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Summary. A continuation of [3]. The notion of finite—order trees, succesors of an
element of a tree, and chains, levels and branches of a tree are introduced. That notion has
been used to formalizedfig’s Lemma which claims that there is a infinite branch of a finite-
order tree if the tree has arbitrary long finite chains. Besides, the concept of decorated trees is
introduced and some concepts dealing with trees are applied to decorated trees.

MML Identifier: TREES_2.

WWW: http://mizar.org/JFM/Vol3/trees_2.html

The articles[[11],[[8],[13],[4],[[14],16],l[2],[12],15],19],1],[[7],[10], and [3] provide the notation
and terminology for this paper.

For simplicity, we follow the rulesx, y, X are setsW, Wi, W, are treesw is an element o#V,
f is a function,D, D’ are non empty setk, ki, ko, m, n are natural numbers, vy, v, are finite
sequences, ang g, r are finite sequences of elementof

Next we state four propositions:

(1) Forallvy, v, vsuch that; < vandv, < vholdsv; andv, areC-comparable.
(2) For allvy, v, vsuch that; < vandv, < v holdsv; andv, areC-comparable.
(4H If lenvy = k+ 1, then there existy, x such thati, = v, ™ (x) and lerv, = k.
6 Seg.(v~ (x) =Seg.(v)U{v}.

The schem@reeStruct Inddeals with a tree? and a unary predicatg, and states that:
For every elemerttof 4 holds?[t]
provided the following conditions are satisfied:
e P[0], and
e For every elementof 4 and for everyn such thatP]t] andt ~ (n) € 4 holdsP[t ~

We <r:21/;/ state the proposition

(7) |Ifforeverypholdsp e Wy iff p e Ws, thenW =Ws.

Let us considew;, W,. Let us observe thath =W, if and only if:
(Def. 1) For everyp holdsp e W iff peWs.

The following propositions are true:

1 The proposition (3) has been removed.
2 The proposition (5) has been removed.

1 © Association of Mizar Users


http://mizar.org/JFM/Vol3/trees_2.html

KONIG'S LEMMA 2

(8) If peW,thenW =W with-replacemerip,W|p).
(9) If peWandgeW andp £ g, theng € Wwith-replacemerfip,W).

(10) If pe W andqe W andp andg are notC-comparable, thew with-replacemertp, W, ) with-replacemenr, W,) =
W with-replacemertt), W, ) with-replacemertip, W, ).

Letl; be a tree. We say thét is finite-order if and only if:
(Def. 2) There exista such that for every elemenbf |1 holdst ™ (n) ¢ I;.

One can check that there exists a tree which is finite-order.
Let us considewW. A subset ofV is called a chain oV if:

(Def. 3) For allp, g such thatp € it andq € it holds p andq areC-comparable.
A subset ofW is called a level oWV if:
(Def. 4) There exists such that it= {w: lenw=n}.
Let us considew. The functor sucw yields a subset dV and is defined as follows:
(Def.5) sucav={w"(n):w~ (n) € W}.
Next we state three propositions:
(11) Every level o is an antichain of prefixes 6.
(12) sucavis an antichain of prefixes af/.

(13) For every antichaiA of prefixes oW and for every chai of W there existsv such that
ANC C {w}.

Let us consideW, n. The functoMW-level(n) yielding a level ofW is defined as follows:
(Def. 6) W-level(n) = {w: lenw=n}.
We now state several propositions:
(14) w~™ (n) € sucow iff w™ (n) € W.
(15) Ifw=0, thenW-level(1) = sucow.
(16) W =U{W-level(n)}.
(17) For every finite tregV holdsW = | J{W-level(n) : n < heightW}.
(18) For every level of W there exists1 such thal. = W-level(n).

Now we present two schemes. The schdfraenkelCarddeals with a non empty set, a set
B, and a unary functof yielding a set, and states that:

{F (w);wranges over elements gf:we B} < B
for all values of the parameters.
The schemé&raenkelFinCarddeals with a non empty set, finite setsB, C, and a unary functor
F yielding a set, and states that:
cardC < cardB
provided the parameters satisfy the following condition:
e C={%(w);wranges over elements &f: w € B}.
We now state two propositions:

(19) IfWis finite-order, then there existssuch that for every there exists a finite s& such
thatB = sucow and card < n.

(20) If W is finite-order, then suat is finite.
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LetW be a finite-order tree and letbe an element diV. One can check that suads finite.
We now state two propositions:

(21) 0is achain oiw.
(22) {0} is achain ofw.

Let us considew. Observe that there exists a chailéfwhich is non empty.
Let us consideYV and letl; be a chain o¥W. We say that; is branch-like if and only if:

(Def. 7) For everyp such thatp € I; holds Seg(p) C I1 and it is not true that there exisgssuch
that p € W and for everyqg such thag € 11 holdsq < p.

Let us considew. Note that there exists a chain\Wfwhich is branch-like.

Let us considewW. A branch ofW is a branch-like chain div.

Let us considew. One can verify that every chain @f which is branch-like is also non empty.
In the sequeC denotes a chain & andB denotes a branch &Y.

The following two propositions are true:

(23) IfvyeCandv; €C, thenv; € Seg,(v2) or vz < vs.
(24) Ifvy € Candv; € Candv < v, thenv; € Seg.(v) orv <vy.

Let us considewW. One can check that there exists a chaikMoivhich is finite.
Next we state several propositions:

(25) For every finite chail€ of W such that car@ > n there existsp such thatp € C and
lenp>n.

(26) For evenC holds{w:\/, (p€C A w = p)} is a chain oW.
(27) If p=<gandge B, thenp e B.

(28) 0cB.

(29) If peCandgeCandlermp<leng,thenp=q.

(30) There exist8 such thatC C B.

Now we present two schemes. The schdfnacExOfMinNaideals with a sefZ and a binary
predicateP, and states that:
There existsf such that donf = 4 and for everyx such thatx € 4 there exist:
such thatf (x) = nand?[x,n] and for everym such that?[x, m| holdsn < m
provided the parameters satisfy the following condition:
e For everyx such tha € 4 there exists such that?[x, n.
The scheménfiniteChaindeals with a sefl, a setB, a unary predicat®, and a binary predicate
Q, and states that:
There existsf such that doni = N and rngf C 4 and f(0) = B and for everyk
holdsQ[f (k), f(k+1)] andP[f (k)]
provided the following requirements are met:
e Bec 4andP|B],and
e For everyx such thatx € 4 and P[] there existy such thaty € 4 and Q[x,y] and
Ply).
We now state two propositions:

(31) LetT be atree. Suppose for evamghere exists a finite chai@ of T such that car@ =n
and for every elemerntof T holds suct is finite. Then there exists a chaihof T such that
B is not finite.

(32) LetT be a finite-order tree. Suppose that for evethiere exists a finite chai@ of T such
that cardC = n. Then there exists a chaBof T such thaB is not finite.
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Letl1 be a binary relation. We say thiatis decorated tree-like if and only if:
(Def. 8) dom is atree.

Let us mention that there exists a function which is decorated tree-like.
A decorated tree is a decorated tree-like function.

In the sequeT, Ty, T, denote decorated trees.

Let us considell. One can verify that doff is non empty and tree-like.
Let X be a set. A binary relation is called a ParametrizedSubseétifof

(Def.9) rngitC X.

Let us consideb. One can verify that there exists a ParametrizedSubs2wdfich is decorated
tree-like and function-like.

Let us consideD. A tree decorated with elements Dfis a decorated tree-like function-like
ParametrizedSubset bBf

Let D be a non empty set, Idt be a tree decorated with elementdpfand lett be an element
of domT. ThenT (t) is an element ob.

The following proposition is true

(33) IfdomT; =domT, and for everyp such thaip € domT; holdsT;(p) = T»(p), thenTy = T,.

Now we present two schemes. The schddieeeExdeals with a treeZ and a binary predicate
P, and states that:
There existd such that dorit = 4 and for everyp such thaip € 42 holds?[p, T (p)]
provided the following condition is met:
e For everyp such thatp € 4 there existx such that?P|[p, x].
The schem®TreeLambdaleals with a treeqd and a unary functofr yielding a set, and states
that:
There existd such that dorff = 2 and for everyp such thatp € 4 holdsT(p) =
F(p)
for all values of the parameters.
Let us considell. The functor Leaved) yielding a set is defined by:

(Def. 10) Leave§T) = T°LeavegdomT).
Let us considep. The functorT | p yielding a decorated tree is defined by:
(Def. 11) dom{T [p) = domT [p and for everyq such thaty € domT [p holds(T [p)(q) =T(p~ Q).

Next we state the proposition
(34) If pedomT, thendT [p) C rngT.

Let us consideb and letT be a tree decorated with elementdofThen Leave§T) is a subset
of D. Let p be an element of dofh ThenT [pis a tree decorated with elementsinf

Let us consideT, p, T;. Let us assume thgte domT. The functorT with-replacemertip, T )
yields a decorated tree and is defined by the conditions (Def. 12).

(Def. 12)()) dom(T with-replacemerttp, T1)) = domT with-replacemerfip, domT; ), and

(i)  for every g such thatq € domT with-replacemerip,domT;) holds p £ q and
(T with-replacemerttp, T1))(q) = T(q) or there exists such that € domT; andg=p~r
and(T with-replacemertp, T1) ) (q) = Ta(r).

Let us consideW, x. One can verify thatV —— x is decorated tree-like.

Let D be a non empty set, let us considfér and letd be an element db. ThenW —— d is a
tree decorated with elements[of

We now state four propositions:

(35) If for everyx such thak € D holdsx is a tree, thely D is a tree.
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(36) Suppose for every such thatx € X holdsx is a function and is C-linear. Then X is
relation-like and function-like.

(37) Suppose for everysuch thak € D holdsx is a decorated tree amlis C-linear. TheryD
is a decorated tree.

(38) Suppose for everysuch thak € D’ holdsx is a tree decorated with elementsiaindD’
is C-linear. Ther JD' is a tree decorated with elementsinf

Now we present two schemes. The schddieeeStructExdeals with a non empty set, an
elementB of 4, a unary functorf yielding a set, and a functiofi from [ 4, N into 4, and states
that:

There exists a tre€ decorated with elements of such that
(i) T(0)=3,and
(i) for every element of domT holds suct= {t~ (k) : ke F(T(t))} and for all
n, x such thak = T (t) andn € F (x) holdsT (t ™~ (n)) = C({x, n))
provided the following requirement is met:
e For every elementl of 4 and for allky, ko such thak; < k; andk; € #(d) holds
ki € T(d)
The schem®TreeStructFinExleals with a non empty s&t, an elemenfB of 4, a unary functor
F vyielding a natural number, and a functionfrom [: 4, N into 4, and states that:
There exists a tre€ decorated with elements ¢f such that
(i) T(0)=3B,and
(i) for every element of domT holds suct = {t ~ (k) : k < F(T(t))} and for
all n, x such thak = T(t) andn < F(x) holdsT(t ~ (n)) = C({x, n))
for all values of the parameters.
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