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Summary. The article contains definitions of the following concepts: family of sets,
family of subsets of a set, the intersection of a family of sets. Functarsand) are redefined
for families of subsets of a set. Some properties of these notions are presented.
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The articlesl[2],[[1], and_[3] provide the notation and terminology for this paper.
In this papeiX, Y, Z, Z;, D, x denote sets.
Let us consideK. The functom X is defined by:

(Def. 1)(i) For everyx holdsx € (N X iff for every Y such thaly € X holdsx e Y if X £ 0,
(i) NX =0, otherwise.

Next we state a number of propositions:

el no=o.

) NXcux.

(4) IfzZzeX, thenXCZ

(5) If0e X, thenNX=0.

(6) If X # 0and for everyZ; such tha#Z; € X holdsZ C Z;, thenZ C O X.

(7) IfX#£0andX CY,thenNY CNX.

(8) IfXeYandX CZ thenNY CZ.

(9) If X eY andX missesZ, thenNY missesZ.
(10) If X #£0andY #£0,then\(XUY)=NOXNNY.
(1) N{x=x
(12) N{X,Y}=XxnY.

In the seque$;, S, S3 denote sets.
Let us considef;, S. We say thaf is finer thanS; if and only if:

(Def. 2) For evenyX such thalX € S there exist¥ such thaly € S andX C .

1 The proposition (1) has been removed.
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Let us note that the predica% is finer thanS; is reflexive. We say the#, is coarser tha; if and
only if:

(Def. 3) For everyy such thaly € S, there exists( such thalX € S andX C Y.

Let us note that the predica®e is coarser tha; is reflexive.
We now state several propositions:

(17ﬂ If S CS,thens is finer thanS,.
(18) If § isfiner thanS,, then S C US.
(19) If S # 0andS; is coarser thay, then\S CNS.
(20) 0is finer thans;.
(21) If S is finer thard, thenS, = 0.
(23 If S is finer thanS, and$S; is finer thanSs, then$ is finer thanSs.
(24) If 5 is finer than{Y}, then for everyX such thatX € S; holdsX C Y.
(25) If 5 is finer than{X,Y}, then for everyZ such thaZ € S; holdsZ C X orZ C Y.
Let us consideB;, S. The functorS, US; is defined as follows:
(Def. 4) Ze S US iff there existX, Y such thaX € S andY € S, andZ = X UY.
Let us note that the funct@ U S, is commutative. The functd, m'S; is defined as follows:
(Def.5) Ze S mS iff there existX, Y such thaX € S, andY € S andZ = XNY.
Let us notice that the funct@ m S, is commutative. The functd \\S; is defined by:
(Def. 6) Z e §\\S iff there existX, Y such thaX € §; andY € S andZ = X\ Y.
We now state a number of propositions:
(29@] S is finer thanS U S;.
(30) S MG is finer thanS;.
(31) S \\S isfiner thans;.
34f] 1If St meetsS, thenNSINNS = N(SIAS).
(35) IS #0,thenXUNS =N{X}IUS).
(36) XNUS=U{X}1S).
(37) 1S #0, thenX\US = N({X}\\S).
(38) IfS#0,thenX\NS =U{X}I\\S).
(39) UEnS) cUusNUS
(40) IfS #£0andS, #0,thenNSUNS CN(SIVUS).
(41) NS\ cNS\NS.

Let D be a set. Family of subsets Bfis defined by:

2 The propositions (13)—(16) have been removed.

3 The proposition (22) has been removed.

4 The propositions (26)—(28) have been removed.

5 The propositions (32) and (33) have been removed.
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(Def. 7) 1tC 2P.

Let D be a set. We see that the family of subset® i a subset of 2.

Let D be a set. Note that there exists a family of subsef3 which is empty and there exists a
family of subsets oD which is non empty.

In the sequeF, G are families of subsets @ andP is a subset obD.

Let us consideb, F. ThenF is a subset obD.

Let us consideD, F. ThenNF is a subset ob.

We now state the proposition

(44f| 1 for every P holdsP € F iff P € G, thenF = G.

The schem&ubFamExieals with a sefl and a unary predicatg, and states that:
There exists a familfF of subsets 0f such that for every subsBtof 4 holdsB € F
iff P[B]
for all values of the parameters.
Let us consideD, F. The functor° yielding a family of subsets db is defined as follows:

Def. 8) For every subsé&tof D holdsP € FCiff P¢ ¢ F.
y

Let us note that the functéi® is involutive.
The following three propositions are true:

(46)] If F # 0, thenFC¢ 0.
(47) IfF £0, thenQp \UF =N(F°).
(48) IfF +£0, thenJ(F°) = Qp \NF.
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6 The propositions (42) and (43) have been removed.
" The proposition (45) has been removed.
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