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Summary. In this article, we definedinusandcosineas the real part and the imagi-
nary part of the exponential function on complex, and also give their series expression. Then
we proved the differentiablity oinus cosineand the exponential function of real. Finally,
we showed the existence of the circle ratio, and some formulsiso§ cosine
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[25], [17], [1Q], [27], [15], [12], [1], [14], and[[22] provide the notation and terminology for this
paper.

1. SOME DEFINITIONS AND PROPERTIES OFCOMPLEX SEQUENCE

For simplicity, we use the following conventiom, q, t1, to, t3 denote real numbersy, z, z;, 2
denote elements df, k, I, m, n denote natural numbers; denotes a complex sequence, and
denotes a sequence of real numbers.

Let m, k be natural numbers. The functor Ckg k) yielding an element of is defined by:

1o, if m<Kk,
Oc, otherwise.

(Def. ZH CHK(m,k) = {

The functor RHKm, k) is defined as follows:

1, if m<Kk,

(Def. 3) RHK(m,k) :{ 0, otherwise.

Letm, k be natural numbers. One can check that RRK) is real.
Letm, k be natural numbers. Then RHit{, k) is a real number.
In this article we present several logical schemes. The scliEx@emplex CASHeals with a
binary functor¥ yielding an element of, and states that:
For everyk there exists; such that for every holds ifn <k, thens;(n) = F (k,n)
and ifn > k, thens;(n) = O¢
for all values of the parameter.
The schem&xReal CASHeals with a binary functof yielding a real number, and states that:
For everyk there exists; such that for every holds ifn <k, thenry(n) = F (k,n)
and ifn > k, thenr(n) =0

1 The definition (Def. 1) has been removed.
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for all values of the parameter.
The complex sequence Pradmplexn is defined by:

(Def. 4) (Prodcomplexn)(0) = 1z and for every n holds (Prodcomplexn)(n + 1) =
(Prodcomplexn)(n) - ((n+1) +0i).

The sequence Pragaln of real numbers is defined as follows:

(Def. 5) (Prodrealn)(0) =1 and for everyn holds(Prodrealn)(n+ 1) = (Prodrealn)(n) - (n+
1).

Let n be a natural number. The functal; yields an element of and is defined as follows:
(Def. 6) nl¢c = (Prodcomplexn)(n).

Letn be a natural number. Thetis a real number and it can be characterized by the condition:
(Def. 7) n! = (Prodrealn)(n).

Let z be an element of. The functorzExpSeq yielding a complex sequence is defined as
follows:

(Def. 8) For everyn holdszExpSedn) = %.
Let a be a real number. The functaExpSeq yields a sequence of real numbers and is defined
by:
(Def. 9) For evenyn holdsaExpSedn) = %T
One can prove the following three propositions:
(1) If0 < n,thenn+0i # O¢ and Ok = 1¢ andn!¢ # Oc and(n+1)!¢c = nl¢ - ((n+1) + 0i).
(2) n#0and(n+1)!=n!-(n+1).

(3) For evenk such that < k holds(k—'1)!¢ - (k+ 0i) = k!¢ and for allm, k such thak < m
holds(m—"k)!c - (((m+1) —k) +0i) = (m+1) —"Kk)!¢.
Let n be a natural number. The functor Coefields a complex sequence and is defined as
follows:
(Def. 10) For every natural numbkiolds ifk < n, then(Coefn) (k) = Mif/kﬂc and ifk > n, then
(Coefn)(k) = Oc.

Let n be a natural number. The functor Caaf yielding a complex sequence is defined as
follows:

(Def. 11) For every natural numbé&rholds ifk < n, then(Coefen)(k) = m and ifk > n,
then(Coefen)(k) = Oc.

Let us consides;. The functor Sifs; yielding a complex sequence is defined by:
(Def. 12) (Sifts;)(0) = O¢ and for every natural numbérholds(Sifts;)(k+ 1) = s (k).

Let us considen and letz, w be elements of. The functor Expafn,z w) yields a complex
sequence and is defined by:

(Def. 13)  For every natural numbkholds ifk < n, then(Expar(n, z,w)) (k) = (Coefn) (k) - 2 -nglk
and ifn < k, then(Expar(n,z,w))(k) = Oc.
Let us considen and letz, w be elements of. The functor Expare(n,z w) yields a complex
sequence and is defined as follows:

(Def. 14)  For every natural numbkiolds ifk < n, then(Expane(n,z w))(k) = (Coefen)(k) - 2 -
w? 'k and ifn < k, then(Expane(n,zw))(k) = Oc.
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Let us considen and letz, w be elements ofC. The functor Alfgn,z,w) yields a complex
sequence and is defined as follows:

(Def. 15) For every natural numbek holds if k < n, then (Alfa(n,z,w))(k) = zExpSedk) -
(T a—oWEXpSedqa))cen(n—"k) and ifn < k, then(Alfa(n,zw))(k) = Oc.

Let a, b be real numbers and letbe a natural number. The functor Ctmja, b) yielding a
sequence of real numbers is defined as follows:

(Def. 16) For every natural numbée holds if k < n, then (Conj(n,a,b))(k) = aExpSedk) -
((Ts_obExpSeda))ken(n) — (3 5_obExpSeda) )ken(n—"k)) and ifn < k, then(Conj(n,a, b)) (k) =

Let z, w be elements of and letn be a natural number. The functor Cmjz, w) yields a
complex sequence and is defined as follows:

(Def. 17) For every natural numbée holds if k < n, then (Conj(n,z,w))(k) = zExpSedk) -
(T 5—oWExXpSeda))ken(n) — (Sh_oWExpSeda))xen(n = k)) and if n < k, then
(Conj(n,Z,W))(k) = O(C'

The following propositions are true:

(4) zExpSedn-+1) = %’fﬂg?’z andzExpSe0) = 1¢ and|zExpSedqn)| = |zl ExpSedn).
(5) 1f0 <k, then(Sifts;)(k) = sy (k—"1).

(6) (Za=o(s1)(@))ken(K) = (Ya=o(Sifts) (@) ken (k) +51(K).

() (Z+W) = (Ya=o(Expar(n,z,w))(a) ken(n)-

(8) Expane(n,z,w) = nl!% Expar(n,z,w).

Q) % = (3X_o(Expane(n,z,w))(a))ken(n).

(10) Q- ExpSeq is absolutely summable apc ExpSeq = 1c.

Let us consider. Note thazExpSeq is absolutely summable.
One can prove the following propositions:

(11) zExpSed0) = 1¢ and(Expar(0,z,w))(0) = 1¢.
(12) Ifl <k, then(Alfa(k+1,z,w))(I) = (Alfa(k,z,w))(I) + (Expane(k+ 1,z,w))(I).

(13) (Sa—o(Alfa(k+1,z,w))(a))ken(k) = (So—o(Alfa(k,z,w))(a))ken(K) + (Ta—o(Expane(k+
13 Z W))(a))KEN(k)

(14) zExpSedk) = (Expane(k,zw))(k).
(15) (Sa-oZ+WExpSeda))ken(n) = (Ta—o(Alfa(n,z w))(a))xen(n).

(16) (35-0ZExpSeqa))cen(K)- (Fa—oWEXpSeqa))ken(K) — (Sa-oZ+WEXpSeda))xen (k) =
(Za—o(Conjk,z w))(a))xen (K)-

(17) |(Xa-0ZExpSeqa))cen(K)| < (F5-0/d ExpSeqa))xen (k) and(3 5o 2| ExpSeda))xen (k) <
> (|12 ExpSeq and|(3q_o ZExpSeqa)))ken(K)| < 3 (12 ExpSeq.

(18) 1< 3(|Z/ExpSeq.
(19) 0< |z ExpSeqn).

(20) [(YG-olZ ExpSeda))ken(n)| = (3 5-0|Z ExpSeqa))ken(n) and ifn<m, then|(F5_q |2 ExpSeqa))ken(m) —
(Ya—o0lZ ExpSeda))ken(N)| = (Fa-ol2 ExpSeqa))ken(M) — (Y a—o |2 EXpSeqa) )xen(n).



TRIGONOMETRIC FUNCTIONS AND EXISTENCE OF.. 4

(1) |(Fa=olConi(k,z,w)|(a))en ()] = (Ta—o|Coni(k,z w)|(a))xen(n).

(22) For every real numbeysuch thatp > 0 there exists such that for everi such than <k
holds|(5q—o| Conj(k,z,w)|(a) Jken (k)| < p.

(23) For everys; such that for everk holdss; (k) = (Y §_o(Conj(k,z,w))(a))ken(k) holdss
is convergent and lirsp = O¢.

2. DEFINITION OF EXPONENTIAL FUNCTION ON COMPLEX

The partial function exp front to C is defined as follows:
(Def. 18) domexp=C and for every elemerztof C holds exy§z) = 5 (zExpSeq.
Let us consider. The functor exg yields an element of and is defined as follows:
(Def. 19) ex=exp2).
The following proposition is true

(24) For allz, z; holds exfiz; + z2) = expz; - expzy.

3. DEFINITION OF SINUS, COSINE, AND EXPONENTIAL FUNCTION ONR

The partial function sin fronR to R is defined as follows:
(Def. 20) domsin=R and for every elemernt of R holds sir{d) = 0(y (0+ diExpSeq).
Lett; be a real number. The functor $jris defined as follows:
(Def. 21) sirt; = sin(ty).

Lett; be areal number. One can check thatsiareal.
Lett; be areal number. Then gsinis a real number.
Next we state the proposition

(25) sinis a function fronR into R.

In the sequetl denotes a real number.
The partial function cos fro® to R is defined as follows:

(Def. 22) domcos= R and for everyd holds co$d) = O0(y (0+ diExpSeq).
Lett; be a real number. The functor dgss defined by:
(Def. 23) cod$; =codgty).

Lett; be areal number. Note that dgss real.
Lett; be a real number. Then cgss a real number.
Next we state several propositions:

(26) cos is a function frorR into R.

(27) domsin=R and domcos- R.

(28) expO0—+ti1i) = codty + sintai.

(29) exp(0+t) = exp(—(0-+i)).

(30) |exp(0+ti1i)| =1 and|sint;| < 1 and|cost;| < 1.

(31) costy)?+sin(ty)?> = 1 and cofty) - costy) +sin(ty) - sin(ty) = 1.

(32) (costl)2 + (sint1)2 =1 and co$; - costy + sinty - sinty = 1.



TRIGONOMETRIC FUNCTIONS AND EXISTENCE OF.. 5

(33) co0g0) =1 and sif0) = 0 and cos—t;) = cogt1) and sirf—t1) = —sin(ta).
(34) cos0=1 and sin0= 0 and coé—t;) = costy and sir{—t1) = —sint;.
Lett; be a real number. The functrP_sin yielding a sequence of real numbers is defined by:

(Def. 24) For evenn holdst; P_sin(n) = %

The functort; P_cos yields a sequence of real numbers and is defined by:

(Def. 25)  For everyr holdst; P_cogn) = (_(12):;}2'".

Next we state a number of propositions:
(35) Forallz k holdszZX = ()% andZ* = ()X,
(36) For allk, tg holds(0+4t11)2% = (—1)K- ;2% + 0i and (0 + t1i)2K 1 = 0+ ((— 1)K -t 2"+ D).
(87) For everyn holdsnlc = n! +0i.

(38) For allty, n holds (3 §_gt1P-sin(a))ken(n) = (3 5§_00(0+t1i ExpSeq(a))ken(2-n+ 1)
and (Y5 _ot1 P-coga))ken(n) = (3 5_o 0 (0+t1i ExpSeq(a))ken(2-n).

(39) For everyt; holds (S&_otiP-sin(a))ken is convergent andy (t1 P_sin) = 0O(3 (0 +
t1iExpSeq) and (S§_otiP-coga))keny is convergent andy(t1P-cos = O(3(0 +
t1i ExpSeq).

(40) For evenyty holds costy) = S (t1 P-cog) and sirft;) = 5 (t1 P_sin).

(41) For allp, t1, r1 such that; is convergent and limy =t; and for everyn holdsri(n) > p
holdst; > p.

(42) For alln, k, msuch thanh < k holdsm! > 0 andn! <k!.
(43) Forallty, n, k such that < t; andt; <1 andn <k holdst{* < t;".

(44) For allty, nholds(t; +0i)f, = t;" + 0.
(45) For allty, n holds /%% — 4t 1 i
(46) O(y(p+0iExpSeq) = 0.
(47) cogl) > 0and sirfl) > 0 and co$l) < sin(1).
(48) For everyt; holdst; ExpSecd= O(t; + 0i ExpSeq.
(49) For everyt; holdst; ExpSeq is summable arg{t; ExpSeq = O (3 (t1 + 0i ExpSeq).
(50) For allp, g holdsy (p+gExpSeq = 5 (pExpSeq - ¥ (QExpSeq.
The partial function exp fronR to R is defined as follows:
(Def. 26) domexp=R and for every real numbetrholds exgd) = 5 (dExpSeq.
Lett; be a real number. The functor exps defined as follows:
(Def. 27) expd1 = exp(ty).

Lett; be a real number. One can check thattgxp real.
Lett; be a real number. Then etps a real number.
The following propositions are true:

(51) domexp=R.
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For everyt; holds expit;) = O(3 (t1 + 0i ExpSeq).

exfty +0i) = expty + Oi.

expp+q) = expp-expa.

exp0=1.

For everyt; such that; > 0 holds exft;) > 1.

For evenyt; such that; < 0 holds 0< exp(t;) and exfft;) < 1.
For everyt; holds exfft;) > 0.

For evenyt; holds exp; > 0.

4. DIFFERENTIAL OF SINUS, COSINE, AND EXPONENTIAL FUNCTION

Let zbe an element of. The functorzP_dt yielding a complex sequence is defined as follows:

(Def. 28)

A+l
For evenyn holdszP_dt(n) = (nEW'

The functorzP_t yielding a complex sequence is defined as follows:

(Def. 29)

For everyr holdszP_t(n) = ﬁ-

Next we state a number of propositions:

(61)
(62)
(63)

For everyz holdszP_dt is absolutely summable.
For everyzholdsz- 5 (zP_dt) = 5 (zExpSeq — 1¢c — z.

For everyp such thatp > 0 there existg such thag > 0 and for every such thatz| < q

holds| 5 (zP-dt)| < p.

(64) For allz, z holds 3 (z1 + zExpSeq — 3 (z1 ExpSeq = S (z1 ExpSeq - z+z- 5 (zPdt) -
Y (z1 ExpSeq.

(65) For all p, g holds co$p+ q) — cogp) = —q-sin(p) — q- O(3 (0+ qiP-dt) - (cogp) +
sin(p)i)).

(66) Forallp, gholds sir{p+q) —sin(p) = g-cog p)+q-O(3 (0+qiP-dt) - (cog p) +sin(p)i)).

(67) For allp, g holds exgp+ q) —exp(p) = q-exp(p) +q-exp(p) - O (3 (q+ 0i P_dt)).

(68) For everyp holds cos is differentiable ip and co§ p) = —sin(p).

(69) For everyp holds sin is differentiable ip and sifi(p) = cogp).

(70) For everyp holds exp is differentiable ip and exp(p) = exp(p).

(71) exp is differentiable of and for everyt; such that; € R holds exp(t;) = exp(ts).

(72) cosis differentiable oR and for event; such that; € R holds co§t;) = —sin(ty).

(73) sinis differentiable off and for everyt; holds sir(t;) = cogt; ).

(74) For everyt; such that; € [0,1] holds 0< cogt;) and co$t;) > %

(75) [0,1] C dom(N) and]0,1[ C dom(Sn).

(76) 1 is continuous o0, 1].

(77) For allty, t3 such that, € ]0,1[ andts € ]0,1[ and () (t;) = (2)(t5) holdst, = ts.

2 The proposition (52) has been removed.
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5. EXISTENCE OFCIRCLE RATIO

The real numbertis defined as follows:

(Def. 30) (SN)(I) =1 andme ]0,4[.

cos

Ttis a real number.
The following proposition is true

(78) sin(})=codq 7).
6. FORMULAS OF SINUS, COSINE
One can prove the following propositions:
(79) sintz+t3) = sin(ty) - cogts) + cogty) - sin(ts) and cost, +t3) = codty) - cogtz) — sin(ty) -
sin(tz).
(80) sint; +1t3) = sint, - costz + cost, - sintz and cost, +t3) = costy - costs — sints - Sints.

(81) cog7)=0andsiri5)=1and poSn) = —1and sirfr) = 0 and co$r+ 5) = 0 and sirfri+
7)=—1and co&2-m) = 1 and siri2- 1) = 0.

(82) cog?)=0andsif]) =1 and cogt= -1 and sim= 0 and cor+ 7) = 0 and sirfri+
7)=—1and co&2-m) = 1 and sirf2- 1) = 0.

(83) sin(ty+2-m) = sin(t;) and co$t; +2- 1) = cogty) and sin{5 —t1) = cogt;) and co$ —
t1) = sin(ty) and si5 +t1) = cogty) and co$3 +t1) = —sin(ty) and sir{rt+-t;) = —sin(ty)
and cos$mi+t1) = —cogty).

(84) sin(ty+2-m) = sint; and co$ty 4+ 2- 1) = costy and si{5 —t;) = cost; and co$Z —t1) =
sint; and sir{3 +t1) = cost; and co$3 +t1) = —sint; and sif{Ti+t;) = —sint; and co$m+
t1) = —codt;.

(85) For everyt; such that; € ]0, 7 holds costy) > 0.

(86) For everyt; such that; € ]0, 7[ holds cos; > 0.
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