg of domT holds(T with-replacemeriip, T))(p) =
T'(0).

(48) For all decorated treeB, T’ and for all elementgp, g of domT such thatp £ g holds
(T with-replacemeritp, T'))(q) = T(q).

(49) For all decorated treds, T and for every element of domT and for every elemerg of
domT’ holds(T with-replacemeritp, T'))(p~q) = T'(q).

Let Ty, T> be trees. Observe thét U T, is non empty and tree-like.
One can prove the following proposition

(50) LetTy, T, be trees angh be an element of; UT,. Then
() if peTrandpe Ty, then(TiUT,)[p=Ti[pUT2p,
(i) if p¢ Ty, then(ToUTy)[p=T[p, and

(i) if p¢ Ty, then(TWUTR)[p=Tilp.

Let us considemp. Let us assume thai is tree yielding. The functor p " yielding a tree is
defined as follows:

(Def. 15) xe” p "iff x= 0 or there exish, g such thanh < lenpandq € p(n+ 1) andx= (n) " q.

~~
LetT be atree. The functorT vyields a tree and is defined as follows:

(Def. 16) T =7T).

P
Let Ty, T> be trees. The functor;, T, yields a tree and is defined by:
/= -/
(Def. 17) T]_,Tz = <T1,T2> .
We now state a number of propositions:
. . . - P
(51) If pistreeyielding, theqn) ~ge” p "iff n<lenpandq < p(n+1).

(52) If pis tree yielding, theﬁ/p\-level(l) = {(n) : n < lenp} and for everyn such than <
lenp holds’/p\ [(n) = p(n+1).

(53) For all tree yielding finite sequencpsg such thaf p ™= "'q\ holdsp=q.
(54) For all tree yielding finite sequencps, p2 and for every tred holdsp e T iff (lenps) ™
—_—~

pep™(T)" pz.
~ =
(55) 0 =the elementary tree of 0.

(56) If pis tree yielding, then the elementary tree offle@ " p .

(57) The elementary tree o= i — (the elementary tree of 0)

1 The proposition (45) has been removed.
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—
(58) LetT be atree ang be a tree yielding finite sequence. Theh (T) =

tary tree of lerp+ 1) with-replacemerftlenp), T).

(" p "Uthe elemen-

(59) Letp be a tree yielding finite sequence. Thef (the elementary tree ofyG=" p "Uthe
elementary tree of lep+ 1.

—
(60) For all tree yielding finite sequences q and for all treesTy, T, holds p™ (T1) " q =
—_——

~

p~ (T2) ~ gwith-replacemeritlenp), Ty ).
=
(61) Foreverytred holds T = (the elementary tree of 1) with-replacemggy, T).
=
(62) Foralltreed;, T, holdsTy, T, = (the elementary tree of 2) with-replacem@}, T, ) with-replacemer{1), T,).

Let p be a finite tree yielding finite sequence. Observe that is finite.

Let T be a finite tree. Observe thal is finite.

Let Ty, T» be finite trees. Observe thét, T is finite.
Next we state a number of propositions:

~~
(63) Foreverytre@ and for every setholdsxe T iff x=0or there existp suchthape T
andx = (0) " p.

=~
(64) For every tred and for every finite sequengeholdspe T iff (0)~pe T .
A~
(65) For every tred holds the elementary tree ofd T .
AN N
(66) Foralltreedy, T, suchthafli CToholds T, € T, .
AN
(67) Foralltreedy, T, suchthatTy = T, holdsT; =To.
=
(68) Foreverytred holds T [(0)=T.

(69) For all treedy, T, holds Ty with-replacemerft0),T>) = T

(70) the elementary tree of 8 the elementary tree of 1.

=
(71) LetTy, T, be trees anc be a set. Thewx € Ty, T, if and only if one of the following
conditions is satisfied:

(i) x=0,0r
(i) there existspsuch thatp € T; andx= (0) " porpe€ T, andx= (1)~ p.

==
(72) For all treed1, T, and for every finite sequengeholdsp € Ty iff (0) " pe Ti, To.
(73) For all treed, T, and for every finite sequengeholdsp € Ty iff (1) " pe Ty, Ty.
=
(74) For all treed, T, holds the elementary tree of2 Ty, T».
N~
(75) For all treed, To, Wi, Wb such thafly €W andT, €W, holdsTy, T, € Wp,Wo.
= ~
(76) For all treed, To, Wi, Wb such thaily, T, = Wi, Wb holds Ty =Wp andT, =Ws.

= ~ =
(77) For all treedy, T, holdsTy, T2 [(0) = T and Ty, T [(1) = To.
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g Pghan ~
(78) Foralltree§, Ty, T2 holdsTy, Towith-replacemerff0), T) = T, T, andTy, T, with-replacemerft1), T) =
=
T1,T.

(79) the elementary tree of 0,the elementary tree efthe elementary tree of 2.

In the sequelv denotes a finite tree yielding finite sequence.
One can prove the following propositions:

(80) For everyw such that for every finite treesuch that € rngw holds height < n holds
heighf'/w\ <n+1

(81) For every finite treesuch that € rngw holds heighfw™ > heightt.

(82) For every finite treesuch that € rngw and for every finite tre€ such that’ € rngw holds
height’ < height holds heighfw™ = heightt + 1.

=
(83) For every finite tre@ holds height T = heightT + 1.

=
(84) For all finite treeds, T, holds heighTy, T, = max(heightTy, heightTy) + 1.
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