Trigonometric Functions and Existence of Circle Ratio

Yuguang Yang Shinshu University Nagano Yasunari Shidama Shinshu University Nagano

Summary. In this article, we defined *sinus* and *cosine* as the real part and the imaginary part of the exponential function on complex, and also give their series expression. Then we proved the differentiablity of *sinus*, *cosine* and the exponential function of real. Finally, we showed the existence of the circle ratio, and some formulas of *sinus*, *cosine*.

MML Identifier: SIN COS.

WWW: http://mizar.org/JFM/Vol10/sin_cos.html

The articles [23], [26], [3], [24], [7], [8], [4], [19], [5], [11], [9], [20], [27], [18], [16], [2], [13], [6], [25], [17], [10], [21], [15], [12], [1], [14], and [22] provide the notation and terminology for this paper.

1. Some Definitions and Properties of Complex Sequence

For simplicity, we use the following convention: p, q, t_1 , t_2 , t_3 denote real numbers, w, z, z_1 , z_2 denote elements of \mathbb{C} , k, l, m, n denote natural numbers, s_1 denotes a complex sequence, and r_1 denotes a sequence of real numbers.

Let m, k be natural numbers. The functor CHK(m, k) yielding an element of \mathbb{C} is defined by:

$$(\text{Def. 2})^{\text{l}} \quad \text{CHK}(m,k) = \left\{ \begin{array}{l} 1_{\mathbb{C}}, \text{ if } m \leq k, \\ 0_{\mathbb{C}}, \text{ otherwise.} \end{array} \right.$$

The functor RHK(m, k) is defined as follows:

(Def. 3) RHK
$$(m,k) = \begin{cases} 1, & \text{if } m \leq k, \\ 0, & \text{otherwise.} \end{cases}$$

Let m, k be natural numbers. One can check that RHK(m, k) is real.

Let m, k be natural numbers. Then RHK(m,k) is a real number.

In this article we present several logical schemes. The scheme $ExComplex\ CASE$ deals with a binary functor $\mathcal F$ yielding an element of $\mathbb C$, and states that:

For every k there exists s_1 such that for every n holds if $n \le k$, then $s_1(n) = \mathcal{F}(k, n)$ and if n > k, then $s_1(n) = 0_{\mathbb{C}}$

for all values of the parameter.

The scheme *ExReal CASE* deals with a binary functor \mathcal{F} yielding a real number, and states that: For every k there exists r_1 such that for every n holds if $n \le k$, then $r_1(n) = \mathcal{F}(k,n)$ and if n > k, then $r_1(n) = 0$

1

¹ The definition (Def. 1) has been removed.

for all values of the parameter.

The complex sequence Prod_complex_n is defined by:

(Def. 4) (Prod_complex_n)(0) = $1_{\mathbb{C}}$ and for every n holds (Prod_complex_n)(n+1) = (Prod_complex_n)(n) · ((n+1)+0i).

The sequence Prod_real_n of real numbers is defined as follows:

(Def. 5) (Prod_real_n)(0) = 1 and for every n holds (Prod_real_n)(n+1) = (Prod_real_n)(n) · (n+1).

Let *n* be a natural number. The functor $n!_{\mathbb{C}}$ yields an element of \mathbb{C} and is defined as follows:

(Def. 6) $n!_{\mathbb{C}} = (\text{Prod_complex_n})(n)$.

Let n be a natural number. Then n! is a real number and it can be characterized by the condition:

(Def. 7) $n! = (Prod_real_n)(n)$.

Let z be an element of \mathbb{C} . The functor zExpSeq yielding a complex sequence is defined as follows:

(Def. 8) For every *n* holds $z \text{ExpSeq}(n) = \frac{z_{\mathbb{N}}^n}{n!_{\mathbb{N}}}$.

Let a be a real number. The functor a ExpSeq yields a sequence of real numbers and is defined by:

(Def. 9) For every *n* holds $a \operatorname{ExpSeq}(n) = \frac{a^n}{n!}$.

One can prove the following three propositions:

- (1) If 0 < n, then $n + 0i \neq 0_{\mathbb{C}}$ and $0!_{\mathbb{C}} = 1_{\mathbb{C}}$ and $n!_{\mathbb{C}} \neq 0_{\mathbb{C}}$ and $(n+1)!_{\mathbb{C}} = n!_{\mathbb{C}} \cdot ((n+1)+0i)$.
- (2) $n! \neq 0$ and $(n+1)! = n! \cdot (n+1)$.
- (3) For every k such that 0 < k holds $(k-'1)!_{\mathbb{C}} \cdot (k+0i) = k!_{\mathbb{C}}$ and for all m, k such that $k \le m$ holds $(m-'k)!_{\mathbb{C}} \cdot (((m+1)-k)+0i) = ((m+1)-'k)!_{\mathbb{C}}$.

Let n be a natural number. The functor $\operatorname{Coef} n$ yields a complex sequence and is defined as follows:

(Def. 10) For every natural number k holds if $k \le n$, then $(\operatorname{Coef} n)(k) = \frac{n!_{\mathbb{C}}}{k!_{\mathbb{C}} \cdot (n-k)!_{\mathbb{C}}}$ and if k > n, then $(\operatorname{Coef} n)(k) = 0_{\mathbb{C}}$.

Let n be a natural number. The functor Coef_en yielding a complex sequence is defined as follows:

(Def. 11) For every natural number k holds if $k \le n$, then $(\text{Coef_e}\,n)(k) = \frac{\mathbb{1}_{\mathbb{C}}}{k!\mathbb{C}\cdot(n^{-l}k)!\mathbb{C}}$ and if k > n, then $(\text{Coef_e}\,n)(k) = \mathbb{0}_{\mathbb{C}}$.

Let us consider s_1 . The functor Sift s_1 yielding a complex sequence is defined by:

(Def. 12) (Sift s_1)(0) = $0_{\mathbb{C}}$ and for every natural number k holds (Sift s_1)(k+1) = $s_1(k)$.

Let us consider n and let z, w be elements of \mathbb{C} . The functor $\operatorname{Expan}(n,z,w)$ yields a complex sequence and is defined by:

(Def. 13) For every natural number k holds if $k \le n$, then $(\operatorname{Expan}(n, z, w))(k) = (\operatorname{Coef} n)(k) \cdot z_{\mathbb{N}}^k \cdot w_{\mathbb{N}}^{n-k}$ and if n < k, then $(\operatorname{Expan}(n, z, w))(k) = 0_{\mathbb{C}}$.

Let us consider n and let z, w be elements of \mathbb{C} . The functor Expan_e(n, z, w) yields a complex sequence and is defined as follows:

(Def. 14) For every natural number k holds if $k \le n$, then $(\text{Expan_e}(n, z, w))(k) = (\text{Coef_e} n)(k) \cdot z_{\mathbb{N}}^k \cdot w_{\mathbb{N}}^{n-k}$ and if n < k, then $(\text{Expan_e}(n, z, w))(k) = 0_{\mathbb{C}}$.

Let us consider n and let z, w be elements of \mathbb{C} . The functor Alfa(n, z, w) yields a complex sequence and is defined as follows:

(Def. 15) For every natural number k holds if $k \le n$, then $(\mathrm{Alfa}(n,z,w))(k) = z\mathrm{ExpSeq}(k) \cdot (\sum_{\alpha=0}^{\kappa} w \, \mathrm{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}} (n-'k)$ and if n < k, then $(\mathrm{Alfa}(n,z,w))(k) = 0_{\mathbb{C}}$.

Let a, b be real numbers and let n be a natural number. The functor Conj(n, a, b) yielding a sequence of real numbers is defined as follows:

(Def. 16) For every natural number k holds if $k \le n$, then $(\operatorname{Conj}(n,a,b))(k) = a\operatorname{ExpSeq}(k) \cdot ((\sum_{\alpha=0}^{\kappa} b\operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(n) - (\sum_{\alpha=0}^{\kappa} b\operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(n-'k))$ and if n < k, then $(\operatorname{Conj}(n,a,b))(k) = 0$

Let z, w be elements of \mathbb{C} and let n be a natural number. The functor $\operatorname{Conj}(n, z, w)$ yields a complex sequence and is defined as follows:

(Def. 17) For every natural number k holds if $k \leq n$, then $(\operatorname{Conj}(n,z,w))(k) = z\operatorname{ExpSeq}(k) \cdot ((\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(n) - (\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(n-'k))$ and if n < k, then $(\operatorname{Conj}(n,z,w))(k) = 0_{\mathbb{C}}$.

The following propositions are true:

- $(4) \quad z \operatorname{ExpSeq}(n+1) = \frac{z \operatorname{ExpSeq}(n) \cdot z}{(n+1) + 0i} \text{ and } z \operatorname{ExpSeq}(0) = 1_{\mathbb{C}} \text{ and } |z \operatorname{ExpSeq}(n)| = |z| \operatorname{ExpSeq}(n).$
- (5) If 0 < k, then $(Sift s_1)(k) = s_1(k 1)$.
- (6) $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}(k) = (\sum_{\alpha=0}^{\kappa} (\operatorname{Sift} s_1)(\alpha))_{\kappa\in\mathbb{N}}(k) + s_1(k).$
- (7) $(z+w)_{\mathbb{N}}^n = (\sum_{\alpha=0}^{\kappa} (\operatorname{Expan}(n,z,w))(\alpha))_{\kappa \in \mathbb{N}}(n).$
- (8) Expan_e(n, z, w) = $\frac{1_{\mathbb{C}}}{n!_{\mathbb{C}}}$ Expan(n, z, w).
- (9) $\frac{(z+w)_{\mathbb{N}}^{n}}{n!c} = (\sum_{\alpha=0}^{\kappa} (\text{Expan_e}(n,z,w))(\alpha))_{\kappa \in \mathbb{N}}(n).$
- (10) $0_{\mathbb{C}} \text{ExpSeq}$ is absolutely summable and $\sum (0_{\mathbb{C}} \text{ExpSeq}) = 1_{\mathbb{C}}$.

Let us consider *z*. Note that *z* ExpSeq is absolutely summable. One can prove the following propositions:

- (11) zExpSeq $(0) = 1_{\mathbb{C}}$ and $(Expan(0, z, w))(0) = 1_{\mathbb{C}}$.
- (12) If $l \le k$, then $(Alfa(k+1,z,w))(l) = (Alfa(k,z,w))(l) + (Expan_e(k+1,z,w))(l)$.
- (13) $(\sum_{\alpha=0}^{\kappa} (\operatorname{Alfa}(k+1,z,w))(\alpha))_{\kappa \in \mathbb{N}}(k) = (\sum_{\alpha=0}^{\kappa} (\operatorname{Alfa}(k,z,w))(\alpha))_{\kappa \in \mathbb{N}}(k) + (\sum_{\alpha=0}^{\kappa} (\operatorname{Expan_e}(k+1,z,w))(\alpha))_{\kappa \in \mathbb{N}}(k)$.
- (14) $z \operatorname{ExpSeq}(k) = (\operatorname{Expan_e}(k, z, w))(k)$.
- (15) $(\sum_{\alpha=0}^{\kappa} z + w \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(n) = (\sum_{\alpha=0}^{\kappa} (\operatorname{Alfa}(n, z, w))(\alpha))_{\kappa \in \mathbb{N}}(n).$
- $(16) \quad (\sum_{\alpha=0}^{\kappa} z \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(k) \cdot (\sum_{\alpha=0}^{\kappa} w \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(k) (\sum_{\alpha=0}^{\kappa} z + w \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(k) = (\sum_{\alpha=0}^{\kappa} (\operatorname{Conj}(k, z, w))(\alpha))_{\kappa \in \mathbb{N}}(k).$
- $(17) \quad |(\sum_{\alpha=0}^{\kappa} z \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(k)| \leq (\sum_{\alpha=0}^{\kappa} |z| \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(k) \text{ and } (\sum_{\alpha=0}^{\kappa} |z| \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(k) \leq \sum (|z| \operatorname{ExpSeq}) \text{ and } |(\sum_{\alpha=0}^{\kappa} z \operatorname{ExpSeq}(\alpha))_{\kappa \in \mathbb{N}}(k)| \leq \sum (|z| \operatorname{ExpSeq}).$
- (18) $1 \leq \sum (|z| \operatorname{ExpSeq}).$
- (19) $0 \le |z| \operatorname{ExpSeq}(n)$.
- $(20) \quad |(\sum_{\alpha=0}^{\kappa}|z|\operatorname{ExpSeq}(\alpha))_{\kappa\in\mathbb{N}}(n)| = (\sum_{\alpha=0}^{\kappa}|z|\operatorname{ExpSeq}(\alpha))_{\kappa\in\mathbb{N}}(n) \text{ and if } n\leq m, \text{ then } |(\sum_{\alpha=0}^{\kappa}|z|\operatorname{ExpSeq}(\alpha))_{\kappa\in\mathbb{N}}(m) (\sum_{\alpha=0}^{\kappa}|z|\operatorname{ExpSeq}(\alpha))_{\kappa\in\mathbb{N}}(n)| = (\sum_{\alpha=0}^{\kappa}|z|\operatorname{ExpSeq}(\alpha))_{\kappa\in\mathbb{N}}(m) (\sum_{\alpha=0}^{\kappa}|z|\operatorname{ExpSeq}(\alpha))_{\kappa\in\mathbb{N}}(n).$

- $(21) \quad \left| \left(\sum_{\alpha=0}^{\kappa} |\operatorname{Conj}(k, z, w)|(\alpha) \right)_{\kappa \in \mathbb{N}}(n) \right| = \left(\sum_{\alpha=0}^{\kappa} |\operatorname{Conj}(k, z, w)|(\alpha) \right)_{\kappa \in \mathbb{N}}(n).$
- (22) For every real number p such that p > 0 there exists n such that for every k such that $n \le k$ holds $|(\sum_{\alpha=0}^{\kappa} |\operatorname{Conj}(k, z, w)|(\alpha))_{\kappa \in \mathbb{N}}(k)| < p$.
- (23) For every s_1 such that for every k holds $s_1(k) = (\sum_{\alpha=0}^{\kappa} (\operatorname{Conj}(k, z, w))(\alpha))_{\kappa \in \mathbb{N}}(k)$ holds s_1 is convergent and $\lim s_1 = 0_{\mathbb{C}}$.

2. DEFINITION OF EXPONENTIAL FUNCTION ON COMPLEX

The partial function \exp from $\mathbb C$ to $\mathbb C$ is defined as follows:

(Def. 18) dom exp = \mathbb{C} and for every element z of \mathbb{C} holds exp(z) = $\sum (z \text{ExpSeq})$.

Let us consider z. The functor $\exp z$ yields an element of \mathbb{C} and is defined as follows:

(Def. 19) $\exp z = \exp(z)$.

The following proposition is true

- (24) For all z_1 , z_2 holds $\exp(z_1 + z_2) = \exp z_1 \cdot \exp z_2$.
 - 3. Definition of Sinus, Cosine, and Exponential Function on $\mathbb R$

The partial function \sin from \mathbb{R} to \mathbb{R} is defined as follows:

(Def. 20) dom $\sin = \mathbb{R}$ and for every element d of \mathbb{R} holds $\sin(d) = \Im(\sum (0 + di \operatorname{ExpSeq}))$.

Let t_1 be a real number. The functor $\sin t_1$ is defined as follows:

(Def. 21) $\sin t_1 = \sin(t_1)$.

Let t_1 be a real number. One can check that $\sin t_1$ is real.

Let t_1 be a real number. Then $\sin t_1$ is a real number.

Next we state the proposition

(25) sin is a function from \mathbb{R} into \mathbb{R} .

In the sequel d denotes a real number.

The partial function \cos from \mathbb{R} to \mathbb{R} is defined as follows:

(Def. 22) dom $\cos = \mathbb{R}$ and for every d holds $\cos(d) = \Re(\sum (0 + di \operatorname{ExpSeq}))$.

Let t_1 be a real number. The functor $\cos t_1$ is defined by:

(Def. 23) $\cos t_1 = \cos(t_1)$.

Let t_1 be a real number. Note that $\cos t_1$ is real.

Let t_1 be a real number. Then $\cos t_1$ is a real number.

Next we state several propositions:

- (26) cos is a function from \mathbb{R} into \mathbb{R} .
- (27) $\operatorname{dom} \sin = \mathbb{R} \text{ and } \operatorname{dom} \cos = \mathbb{R}.$
- (28) $\exp(0+t_1i) = \cos t_1 + \sin t_1i$.
- (29) $\overline{\exp(0+t_1i)} = \exp(-(0+t_1i)).$
- (30) $|\exp(0+t_1i)| = 1$ and $|\sin t_1| \le 1$ and $|\cos t_1| \le 1$.
- (31) $\cos(t_1)^2 + \sin(t_1)^2 = 1$ and $\cos(t_1) \cdot \cos(t_1) + \sin(t_1) \cdot \sin(t_1) = 1$.
- (32) $(\cos t_1)^2 + (\sin t_1)^2 = 1$ and $\cos t_1 \cdot \cos t_1 + \sin t_1 \cdot \sin t_1 = 1$.

- (33) $\cos(0) = 1$ and $\sin(0) = 0$ and $\cos(-t_1) = \cos(t_1)$ and $\sin(-t_1) = -\sin(t_1)$.
- (34) $\cos 0 = 1$ and $\sin 0 = 0$ and $\cos(-t_1) = \cos t_1$ and $\sin(-t_1) = -\sin t_1$.

Let t_1 be a real number. The functor t_1 P₋sin yielding a sequence of real numbers is defined by:

(Def. 24) For every *n* holds
$$t_1 P_{-\sin}(n) = \frac{(-1)^n \cdot t_1^{2\cdot n+1}}{(2\cdot n+1)!}$$
.

The functor t_1 P₋cos yields a sequence of real numbers and is defined by:

(Def. 25) For every *n* holds
$$t_1 P_{-}\cos(n) = \frac{(-1)^n \cdot t_1^{2 \cdot n}}{(2 \cdot n)!}$$
.

Next we state a number of propositions:

- (35) For all z, k holds $z_{\mathbb{N}}^{2 \cdot k} = (z_{\mathbb{N}}^k)_{\mathbb{N}}^2$ and $z_{\mathbb{N}}^{2 \cdot k} = (z_{\mathbb{N}}^2)_{\mathbb{N}}^k$.
- (36) For all k, t_1 holds $(0 + t_1 i)_{\mathbb{N}}^{2 \cdot k} = (-1)^k \cdot t_1^{2 \cdot k} + 0i$ and $(0 + t_1 i)_{\mathbb{N}}^{2 \cdot k + 1} = 0 + ((-1)^k \cdot t_1^{2 \cdot k + 1})i$.
- (37) For every n holds $n!_{\mathbb{C}} = n! + 0i$.
- (38) For all t_1 , n holds $(\sum_{\alpha=0}^{\kappa} t_1 \operatorname{P-sin}(\alpha))_{\kappa \in \mathbb{N}}(n) = (\sum_{\alpha=0}^{\kappa} \Im(0 + t_1 i \operatorname{ExpSeq})(\alpha))_{\kappa \in \mathbb{N}}(2 \cdot n + 1)$ and $(\sum_{\alpha=0}^{\kappa} t_1 \operatorname{P-cos}(\alpha))_{\kappa \in \mathbb{N}}(n) = (\sum_{\alpha=0}^{\kappa} \Re(0 + t_1 i \operatorname{ExpSeq})(\alpha))_{\kappa \in \mathbb{N}}(2 \cdot n)$.
- (39) For every t_1 holds $(\sum_{\alpha=0}^{\kappa} t_1 P_{-}\sin(\alpha))_{\kappa \in \mathbb{N}}$ is convergent and $\sum (t_1 P_{-}\sin) = \Im(\sum (0 + t_1 i \operatorname{ExpSeq}))$ and $(\sum_{\alpha=0}^{\kappa} t_1 P_{-}\cos(\alpha))_{\kappa \in \mathbb{N}}$ is convergent and $\sum (t_1 P_{-}\cos) = \Re(\sum (0 + t_1 i \operatorname{ExpSeq}))$.
- (40) For every t_1 holds $\cos(t_1) = \sum (t_1 P_{-}\cos)$ and $\sin(t_1) = \sum (t_1 P_{-}\sin)$.
- (41) For all p, t_1 , r_1 such that r_1 is convergent and $\lim r_1 = t_1$ and for every n holds $r_1(n) \ge p$ holds $t_1 \ge p$.
- (42) For all n, k, m such that n < k holds m! > 0 and $n! \le k!$.
- (43) For all t_1 , n, k such that $0 \le t_1$ and $t_1 \le 1$ and $n \le k$ holds $t_1^k \le t_1^n$.
- (44) For all t_1 , n holds $(t_1 + 0i)_{\mathbb{N}}^n = t_1^n + 0i$.
- (45) For all t_1 , n holds $\frac{(t_1+0i)_{\mathbb{N}}^n}{n!_{\mathbb{C}}} = \frac{t_1^n}{n!} + 0i$.
- (46) $\Im(\Sigma(p+0i\operatorname{ExpSeq}))=0.$
- (47) $\cos(1) > 0$ and $\sin(1) > 0$ and $\cos(1) < \sin(1)$.
- (48) For every t_1 holds $t_1 \operatorname{ExpSeq} = \Re(t_1 + 0i \operatorname{ExpSeq})$.
- (49) For every t_1 holds t_1 ExpSeq is summable and $\sum (t_1 \text{ExpSeq}) = \Re(\sum (t_1 + 0i \text{ExpSeq}))$.
- (50) For all p, q holds $\sum (p + q \operatorname{ExpSeq}) = \sum (p \operatorname{ExpSeq}) \cdot \sum (q \operatorname{ExpSeq})$.

The partial function exp from \mathbb{R} to \mathbb{R} is defined as follows:

(Def. 26) dom exp = \mathbb{R} and for every real number d holds exp(d) = $\sum (d \operatorname{ExpSeq})$.

Let t_1 be a real number. The functor $\exp t_1$ is defined as follows:

(Def. 27)
$$\exp t_1 = \exp(t_1)$$
.

Let t_1 be a real number. One can check that $\exp t_1$ is real.

Let t_1 be a real number. Then $\exp t_1$ is a real number.

The following propositions are true:

(51) $\operatorname{dom} \exp = \mathbb{R}$.

- (53)² For every t_1 holds $\exp(t_1) = \Re(\sum (t_1 + 0i \operatorname{ExpSeq}))$.
- (54) $\exp(t_1 + 0i) = \exp t_1 + 0i$.
- (55) $\exp(p+q) = \exp p \cdot \exp q$
- (56) $\exp 0 = 1$.
- (57) For every t_1 such that $t_1 > 0$ holds $\exp(t_1) \ge 1$.
- (58) For every t_1 such that $t_1 < 0$ holds $0 < \exp(t_1)$ and $\exp(t_1) \le 1$.
- (59) For every t_1 holds $\exp(t_1) > 0$.
- (60) For every t_1 holds $\exp t_1 > 0$.
 - 4. DIFFERENTIAL OF SINUS, COSINE, AND EXPONENTIAL FUNCTION

Let z be an element of \mathbb{C} . The functor zP_{-} dt yielding a complex sequence is defined as follows:

(Def. 28) For every
$$n$$
 holds $zP_{-}dt(n) = \frac{z_{\mathbb{N}}^{n+1}}{(n+2)!_{\mathbb{C}}}$.

The functor $zP_{-}t$ yielding a complex sequence is defined as follows:

(Def. 29) For every
$$n$$
 holds $zP_{-}t(n) = \frac{z_{N}^{n}}{(n+2)!_{\mathbb{C}}}$.

Next we state a number of propositions:

- (61) For every z holds $zP_{-}dt$ is absolutely summable.
- (62) For every z holds $z \cdot \sum (z P_{-}dt) = \sum (z ExpSeq) 1_{\mathbb{C}} z$.
- (63) For every p such that p > 0 there exists q such that q > 0 and for every z such that |z| < q holds $|\sum (z P_{-}dt)| < p$.
- (64) For all z, z_1 holds $\sum (z_1 + z \operatorname{ExpSeq}) \sum (z_1 \operatorname{ExpSeq}) = \sum (z_1 \operatorname{ExpSeq}) \cdot z + z \cdot \sum (z \operatorname{P_dt}) \cdot \sum (z_1 \operatorname{ExpSeq})$.
- (65) For all p, q holds $\cos(p+q) \cos(p) = -q \cdot \sin(p) q \cdot \Im(\sum (0 + qi P_dt) \cdot (\cos(p) + \sin(p)i))$.
- (66) For all p, q holds $\sin(p+q) \sin(p) = q \cdot \cos(p) + q \cdot \Re(\sum (0 + qiP_{dt}) \cdot (\cos(p) + \sin(p)i))$.
- (67) For all p, q holds $\exp(p+q) \exp(p) = q \cdot \exp(p) + q \cdot \exp(p) \cdot \Re(\sum (q+0iP_{-}dt))$.
- (68) For every p holds cos is differentiable in p and $\cos'(p) = -\sin(p)$.
- (69) For every p holds sin is differentiable in p and $\sin'(p) = \cos(p)$.
- (70) For every *p* holds exp is differentiable in *p* and $\exp'(p) = \exp(p)$.
- (71) exp is differentiable on \mathbb{R} and for every t_1 such that $t_1 \in \mathbb{R}$ holds $\exp'(t_1) = \exp(t_1)$.
- (72) cos is differentiable on \mathbb{R} and for every t_1 such that $t_1 \in \mathbb{R}$ holds $\cos'(t_1) = -\sin(t_1)$.
- (73) sin is differentiable on \mathbb{R} and for every t_1 holds $\sin'(t_1) = \cos(t_1)$.
- (74) For every t_1 such that $t_1 \in [0,1]$ holds $0 < \cos(t_1)$ and $\cos(t_1) \ge \frac{1}{2}$.
- $(75) \quad [0,1] \subseteq dom(\tfrac{sin}{cos}) \text{ and }]0,1[\subseteq dom(\tfrac{sin}{cos}).$
- (76) $\frac{\sin}{\cos}$ is continuous on [0,1].
- (77) For all t_2 , t_3 such that $t_2 \in]0,1[$ and $t_3 \in]0,1[$ and $(\frac{\sin}{\cos})(t_2) = (\frac{\sin}{\cos})(t_3)$ holds $t_2 = t_3$.

² The proposition (52) has been removed.

5. Existence of Circle Ratio

The real number π is defined as follows:

(Def. 30)
$$(\frac{\sin}{\cos})(\frac{\pi}{4}) = 1 \text{ and } \pi \in]0,4[.$$

 π is a real number.

The following proposition is true

(78)
$$\sin(\frac{\pi}{4}) = \cos(\frac{\pi}{4}).$$

6. FORMULAS OF SINUS, COSINE

One can prove the following propositions:

- (79) $\sin(t_2 + t_3) = \sin(t_2) \cdot \cos(t_3) + \cos(t_2) \cdot \sin(t_3)$ and $\cos(t_2 + t_3) = \cos(t_2) \cdot \cos(t_3) \sin(t_2) \cdot \sin(t_3)$.
- (80) $\sin(t_2+t_3) = \sin t_2 \cdot \cos t_3 + \cos t_2 \cdot \sin t_3$ and $\cos(t_2+t_3) = \cos t_2 \cdot \cos t_3 \sin t_2 \cdot \sin t_3$.
- (81) $\cos(\frac{\pi}{2}) = 0$ and $\sin(\frac{\pi}{2}) = 1$ and $\cos(\pi) = -1$ and $\sin(\pi) = 0$ and $\cos(\pi + \frac{\pi}{2}) = 0$ and $\sin(\pi + \frac{\pi}{2}) = -1$ and $\cos(2 \cdot \pi) = 1$ and $\sin(2 \cdot \pi) = 0$.
- (82) $\cos(\frac{\pi}{2}) = 0$ and $\sin(\frac{\pi}{2}) = 1$ and $\cos \pi = -1$ and $\sin \pi = 0$ and $\cos(\pi + \frac{\pi}{2}) = 0$ and $\sin(\pi + \frac{\pi}{2}) = -1$ and $\cos(2 \cdot \pi) = 1$ and $\sin(2 \cdot \pi) = 0$.
- (83) $\sin(t_1 + 2 \cdot \pi) = \sin(t_1)$ and $\cos(t_1 + 2 \cdot \pi) = \cos(t_1)$ and $\sin(\frac{\pi}{2} t_1) = \cos(t_1)$ and $\cos(\frac{\pi}{2} t_1) = \sin(t_1)$ and $\sin(\frac{\pi}{2} + t_1) = \cos(t_1)$ and $\cos(\frac{\pi}{2} + t_1) = -\sin(t_1)$ and $\sin(\pi + t_1) = -\sin(t_1)$ and $\cos(\pi + t_1) = -\cos(t_1)$.
- (84) $\sin(t_1 + 2 \cdot \pi) = \sin t_1$ and $\cos(t_1 + 2 \cdot \pi) = \cos t_1$ and $\sin(\frac{\pi}{2} t_1) = \cos t_1$ and $\cos(\frac{\pi}{2} t_1) = \sin t_1$ and $\sin(\frac{\pi}{2} + t_1) = \cos t_1$ and $\cos(\frac{\pi}{2} + t_1) = -\sin t_1$ and $\sin(\pi + t_1) = -\sin t_1$ and $\cos(\pi + t_1) = -\cos t_1$.
- (85) For every t_1 such that $t_1 \in]0, \frac{\pi}{2}[$ holds $\cos(t_1) > 0$.
- (86) For every t_1 such that $t_1 \in]0, \frac{\pi}{2}[$ holds $\cos t_1 > 0$.

REFERENCES

- Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/ JFM/Vol5/comseq_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [6] Czesław Byliński. The complex numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/complex1. html.
- [7] Library Committee. Introduction to arithmetic. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/arytm_0.html.
- [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [9] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/seq_2.html.
- [10] Jarosław Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/seqm_3.html.

- [11] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seg_1.html.
- [12] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_1.html.
- [13] Rafał Kwiatek. Factorial and Newton coefficients. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/newton.html.
- [14] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/comseq_2.html.
- [15] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/ Vol5/binarith.html.
- [16] Jan Popiotek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/absvalue.html.
- [17] Konrad Raczkowski. Integer and rational exponents. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/prepower.html.
- [18] Konrad Raczkowski and Andrzej Nędzusiak. Series. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/series_1.html.
- [19] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/fcont_1.html.
- [20] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fdiff_1.html.
- [21] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
- [22] Yasunari Shidama and Artur Korniłowicz. Convergence and the limit of complex sequences. Series. *Journal of Formalized Mathematics*, 9, 1997. http://mizar.org/JFM/Vol9/comseq_3.html.
- [23] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [24] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [25] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/square_1.html.
- [27] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.

Received October 22, 1998

Published January 2, 2004