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Summary. This is the first part of the axiomatics of the Mizar system. It includes the
axioms of the Tarski Grothendieck set theory. They are: the axiom stating that everything is a
set, the extensionality axiom, the definitional axiom of the singleton, the definitional axiom of
the pair, the definitional axiom of the union of a family of sets, the definitional axiom of the
boolean (the power set) of a set, the regularity axiom, the definitional axiom of the ordered
pair, the Tarski’s axiom A introduced ihl[1] (see al50 [2]), and the Freenkel scheme. Also, the
definition of equinumerosity is introduced.

MML ldentifier: TARSKI.

WWW: http://mizar.orqg/JFM/Axiomatics/tarski.html

In this paper, y, z, u, N, M, X, Y, Z are sets.
We now state the proposition

(ZH If for everyx holdsx € X iff xe Y, thenX =Y.

Let us considey. The functor{y} is defined by:
(Def. 1) xe{y}iff x=y.
Let us consider. The functor{y, z} is defined by:
(Def. 2) xe{y,z}iff x=yorx=z

Let us notice that the functdly, z} is commutative.
Let us consideK, Y. The predicatX C Y is defined by:

(Def. 3) Ifxe X, thenxeY.

Let us note that the predicaxeC Y is reflexive.
Let us consideK. The functo X is defined by:

(Def. 4) xe X iff there existsY such thak € Y andY € X.

The following proposition is true

(YE] If x € X, then there exist¥ such thaty € X and it is not true that there existsuch that
xe XandxeY.

1 The proposition (1) has been removed.
2 The propositions (3)—(6) have been removed.
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The schemé&raenkeldeals with a sefl and a binary predicat®, and states that:
There existX such that for every holdsx € X iff there existsy such thay € 4 and

Ply,¥]
provided the parameters have the following property:
e Forallx,y, zsuch thatP[x,y] andP[x, Z] holdsy = z.
Let us consider, y. The functor(x, y) is defined as follows:

(Def. 5)  (x.y) ={{xy}.{x}}.
Let us considekK, Y. The predicatX ~ Y is defined by the condition (Def. 6).

(Def. 6) There existZ such that
(i) for everyxsuch thai € X there existy such thaty € Y and({x, y) € Z,

(i) for everyysuch thay €Y there existx such thak € X and(x, y) € Z, and
(iii) forall x,y,z usuch that(x, y) € Z and(z, u) € Z holdsx = ziff y=u.

We now state the proposition

(9F There existv such that

(i) NeM,
(i) forall X,Y such thaiX € M andY C X holdsY € M,
(iii)  for every X such thaX € M there existZ such thaZ € M and for everyY such thaty C X

holdsY € Z, and
(iv) for everyX such thaiX C M holdsX ~ M or X € M.

REFERENCES

[1] Alfred Tarski. Uber Unerreichbare Kardinalzahlefundamenta Mathematicag0:176—183, 1938.

[2] Alfred Tarski. On well-ordered subsets of any setindamenta Mathematica82:176-183, 1939.

Received January 1, 1989

Published July 30, 2002

3 The proposition (8) has been removed.
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