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Summary. In this article, we definedsinusandcosineas the real part and the imagi-
nary part of the exponential function on complex, and also give their series expression. Then
we proved the differentiablity ofsinus, cosineand the exponential function of real. Finally,
we showed the existence of the circle ratio, and some formulas ofsinus, cosine.
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[25], [17], [10], [21], [15], [12], [1], [14], and [22] provide the notation and terminology for this
paper.

1. SOME DEFINITIONS AND PROPERTIES OFCOMPLEX SEQUENCE

For simplicity, we use the following convention:p, q, t1, t2, t3 denote real numbers,w, z, z1, z2

denote elements ofC, k, l , m, n denote natural numbers,s1 denotes a complex sequence, andr1

denotes a sequence of real numbers.
Let m, k be natural numbers. The functor CHK(m,k) yielding an element ofC is defined by:

(Def. 2)1 CHK(m,k) =
{

1C, if m≤ k,
0C, otherwise.

The functor RHK(m,k) is defined as follows:

(Def. 3) RHK(m,k) =
{

1, if m≤ k,
0, otherwise.

Let m, k be natural numbers. One can check that RHK(m,k) is real.
Let m, k be natural numbers. Then RHK(m,k) is a real number.
In this article we present several logical schemes. The schemeExComplex CASEdeals with a

binary functorF yielding an element ofC, and states that:
For everyk there existss1 such that for everyn holds if n≤ k, thens1(n) = F (k,n)
and ifn > k, thens1(n) = 0C

for all values of the parameter.
The schemeExReal CASEdeals with a binary functorF yielding a real number, and states that:

For everyk there existsr1 such that for everyn holds if n≤ k, thenr1(n) = F (k,n)
and ifn > k, thenr1(n) = 0

1 The definition (Def. 1) has been removed.

1 c© Association of Mizar Users
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for all values of the parameter.
The complex sequence Prodcomplexn is defined by:

(Def. 4) (Prodcomplexn)(0) = 1C and for every n holds (Prodcomplexn)(n + 1) =
(Prodcomplexn)(n) · ((n+1)+0i).

The sequence Prodreal n of real numbers is defined as follows:

(Def. 5) (Prod real n)(0) = 1 and for everyn holds(Prod real n)(n+1) = (Prod real n)(n) · (n+
1).

Let n be a natural number. The functorn!C yields an element ofC and is defined as follows:

(Def. 6) n!C = (Prodcomplexn)(n).

Let n be a natural number. Thenn! is a real number and it can be characterized by the condition:

(Def. 7) n! = (Prod real n)(n).

Let z be an element ofC. The functorzExpSeq yielding a complex sequence is defined as
follows:

(Def. 8) For everyn holdszExpSeq(n) = zn
N

n!C
.

Let a be a real number. The functoraExpSeq yields a sequence of real numbers and is defined
by:

(Def. 9) For everyn holdsaExpSeq(n) = an

n! .

One can prove the following three propositions:

(1) If 0 < n, thenn+0i 6= 0C and 0!C = 1C andn!C 6= 0C and(n+1)!C = n!C · ((n+1)+0i).

(2) n! 6= 0 and(n+1)! = n! · (n+1).

(3) For everyk such that 0< k holds(k−′ 1)!C · (k+0i) = k!C and for allm, k such thatk≤m
holds(m−′ k)!C · (((m+1)−k)+0i) = ((m+1)−′ k)!C.

Let n be a natural number. The functor Coefn yields a complex sequence and is defined as
follows:

(Def. 10) For every natural numberk holds ifk≤ n, then(Coefn)(k) = n!C
k!C·(n−′k)!C

and ifk > n, then

(Coefn)(k) = 0C.

Let n be a natural number. The functor Coefen yielding a complex sequence is defined as
follows:

(Def. 11) For every natural numberk holds if k≤ n, then(Coef en)(k) = 1C
k!C·(n−′k)!C

and if k > n,

then(Coef en)(k) = 0C.

Let us considers1. The functor Sifts1 yielding a complex sequence is defined by:

(Def. 12) (Sifts1)(0) = 0C and for every natural numberk holds(Sifts1)(k+1) = s1(k).

Let us considern and letz, w be elements ofC. The functor Expan(n,z,w) yields a complex
sequence and is defined by:

(Def. 13) For every natural numberk holds ifk≤ n, then(Expan(n,z,w))(k) = (Coefn)(k) ·zk
N ·w

n−′k
N

and ifn < k, then(Expan(n,z,w))(k) = 0C.

Let us considern and letz, w be elements ofC. The functor Expane(n,z,w) yields a complex
sequence and is defined as follows:

(Def. 14) For every natural numberk holds if k≤ n, then(Expane(n,z,w))(k) = (Coef en)(k) ·zk
N ·

wn−′k
N and ifn < k, then(Expane(n,z,w))(k) = 0C.
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Let us considern and letz, w be elements ofC. The functor Alfa(n,z,w) yields a complex
sequence and is defined as follows:

(Def. 15) For every natural numberk holds if k ≤ n, then (Alfa(n,z,w))(k) = zExpSeq(k) ·
(∑κ

α=0wExpSeq(α))κ∈N(n−′ k) and ifn < k, then(Alfa(n,z,w))(k) = 0C.

Let a, b be real numbers and letn be a natural number. The functor Conj(n,a,b) yielding a
sequence of real numbers is defined as follows:

(Def. 16) For every natural numberk holds if k ≤ n, then (Conj(n,a,b))(k) = aExpSeq(k) ·
((∑κ

α=0bExpSeq(α))κ∈N(n)−(∑κ
α=0bExpSeq(α))κ∈N(n−′k)) and ifn< k, then(Conj(n,a,b))(k)=

0.

Let z, w be elements ofC and letn be a natural number. The functor Conj(n,z,w) yields a
complex sequence and is defined as follows:

(Def. 17) For every natural numberk holds if k ≤ n, then (Conj(n,z,w))(k) = zExpSeq(k) ·
((∑κ

α=0wExpSeq(α))κ∈N(n) − (∑κ
α=0wExpSeq(α))κ∈N(n −′ k)) and if n < k, then

(Conj(n,z,w))(k) = 0C.

The following propositions are true:

(4) zExpSeq(n+1) = zExpSeq(n)·z
(n+1)+0i andzExpSeq(0) = 1C and|zExpSeq(n)|= |z|ExpSeq(n).

(5) If 0 < k, then(Sifts1)(k) = s1(k−′ 1).

(6) (∑κ
α=0(s1)(α))κ∈N(k) = (∑κ

α=0(Sifts1)(α))κ∈N(k)+s1(k).

(7) (z+w)n
N = (∑κ

α=0(Expan(n,z,w))(α))κ∈N(n).

(8) Expane(n,z,w) = 1C
n!C

Expan(n,z,w).

(9)
(z+w)n

N
n!C

= (∑κ
α=0(Expane(n,z,w))(α))κ∈N(n).

(10) 0C ExpSeq is absolutely summable and∑(0C ExpSeq) = 1C.

Let us considerz. Note thatzExpSeq is absolutely summable.
One can prove the following propositions:

(11) zExpSeq(0) = 1C and(Expan(0,z,w))(0) = 1C.

(12) If l ≤ k, then(Alfa(k+1,z,w))(l) = (Alfa(k,z,w))(l)+(Expane(k+1,z,w))(l).

(13) (∑κ
α=0(Alfa(k+1,z,w))(α))κ∈N(k)= (∑κ

α=0(Alfa(k,z,w))(α))κ∈N(k)+(∑κ
α=0(Expane(k+

1,z,w))(α))κ∈N(k).

(14) zExpSeq(k) = (Expane(k,z,w))(k).

(15) (∑κ
α=0z+wExpSeq(α))κ∈N(n) = (∑κ

α=0(Alfa(n,z,w))(α))κ∈N(n).

(16) (∑κ
α=0zExpSeq(α))κ∈N(k)·(∑κ

α=0wExpSeq(α))κ∈N(k)−(∑κ
α=0z+wExpSeq(α))κ∈N(k)=

(∑κ
α=0(Conj(k,z,w))(α))κ∈N(k).

(17) |(∑κ
α=0zExpSeq(α))κ∈N(k)| ≤ (∑κ

α=0 |z|ExpSeq(α))κ∈N(k) and(∑κ
α=0 |z|ExpSeq(α))κ∈N(k)≤

∑(|z|ExpSeq) and|(∑κ
α=0zExpSeq(α))κ∈N(k)| ≤ ∑(|z|ExpSeq).

(18) 1≤ ∑(|z|ExpSeq).

(19) 0≤ |z|ExpSeq(n).

(20) |(∑κ
α=0 |z|ExpSeq(α))κ∈N(n)|=(∑κ

α=0 |z|ExpSeq(α))κ∈N(n) and ifn≤m, then|(∑κ
α=0 |z|ExpSeq(α))κ∈N(m)−

(∑κ
α=0 |z|ExpSeq(α))κ∈N(n)|= (∑κ

α=0 |z|ExpSeq(α))κ∈N(m)− (∑κ
α=0 |z|ExpSeq(α))κ∈N(n).
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(21) |(∑κ
α=0 |Conj(k,z,w)|(α))κ∈N(n)|= (∑κ

α=0 |Conj(k,z,w)|(α))κ∈N(n).

(22) For every real numberp such thatp > 0 there existsn such that for everyk such thatn≤ k
holds|(∑κ

α=0 |Conj(k,z,w)|(α))κ∈N(k)|< p.

(23) For everys1 such that for everyk holdss1(k) = (∑κ
α=0(Conj(k,z,w))(α))κ∈N(k) holdss1

is convergent and lims1 = 0C.

2. DEFINITION OF EXPONENTIAL FUNCTION ON COMPLEX

The partial function exp fromC to C is defined as follows:

(Def. 18) domexp= C and for every elementz of C holds exp(z) = ∑(zExpSeq).

Let us considerz. The functor expz yields an element ofC and is defined as follows:

(Def. 19) expz= exp(z).

The following proposition is true

(24) For allz1, z2 holds exp(z1 +z2) = expz1 ·expz2.

3. DEFINITION OF SINUS, COSINE, AND EXPONENTIAL FUNCTION ON R

The partial function sin fromR to R is defined as follows:

(Def. 20) domsin= R and for every elementd of R holds sin(d) = ℑ(∑(0+diExpSeq)).

Let t1 be a real number. The functor sint1 is defined as follows:

(Def. 21) sint1 = sin(t1).

Let t1 be a real number. One can check that sint1 is real.
Let t1 be a real number. Then sint1 is a real number.
Next we state the proposition

(25) sin is a function fromR into R.

In the sequeld denotes a real number.
The partial function cos fromR to R is defined as follows:

(Def. 22) domcos= R and for everyd holds cos(d) = ℜ(∑(0+diExpSeq)).

Let t1 be a real number. The functor cost1 is defined by:

(Def. 23) cost1 = cos(t1).

Let t1 be a real number. Note that cost1 is real.
Let t1 be a real number. Then cost1 is a real number.
Next we state several propositions:

(26) cos is a function fromR into R.

(27) domsin= R and domcos= R.

(28) exp(0+ t1i) = cost1 +sint1i.

(29) exp(0+ t1i) = exp(−(0+ t1i)).

(30) |exp(0+ t1i)|= 1 and|sint1| ≤ 1 and|cost1| ≤ 1.

(31) cos(t1)2 +sin(t1)2 = 1 and cos(t1) ·cos(t1)+sin(t1) ·sin(t1) = 1.

(32) (cost1)2 +(sint1)2 = 1 and cost1 ·cost1 +sint1 ·sint1 = 1.
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(33) cos(0) = 1 and sin(0) = 0 and cos(−t1) = cos(t1) and sin(−t1) =−sin(t1).

(34) cos0= 1 and sin0= 0 and cos(−t1) = cost1 and sin(−t1) =−sint1.

Let t1 be a real number. The functort1P sin yielding a sequence of real numbers is defined by:

(Def. 24) For everyn holdst1P sin(n) = (−1)n·t12·n+1

(2·n+1)! .

The functort1P cos yields a sequence of real numbers and is defined by:

(Def. 25) For everyn holdst1P cos(n) = (−1)n·t12·n

(2·n)! .

Next we state a number of propositions:

(35) For allz, k holdsz2·k
N = (zk

N)2
N andz2·k

N = (z2
N)k

N.

(36) For allk, t1 holds(0+ t1i)2·k
N = (−1)k · t12·k +0i and(0+ t1i)2·k+1

N = 0+((−1)k · t12·k+1)i.

(37) For everyn holdsn!C = n! +0i.

(38) For allt1, n holds(∑κ
α=0 t1P sin(α))κ∈N(n) = (∑κ

α=0 ℑ(0+ t1i ExpSeq)(α))κ∈N(2 ·n+ 1)
and(∑κ

α=0 t1P cos(α))κ∈N(n) = (∑κ
α=0 ℜ(0+ t1i ExpSeq)(α))κ∈N(2·n).

(39) For every t1 holds (∑κ
α=0 t1P sin(α))κ∈N is convergent and∑(t1P sin) = ℑ(∑(0 +

t1i ExpSeq)) and (∑κ
α=0 t1P cos(α))κ∈N is convergent and∑(t1P cos) = ℜ(∑(0 +

t1i ExpSeq)).

(40) For everyt1 holds cos(t1) = ∑(t1P cos) and sin(t1) = ∑(t1P sin).

(41) For all p, t1, r1 such thatr1 is convergent and limr1 = t1 and for everyn holdsr1(n) ≥ p
holdst1 ≥ p.

(42) For alln, k, msuch thatn < k holdsm! > 0 andn! ≤ k!.

(43) For allt1, n, k such that 0≤ t1 andt1 ≤ 1 andn≤ k holdst1k ≤ t1n.

(44) For allt1, n holds(t1 +0i)n
N = t1n +0i.

(45) For allt1, n holds
(t1+0i)n

N
n!C

= t1
n

n! +0i.

(46) ℑ(∑(p+0i ExpSeq)) = 0.

(47) cos(1) > 0 and sin(1) > 0 and cos(1) < sin(1).

(48) For everyt1 holdst1ExpSeq= ℜ(t1 +0i ExpSeq).

(49) For everyt1 holdst1ExpSeq is summable and∑(t1ExpSeq) = ℜ(∑(t1 +0i ExpSeq)).

(50) For allp, q holds∑(p+qExpSeq) = ∑(pExpSeq) ·∑(qExpSeq).

The partial function exp fromR to R is defined as follows:

(Def. 26) domexp= R and for every real numberd holds exp(d) = ∑(dExpSeq).

Let t1 be a real number. The functor expt1 is defined as follows:

(Def. 27) expt1 = exp(t1).

Let t1 be a real number. One can check that expt1 is real.
Let t1 be a real number. Then expt1 is a real number.
The following propositions are true:

(51) domexp= R.
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(53)2 For everyt1 holds exp(t1) = ℜ(∑(t1 +0i ExpSeq)).

(54) exp(t1 +0i) = expt1 +0i.

(55) exp(p+q) = expp·expq.

(56) exp0= 1.

(57) For everyt1 such thatt1 > 0 holds exp(t1)≥ 1.

(58) For everyt1 such thatt1 < 0 holds 0< exp(t1) and exp(t1)≤ 1.

(59) For everyt1 holds exp(t1) > 0.

(60) For everyt1 holds expt1 > 0.

4. DIFFERENTIAL OF SINUS, COSINE, AND EXPONENTIAL FUNCTION

Let z be an element ofC. The functorzP dt yielding a complex sequence is defined as follows:

(Def. 28) For everyn holdszP dt(n) = zn+1
N

(n+2)!C
.

The functorzP t yielding a complex sequence is defined as follows:

(Def. 29) For everyn holdszP t(n) = zn
N

(n+2)!C
.

Next we state a number of propositions:

(61) For everyz holdszP dt is absolutely summable.

(62) For everyz holdsz·∑(zP dt) = ∑(zExpSeq)−1C−z.

(63) For everyp such thatp > 0 there existsq such thatq > 0 and for everyz such that|z|< q
holds|∑(zP dt)|< p.

(64) For all z, z1 holds ∑(z1 + zExpSeq)−∑(z1ExpSeq) = ∑(z1ExpSeq) · z+ z·∑(zP dt) ·
∑(z1ExpSeq).

(65) For all p, q holds cos(p+ q)− cos(p) = −q·sin(p)− q · ℑ(∑(0+ qiP dt) · (cos(p) +
sin(p)i)).

(66) For allp, q holds sin(p+q)−sin(p) = q·cos(p)+q·ℜ(∑(0+qiP dt) ·(cos(p)+sin(p)i)).

(67) For allp, q holds exp(p+q)−exp(p) = q·exp(p)+q·exp(p) ·ℜ(∑(q+0i P dt)).

(68) For everyp holds cos is differentiable inp and cos′(p) =−sin(p).

(69) For everyp holds sin is differentiable inp and sin′(p) = cos(p).

(70) For everyp holds exp is differentiable inp and exp′(p) = exp(p).

(71) exp is differentiable onR and for everyt1 such thatt1 ∈ R holds exp′(t1) = exp(t1).

(72) cos is differentiable onR and for everyt1 such thatt1 ∈ R holds cos′(t1) =−sin(t1).

(73) sin is differentiable onR and for everyt1 holds sin′(t1) = cos(t1).

(74) For everyt1 such thatt1 ∈ [0,1] holds 0< cos(t1) and cos(t1)≥ 1
2.

(75) [0,1]⊆ dom( sin
cos) and]0,1[⊆ dom( sin

cos).

(76) sin
cos is continuous on[0,1].

(77) For allt2, t3 such thatt2 ∈ ]0,1[ andt3 ∈ ]0,1[ and( sin
cos)(t2) = ( sin

cos)(t3) holdst2 = t3.

2 The proposition (52) has been removed.
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5. EXISTENCE OFCIRCLE RATIO

The real numberπ is defined as follows:

(Def. 30) ( sin
cos)(

π
4) = 1 andπ ∈ ]0,4[.

π is a real number.
The following proposition is true

(78) sin(π
4) = cos(π

4).

6. FORMULAS OF SINUS, COSINE

One can prove the following propositions:

(79) sin(t2+ t3) = sin(t2) ·cos(t3)+cos(t2) ·sin(t3) and cos(t2+ t3) = cos(t2) ·cos(t3)−sin(t2) ·
sin(t3).

(80) sin(t2 + t3) = sint2 ·cost3 +cost2 ·sint3 and cos(t2 + t3) = cost2 ·cost3−sint2 ·sint3.

(81) cos(π
2) = 0 and sin(π

2) = 1 and cos(π) =−1 and sin(π) = 0 and cos(π+ π
2) = 0 and sin(π+

π
2) =−1 and cos(2·π) = 1 and sin(2·π) = 0.

(82) cos(π
2) = 0 and sin(π

2) = 1 and cosπ = −1 and sinπ = 0 and cos(π + π
2) = 0 and sin(π +

π
2) =−1 and cos(2·π) = 1 and sin(2·π) = 0.

(83) sin(t1 +2 ·π) = sin(t1) and cos(t1 +2 ·π) = cos(t1) and sin(π
2 − t1) = cos(t1) and cos(π

2 −
t1) = sin(t1) and sin(π

2 + t1) = cos(t1) and cos(π
2 + t1) =−sin(t1) and sin(π+ t1) =−sin(t1)

and cos(π+ t1) =−cos(t1).

(84) sin(t1 +2·π) = sint1 and cos(t1 +2·π) = cost1 and sin(π
2 − t1) = cost1 and cos(π

2 − t1) =
sint1 and sin(π

2 + t1) = cost1 and cos(π
2 + t1) =−sint1 and sin(π+ t1) =−sint1 and cos(π+

t1) =−cost1.

(85) For everyt1 such thatt1 ∈ ]0, π
2 [ holds cos(t1) > 0.

(86) For everyt1 such thatt1 ∈ ]0, π
2 [ holds cost1 > 0.
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