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Summary. A continuation of [3]. The notion of finite–order trees, succesors of an
element of a tree, and chains, levels and branches of a tree are introduced. That notion has
been used to formalize K̈onig’s Lemma which claims that there is a infinite branch of a finite-
order tree if the tree has arbitrary long finite chains. Besides, the concept of decorated trees is
introduced and some concepts dealing with trees are applied to decorated trees.
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The articles [11], [8], [13], [4], [14], [6], [2], [12], [5], [9], [1], [7], [10], and [3] provide the notation
and terminology for this paper.

For simplicity, we follow the rules:x, y, X are sets,W, W1, W2 are trees,w is an element ofW,
f is a function,D, D′ are non empty sets,k, k1, k2, m, n are natural numbers,v, v1, v2 are finite
sequences, andp, q, r are finite sequences of elements ofN.

Next we state four propositions:

(1) For allv1, v2, v such thatv1 � v andv2 � v holdsv1 andv2 are⊆-comparable.

(2) For allv1, v2, v such thatv1 ≺ v andv2 � v holdsv1 andv2 are⊆-comparable.

(4)1 If lenv1 = k+1, then there existv2, x such thatv1 = v2
a 〈x〉 and lenv2 = k.

(6)2 Seg�(va 〈x〉) = Seg�(v)∪{v}.

The schemeTreeStruct Inddeals with a treeA and a unary predicateP , and states that:
For every elementt of A holdsP [t]

provided the following conditions are satisfied:
• P [ /0], and
• For every elementt of A and for everyn such thatP [t] andt a 〈n〉 ∈ A holdsP [t a

〈n〉].
We now state the proposition

(7) If for every p holdsp∈W1 iff p∈W2, thenW1 = W2.

Let us considerW1, W2. Let us observe thatW1 = W2 if and only if:

(Def. 1) For everyp holdsp∈W1 iff p∈W2.

The following propositions are true:

1 The proposition (3) has been removed.
2 The proposition (5) has been removed.
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(8) If p∈W, thenW = Wwith-replacement(p,W�p).

(9) If p∈W andq∈W andp � q, thenq∈Wwith-replacement(p,W1).

(10) If p∈W andq∈W andpandqare not⊆-comparable, thenWwith-replacement(p,W1)with-replacement(q,W2)=
Wwith-replacement(q,W2)with-replacement(p,W1).

Let I1 be a tree. We say thatI1 is finite-order if and only if:

(Def. 2) There existsn such that for every elementt of I1 holdst a 〈n〉 /∈ I1.

One can check that there exists a tree which is finite-order.
Let us considerW. A subset ofW is called a chain ofW if:

(Def. 3) For allp, q such thatp∈ it andq∈ it holds p andq are⊆-comparable.

A subset ofW is called a level ofW if:

(Def. 4) There existsn such that it= {w : lenw = n}.

Let us considerw. The functor succw yields a subset ofW and is defined as follows:

(Def. 5) succw = {wa 〈n〉 : wa 〈n〉 ∈W}.

Next we state three propositions:

(11) Every level ofW is an antichain of prefixes ofW.

(12) succw is an antichain of prefixes ofW.

(13) For every antichainA of prefixes ofW and for every chainC of W there existsw such that
A∩C⊆ {w}.

Let us considerW, n. The functorW-level(n) yielding a level ofW is defined as follows:

(Def. 6) W-level(n) = {w : lenw = n}.

We now state several propositions:

(14) wa 〈n〉 ∈ succw iff wa 〈n〉 ∈W.

(15) If w = /0, thenW-level(1) = succw.

(16) W =
⋃
{W-level(n)}.

(17) For every finite treeW holdsW =
⋃
{W-level(n) : n≤ heightW}.

(18) For every levelL of W there existsn such thatL = W-level(n).

Now we present two schemes. The schemeFraenkelCarddeals with a non empty setA , a set
B, and a unary functorF yielding a set, and states that:

{F (w);w ranges over elements ofA :w∈ B} ≤ B
for all values of the parameters.

The schemeFraenkelFinCarddeals with a non empty setA , finite setsB, C , and a unary functor
F yielding a set, and states that:

cardC ≤ cardB
provided the parameters satisfy the following condition:

• C = {F (w);w ranges over elements ofA : w∈ B}.
We now state two propositions:

(19) If W is finite-order, then there existsn such that for everyw there exists a finite setB such
thatB = succw and cardB≤ n.

(20) If W is finite-order, then succw is finite.
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Let W be a finite-order tree and letw be an element ofW. One can check that succw is finite.
We now state two propositions:

(21) /0 is a chain ofW.

(22) { /0} is a chain ofW.

Let us considerW. Observe that there exists a chain ofW which is non empty.
Let us considerW and letI1 be a chain ofW. We say thatI1 is branch-like if and only if:

(Def. 7) For everyp such thatp∈ I1 holds Seg�(p) ⊆ I1 and it is not true that there existsp such
that p∈W and for everyq such thatq∈ I1 holdsq≺ p.

Let us considerW. Note that there exists a chain ofW which is branch-like.
Let us considerW. A branch ofW is a branch-like chain ofW.
Let us considerW. One can verify that every chain ofW which is branch-like is also non empty.
In the sequelC denotes a chain ofW andB denotes a branch ofW.
The following two propositions are true:

(23) If v1 ∈C andv2 ∈C, thenv1 ∈ Seg�(v2) or v2 � v1.

(24) If v1 ∈C andv2 ∈C andv� v2, thenv1 ∈ Seg�(v) or v� v1.

Let us considerW. One can check that there exists a chain ofW which is finite.
Next we state several propositions:

(25) For every finite chainC of W such that cardC > n there existsp such thatp ∈ C and
lenp≥ n.

(26) For everyC holds{w :
∨

p (p∈C ∧ w� p)} is a chain ofW.

(27) If p� q andq∈ B, thenp∈ B.

(28) /0 ∈ B.

(29) If p∈C andq∈C and lenp≤ lenq, thenp� q.

(30) There existsB such thatC⊆ B.

Now we present two schemes. The schemeFuncExOfMinNatdeals with a setA and a binary
predicateP , and states that:

There existsf such that domf = A and for everyx such thatx ∈ A there existsn
such thatf (x) = n andP [x,n] and for everym such thatP [x,m] holdsn≤m

provided the parameters satisfy the following condition:
• For everyx such thatx∈ A there existsn such thatP [x,n].

The schemeInfiniteChaindeals with a setA , a setB, a unary predicateP , and a binary predicate
Q , and states that:

There existsf such that domf = N and rngf ⊆ A and f (0) = B and for everyk
holdsQ [ f (k), f (k+1)] andP [ f (k)]

provided the following requirements are met:
• B ∈ A andP [B], and
• For everyx such thatx∈ A andP [x] there existsy such thaty∈ A andQ [x,y] and

P [y].
We now state two propositions:

(31) LetT be a tree. Suppose for everyn there exists a finite chainC of T such that cardC = n
and for every elementt of T holds succt is finite. Then there exists a chainB of T such that
B is not finite.

(32) LetT be a finite-order tree. Suppose that for everyn there exists a finite chainC of T such
that cardC = n. Then there exists a chainB of T such thatB is not finite.
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Let I1 be a binary relation. We say thatI1 is decorated tree-like if and only if:

(Def. 8) domI1 is a tree.

Let us mention that there exists a function which is decorated tree-like.
A decorated tree is a decorated tree-like function.
In the sequelT, T1, T2 denote decorated trees.
Let us considerT. One can verify that domT is non empty and tree-like.
Let X be a set. A binary relation is called a ParametrizedSubset ofX if:

(Def. 9) rng it⊆ X.

Let us considerD. One can verify that there exists a ParametrizedSubset ofD which is decorated
tree-like and function-like.

Let us considerD. A tree decorated with elements ofD is a decorated tree-like function-like
ParametrizedSubset ofD.

Let D be a non empty set, letT be a tree decorated with elements ofD, and lett be an element
of domT. ThenT(t) is an element ofD.

The following proposition is true

(33) If domT1 = domT2 and for everyp such thatp∈ domT1 holdsT1(p) = T2(p), thenT1 = T2.

Now we present two schemes. The schemeDTreeExdeals with a treeA and a binary predicate
P , and states that:

There existsT such that domT = A and for everyp such thatp∈A holdsP [p,T(p)]
provided the following condition is met:

• For everyp such thatp∈ A there existsx such thatP [p,x].
The schemeDTreeLambdadeals with a treeA and a unary functorF yielding a set, and states

that:
There existsT such that domT = A and for everyp such thatp∈ A holdsT(p) =
F (p)

for all values of the parameters.
Let us considerT. The functor Leaves(T) yielding a set is defined by:

(Def. 10) Leaves(T) = T◦Leaves(domT).

Let us considerp. The functorT�p yielding a decorated tree is defined by:

(Def. 11) dom(T�p) = domT�p and for everyq such thatq∈ domT�p holds(T�p)(q) = T(pa q).

Next we state the proposition

(34) If p∈ domT, then rng(T�p)⊆ rngT.

Let us considerD and letT be a tree decorated with elements ofD. Then Leaves(T) is a subset
of D. Let p be an element of domT. ThenT�p is a tree decorated with elements ofD.

Let us considerT, p, T1. Let us assume thatp∈ domT. The functorT with-replacement(p,T1)
yields a decorated tree and is defined by the conditions (Def. 12).

(Def. 12)(i) dom(T with-replacement(p,T1)) = domT with-replacement(p,domT1), and

(ii) for every q such that q ∈ domT with-replacement(p,domT1) holds p � q and
(T with-replacement(p,T1))(q) = T(q) or there existsr such thatr ∈ domT1 andq = pa r
and(T with-replacement(p,T1))(q) = T1(r).

Let us considerW, x. One can verify thatW 7−→ x is decorated tree-like.
Let D be a non empty set, let us considerW, and letd be an element ofD. ThenW 7−→ d is a

tree decorated with elements ofD.
We now state four propositions:

(35) If for everyx such thatx∈ D holdsx is a tree, then
⋃

D is a tree.
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(36) Suppose for everyx such thatx∈ X holdsx is a function andX is ⊆-linear. Then
⋃

X is
relation-like and function-like.

(37) Suppose for everyx such thatx∈D holdsx is a decorated tree andD is⊆-linear. Then
⋃

D
is a decorated tree.

(38) Suppose for everyx such thatx∈ D′ holdsx is a tree decorated with elements ofD andD′

is⊆-linear. Then
⋃

D′ is a tree decorated with elements ofD.

Now we present two schemes. The schemeDTreeStructExdeals with a non empty setA , an
elementB of A , a unary functorF yielding a set, and a functionC from [:A , N :] into A , and states
that:

There exists a treeT decorated with elements ofA such that
(i) T( /0) = B, and

(ii) for every elementt of domT holds succt = {t a 〈k〉 : k∈ F (T(t))} and for all
n, x such thatx = T(t) andn∈ F (x) holdsT(t a 〈n〉) = C (〈〈x, n〉〉)

provided the following requirement is met:
• For every elementd of A and for allk1, k2 such thatk1 ≤ k2 andk2 ∈ F (d) holds

k1 ∈ F (d).
The schemeDTreeStructFinExdeals with a non empty setA , an elementB of A , a unary functor

F yielding a natural number, and a functionC from [:A , N :] into A , and states that:
There exists a treeT decorated with elements ofA such that

(i) T( /0) = B, and
(ii) for every elementt of domT holds succt = {t a 〈k〉 : k < F (T(t))} and for

all n, x such thatx = T(t) andn < F (x) holdsT(t a 〈n〉) = C (〈〈x, n〉〉)
for all values of the parameters.
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