Tarski Grothendieck Set Theory

Andrzej Trybulec Warsaw University Białystok

Summary. This is the first part of the axiomatics of the Mizar system. It includes the axioms of the Tarski Grothendieck set theory. They are: the axiom stating that everything is a set, the extensionality axiom, the definitional axiom of the singleton, the definitional axiom of the pair, the definitional axiom of the union of a family of sets, the definitional axiom of the boolean (the power set) of a set, the regularity axiom, the definitional axiom of the ordered pair, the Tarski's axiom A introduced in [1] (see also [2]), and the Frænkel scheme. Also, the definition of equinumerosity is introduced.

MML Identifier: TARSKI.

WWW: http://mizar.org/JFM/Axiomatics/tarski.html

In this paper x, y, z, u, N, M, X, Y, Z are sets. We now state the proposition

(2)¹ If for every x holds $x \in X$ iff $x \in Y$, then X = Y.

Let us consider y. The functor $\{y\}$ is defined by:

(Def. 1) $x \in \{y\}$ iff x = y.

Let us consider z. The functor $\{y,z\}$ is defined by:

(Def. 2) $x \in \{y, z\}$ iff x = y or x = z.

Let us notice that the functor $\{y,z\}$ is commutative.

Let us consider X, Y. The predicate $X \subseteq Y$ is defined by:

(Def. 3) If $x \in X$, then $x \in Y$.

Let us note that the predicate $X \subseteq Y$ is reflexive.

Let us consider X. The functor $\bigcup X$ is defined by:

(Def. 4) $x \in \bigcup X$ iff there exists Y such that $x \in Y$ and $Y \in X$.

The following proposition is true

 $(7)^2$ If $x \in X$, then there exists Y such that $Y \in X$ and it is not true that there exists x such that $x \in X$ and $x \in Y$.

¹ The proposition (1) has been removed.

² The propositions (3)–(6) have been removed.

The scheme *Fraenkel* deals with a set \mathcal{A} and a binary predicate \mathcal{P} , and states that: There exists X such that for every x holds $x \in X$ iff there exists y such that $y \in \mathcal{A}$ and $\mathcal{P}[y,x]$

provided the parameters have the following property:

- For all x, y, z such that $\mathcal{P}[x,y]$ and $\mathcal{P}[x,z]$ holds y = z. Let us consider x, y. The functor $\langle x, y \rangle$ is defined as follows:
- (Def. 5) $\langle x, y \rangle = \{ \{x, y\}, \{x\} \}.$

Let us consider X, Y. The predicate $X \approx Y$ is defined by the condition (Def. 6).

- (Def. 6) There exists Z such that
 - (i) for every x such that $x \in X$ there exists y such that $y \in Y$ and $\langle x, y \rangle \in Z$,
 - (ii) for every y such that $y \in Y$ there exists x such that $x \in X$ and $\langle x, y \rangle \in Z$, and
 - (iii) for all x, y, z, u such that $\langle x, y \rangle \in Z$ and $\langle z, u \rangle \in Z$ holds x = z iff y = u.

We now state the proposition

- $(9)^3$ There exists M such that
- (i) $N \in M$,
- (ii) for all X, Y such that $X \in M$ and $Y \subseteq X$ holds $Y \in M$,
- (iii) for every X such that $X \in M$ there exists Z such that $Z \in M$ and for every Y such that $Y \subseteq X$ holds $Y \in Z$, and
- (iv) for every X such that $X \subseteq M$ holds $X \approx M$ or $X \in M$.

REFERENCES

- [1] Alfred Tarski. Über Unerreichbare Kardinalzahlen. Fundamenta Mathematicae, 30:176–183, 1938.
- [2] Alfred Tarski. On well-ordered subsets of any set. Fundamenta Mathematicae, 32:176–183, 1939.

Received January 1, 1989

Published July 30, 2002

³ The proposition (8) has been removed.