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Summary. This article contains a definition ofT1 reflex of a topological space as a
quotient space which isT1 and fulfils the condition that every continuous mapf from a topo-
logical spaceT into SbeingT1 space can be considered as a superposition of two continuous
maps: the first fromT onto itsT1 reflex and the last fromT1 reflex ofT into S.

MML Identifier: T_1TOPSP.

WWW: http://mizar.org/JFM/Vol10/t_1topsp.html

The articles [9], [4], [11], [12], [2], [3], [6], [7], [8], [5], [1], and [10] provide the notation and
terminology for this paper.

In this paperX is a non empty set andw is a set.
One can prove the following four propositions:

(2)1 Let T be a non empty topological space,A be a non empty partition of the carrier ofT,
andy be a subset of the decomposition space ofA. Then (the projection ontoA)−1(y) =

⋃
y.

(3) For every non empty setX and for every partitionSof X and for every subsetA of Sholds⋃
S\

⋃
A =

⋃
(S\A).

(4) For every non empty setX and for every subsetA of X and for every partitionSof X such
thatA∈ Sholds

⋃
(S\{A}) = X \A.

(5) Let T be a non empty topological space,Sbe a non empty partition of the carrier ofT, A
be a subset of the decomposition space ofS, andB be a subset ofT. If B =

⋃
A, thenA is

closed iffB is closed.

Let X be a non empty set, letx be an element ofX, and letS1 be a partition ofX. The functor
EqClass(x,S1) yields a subset ofX and is defined by:

(Def. 1) x∈ EqClass(x,S1) and EqClass(x,S1) ∈ S1.

Next we state two propositions:

(6) For all partitionsS1, S2 of X such that for every elementx of X holds EqClass(x,S1) =
EqClass(x,S2) holdsS1 = S2.

(7) For every non empty setX holds{X} is a partition ofX.

Let X be a set. Family class ofX is defined by:

(Def. 2) It⊆ 22X
.

Let X be a set and letF be a family class ofX. We say thatF if and only if:

1 The proposition (1) has been removed.
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(Def. 3) For every setSsuch thatS∈ F holdsS is a partition ofX.

Let X be a set. Note that there exists a family class ofX which
let X be a set. A partition family ofX is a family class ofX.
Let X be a non empty set. One can check that there exists a partition ofX which is non empty.
We now state the proposition

(8) For every setX and for every partitionp of X holds{p} is a partition family ofX.

Let X be a set. Note that there exists a partition family ofX which is non empty.
One can prove the following two propositions:

(9) For every partitionS1 of X and for all elementsx, y of X such that EqClass(x,S1) meets
EqClass(y,S1) holds EqClass(x,S1) = EqClass(y,S1).

(10) LetA be a set,X be a non empty set, andSbe a partition ofX. If A∈ S, then there exists
an elementx of X such thatA = EqClass(x,S).

LetX be a non empty set and letF be a non empty partition family ofX. The functor IntersectionF
yielding a non empty partition ofX is defined by:

(Def. 4) For every elementx of X holds EqClass(x, IntersectionF) =
⋂
{EqClass(x,S);Sranges over

partitions ofX: S∈ F}.

In the sequelT denotes a non empty topological space.
We now state the proposition

(11) {A;A ranges over partitions of the carrier ofT: A is closed} is a partition family of the
carrier ofT.

Let us considerT. The functor ClosedPartitionsT yields a non empty partition family of the
carrier ofT and is defined as follows:

(Def. 5) ClosedPartitionsT = {A;A ranges over partitions of the carrier ofT: A is closed}.

Let T be a non empty topological space. The functorT1-reflexT yields a topological space and
is defined by:

(Def. 6) T1-reflexT = the decomposition space of IntersectionClosedPartitionsT.

Let us considerT. Note thatT1-reflexT is strict and non empty.
Next we state the proposition

(12) For every non empty topological spaceT holdsT1-reflexT is T1.

Let us considerT. Observe thatT1-reflexT is T1.
Let T be a non empty topological space. The functorT1-reflectT yields a continuous map from

T into T1-reflexT and is defined by:

(Def. 7) T1-reflectT = the projection onto IntersectionClosedPartitionsT.

Next we state four propositions:

(13) Let T, T1 be non empty topological spaces andf be a continuous map fromT into T1.
SupposeT1 is T1. Then

(i) { f−1({z});z ranges over elements ofT1: z∈ rng f} is a partition of the carrier ofT, and

(ii) for every subsetA of T such thatA∈ { f−1({z});z ranges over elements ofT1: z∈ rng f}
holdsA is closed.

(14) Let T, T1 be non empty topological spaces andf be a continuous map fromT
into T1. SupposeT1 is T1. Let given w and x be an element ofT. If w =
EqClass(x, IntersectionClosedPartitionsT), thenw⊆ f−1({ f (x)}).
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(15) Let T, T1 be non empty topological spaces andf be a continuous map fromT into T1.
SupposeT1 is T1. Let givenw. Supposew∈ the carrier ofT1-reflexT. Then there exists an
elementz of T1 such thatz∈ rng f andw⊆ f−1({z}).

(16) Let T, T1 be non empty topological spaces andf be a continuous map fromT into T1.
SupposeT1 is T1. Then there exists a continuous maph from T1-reflexT into T1 such that
f = h·T1-reflectT.

Let T, S be non empty topological spaces and letf be a continuous map fromT into S. The
functorT1-reflex f yielding a continuous map fromT1-reflexT into T1-reflexS is defined by:

(Def. 8) T1-reflectS· f = T1-reflex f ·T1-reflectT.
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[1] Józef Białas and Yatsuka Nakamura. Dyadic numbers and T4 topological spaces.Journal of Formalized Mathematics, 7, 1995.http:
//mizar.org/JFM/Vol7/urysohn1.html.
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