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Summary. This is the first part of the axiomatics of the Mizar system. It includes the
axioms of the Tarski Grothendieck set theory. They are: the axiom stating that everything is a
set, the extensionality axiom, the definitional axiom of the singleton, the definitional axiom of
the pair, the definitional axiom of the union of a family of sets, the definitional axiom of the
boolean (the power set) of a set, the regularity axiom, the definitional axiom of the ordered
pair, the Tarski’s axiom A introduced in [1] (see also [2]), and the Frænkel scheme. Also, the
definition of equinumerosity is introduced.

MML Identifier: TARSKI.

WWW: http://mizar.org/JFM/Axiomatics/tarski.html

In this paperx, y, z, u, N, M, X, Y, Z are sets.
We now state the proposition

(2)1 If for everyx holdsx∈ X iff x∈Y, thenX = Y.

Let us considery. The functor{y} is defined by:

(Def. 1) x∈ {y} iff x = y.

Let us considerz. The functor{y,z} is defined by:

(Def. 2) x∈ {y,z} iff x = y or x = z.

Let us notice that the functor{y,z} is commutative.
Let us considerX, Y. The predicateX ⊆Y is defined by:

(Def. 3) If x∈ X, thenx∈Y.

Let us note that the predicateX ⊆Y is reflexive.
Let us considerX. The functor

⋃
X is defined by:

(Def. 4) x∈
⋃

X iff there existsY such thatx∈Y andY ∈ X.

The following proposition is true

(7)2 If x∈ X, then there existsY such thatY ∈ X and it is not true that there existsx such that
x∈ X andx∈Y.

1 The proposition (1) has been removed.
2 The propositions (3)–(6) have been removed.
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The schemeFraenkeldeals with a setA and a binary predicateP , and states that:
There existsX such that for everyx holdsx∈ X iff there existsy such thaty∈ A and
P [y,x]

provided the parameters have the following property:
• For allx, y, z such thatP [x,y] andP [x,z] holdsy = z.

Let us considerx, y. The functor〈〈x, y〉〉 is defined as follows:

(Def. 5) 〈〈x, y〉〉= {{x,y},{x}}.

Let us considerX, Y. The predicateX ≈Y is defined by the condition (Def. 6).

(Def. 6) There existsZ such that

(i) for everyx such thatx∈ X there existsy such thaty∈Y and〈〈x, y〉〉 ∈ Z,

(ii) for everyy such thaty∈Y there existsx such thatx∈ X and〈〈x, y〉〉 ∈ Z, and

(iii) for all x, y, z, u such that〈〈x, y〉〉 ∈ Z and〈〈z, u〉〉 ∈ Z holdsx = z iff y = u.

We now state the proposition

(9)3 There existsM such that

(i) N ∈M,

(ii) for all X, Y such thatX ∈M andY ⊆ X holdsY ∈M,

(iii) for every X such thatX ∈M there existsZ such thatZ∈M and for everyY such thatY⊆X
holdsY ∈ Z, and

(iv) for everyX such thatX ⊆M holdsX ≈M or X ∈M.
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3 The proposition (8) has been removed.
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