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Summary. The article contains definitions of the following concepts: family of sets,
family of subsets of a set, the intersection of a family of sets. Functors∪,∩, and\ are redefined
for families of subsets of a set. Some properties of these notions are presented.
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The articles [2], [1], and [3] provide the notation and terminology for this paper.
In this paperX, Y, Z, Z1, D, x denote sets.
Let us considerX. The functor

⋂
X is defined by:

(Def. 1)(i) For everyx holdsx∈
⋂

X iff for every Y such thatY ∈ X holdsx∈Y if X 6= /0,

(ii)
⋂

X = /0, otherwise.

Next we state a number of propositions:

(2)1
⋂

/0 = /0.

(3)
⋂

X ⊆
⋃

X.

(4) If Z ∈ X, then
⋂

X ⊆ Z.

(5) If /0 ∈ X, then
⋂

X = /0.

(6) If X 6= /0 and for everyZ1 such thatZ1 ∈ X holdsZ⊆ Z1, thenZ⊆
⋂

X.

(7) If X 6= /0 andX ⊆Y, then
⋂

Y ⊆
⋂

X.

(8) If X ∈Y andX ⊆ Z, then
⋂

Y ⊆ Z.

(9) If X ∈Y andX missesZ, then
⋂

Y missesZ.

(10) If X 6= /0 andY 6= /0, then
⋂

(X∪Y) =
⋂

X∩
⋂

Y.

(11)
⋂
{x}= x.

(12)
⋂
{X,Y}= X∩Y.

In the sequelS1, S2, S3 denote sets.
Let us considerS1, S2. We say thatS1 is finer thanS2 if and only if:

(Def. 2) For everyX such thatX ∈ S1 there existsY such thatY ∈ S2 andX ⊆Y.

1 The proposition (1) has been removed.
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Let us note that the predicateS1 is finer thanS2 is reflexive. We say thatS2 is coarser thanS1 if and
only if:

(Def. 3) For everyY such thatY ∈ S2 there existsX such thatX ∈ S1 andX ⊆Y.

Let us note that the predicateS2 is coarser thanS1 is reflexive.
We now state several propositions:

(17)2 If S1 ⊆ S2, thenS1 is finer thanS2.

(18) If S1 is finer thanS2, then
⋃

S1 ⊆
⋃

S2.

(19) If S2 6= /0 andS2 is coarser thanS1, then
⋂

S1 ⊆
⋂

S2.

(20) /0 is finer thanS1.

(21) If S1 is finer than/0, thenS1 = /0.

(23)3 If S1 is finer thanS2 andS2 is finer thanS3, thenS1 is finer thanS3.

(24) If S1 is finer than{Y}, then for everyX such thatX ∈ S1 holdsX ⊆Y.

(25) If S1 is finer than{X,Y}, then for everyZ such thatZ ∈ S1 holdsZ⊆ X or Z⊆Y.

Let us considerS1, S2. The functorS1 dS2 is defined as follows:

(Def. 4) Z ∈ S1 dS2 iff there existX, Y such thatX ∈ S1 andY ∈ S2 andZ = X∪Y.

Let us note that the functorS1 dS2 is commutative. The functorS1 eS2 is defined as follows:

(Def. 5) Z ∈ S1 eS2 iff there existX, Y such thatX ∈ S1 andY ∈ S2 andZ = X∩Y.

Let us notice that the functorS1 eS2 is commutative. The functorS1\\S2 is defined by:

(Def. 6) Z ∈ S1\\S2 iff there existX, Y such thatX ∈ S1 andY ∈ S2 andZ = X \Y.

We now state a number of propositions:

(29)4 S1 is finer thanS1 dS1.

(30) S1 eS1 is finer thanS1.

(31) S1\\S1 is finer thanS1.

(34)5 If S1 meetsS2, then
⋂

S1∩
⋂

S2 =
⋂

(S1 eS2).

(35) If S2 6= /0, thenX∪
⋂

S2 =
⋂

({X}dS2).

(36) X∩
⋃

S2 =
⋃

({X}eS2).

(37) If S2 6= /0, thenX \
⋃

S2 =
⋂

({X}\\S2).

(38) If S2 6= /0, thenX \
⋂

S2 =
⋃

({X}\\S2).

(39)
⋃

(S1 eS2)⊆
⋃

S1∩
⋃

S2.

(40) If S1 6= /0 andS2 6= /0, then
⋂

S1∪
⋂

S2 ⊆
⋂

(S1 dS2).

(41)
⋂

(S1\\S2)⊆
⋂

S1\
⋂

S2.

Let D be a set. Family of subsets ofD is defined by:

2 The propositions (13)–(16) have been removed.
3 The proposition (22) has been removed.
4 The propositions (26)–(28) have been removed.
5 The propositions (32) and (33) have been removed.
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(Def. 7) It⊆ 2D.

Let D be a set. We see that the family of subsets ofD is a subset of 2D.
Let D be a set. Note that there exists a family of subsets ofD which is empty and there exists a

family of subsets ofD which is non empty.
In the sequelF , G are families of subsets ofD andP is a subset ofD.
Let us considerD, F . Then

⋃
F is a subset ofD.

Let us considerD, F . Then
⋂

F is a subset ofD.
We now state the proposition

(44)6 If for everyP holdsP∈ F iff P∈G, thenF = G.

The schemeSubFamExdeals with a setA and a unary predicateP , and states that:
There exists a familyF of subsets ofA such that for every subsetB of A holdsB∈ F
iff P [B]

for all values of the parameters.
Let us considerD, F . The functorFc yielding a family of subsets ofD is defined as follows:

(Def. 8) For every subsetP of D holdsP∈ Fc iff Pc ∈ F.

Let us note that the functorFc is involutive.
The following three propositions are true:

(46)7 If F 6= /0, thenFc 6= /0.

(47) If F 6= /0, thenΩD \
⋃

F =
⋂

(Fc).

(48) If F 6= /0, then
⋃

(Fc) = ΩD \
⋂

F.
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6 The propositions (42) and (43) have been removed.
7 The proposition (45) has been removed.
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