Families of Sets

Beata Padlewska Warsaw University Białystok

Summary. The article contains definitions of the following concepts: family of sets, family of subsets of a set, the intersection of a family of sets. Functors \cup , \cap , and \setminus are redefined for families of subsets of a set. Some properties of these notions are presented.

MML Identifier: SETFAM_1.

WWW: http://mizar.org/JFM/Vol1/setfam_1.html

The articles [2], [1], and [3] provide the notation and terminology for this paper.

In this paper X, Y, Z, Z₁, D, x denote sets.

Let us consider X. The functor $\bigcap X$ is defined by:

(Def. 1)(i) For every x holds $x \in \bigcap X$ iff for every Y such that $Y \in X$ holds $x \in Y$ if $X \neq \emptyset$,

(ii) $\bigcap X = \emptyset$, otherwise.

Next we state a number of propositions:

- $(2)^1 \cap \emptyset = \emptyset.$
- (3) $\bigcap X \subseteq \bigcup X$.
- (4) If $Z \in X$, then $\bigcap X \subseteq Z$.
- (5) If $\emptyset \in X$, then $\bigcap X = \emptyset$.
- (6) If $X \neq \emptyset$ and for every Z_1 such that $Z_1 \in X$ holds $Z \subseteq Z_1$, then $Z \subseteq \bigcap X$.
- (7) If $X \neq \emptyset$ and $X \subseteq Y$, then $\bigcap Y \subseteq \bigcap X$.
- (8) If $X \in Y$ and $X \subseteq Z$, then $\bigcap Y \subseteq Z$.
- (9) If $X \in Y$ and X misses Z, then $\bigcap Y$ misses Z.
- (10) If $X \neq \emptyset$ and $Y \neq \emptyset$, then $\bigcap (X \cup Y) = \bigcap X \cap \bigcap Y$.
- $(11) \quad \bigcap \{x\} = x.$
- $(12) \quad \bigcap \{X,Y\} = X \cap Y.$

In the sequel S_1 , S_2 , S_3 denote sets.

Let us consider S_1 , S_2 . We say that S_1 is finer than S_2 if and only if:

(Def. 2) For every X such that $X \in S_1$ there exists Y such that $Y \in S_2$ and $X \subseteq Y$.

¹ The proposition (1) has been removed.

Let us note that the predicate S_1 is finer than S_2 is reflexive. We say that S_2 is coarser than S_1 if and only if:

(Def. 3) For every *Y* such that $Y \in S_2$ there exists *X* such that $X \in S_1$ and $X \subseteq Y$.

Let us note that the predicate S_2 is coarser than S_1 is reflexive.

We now state several propositions:

- $(17)^2$ If $S_1 \subseteq S_2$, then S_1 is finer than S_2 .
- (18) If S_1 is finer than S_2 , then $\bigcup S_1 \subseteq \bigcup S_2$.
- (19) If $S_2 \neq \emptyset$ and S_2 is coarser than S_1 , then $\bigcap S_1 \subseteq \bigcap S_2$.
- (20) \emptyset is finer than S_1 .
- (21) If S_1 is finer than \emptyset , then $S_1 = \emptyset$.
- $(23)^3$ If S_1 is finer than S_2 and S_2 is finer than S_3 , then S_1 is finer than S_3 .
- (24) If S_1 is finer than $\{Y\}$, then for every X such that $X \in S_1$ holds $X \subseteq Y$.
- (25) If S_1 is finer than $\{X,Y\}$, then for every Z such that $Z \in S_1$ holds $Z \subseteq X$ or $Z \subseteq Y$.

Let us consider S_1 , S_2 . The functor $S_1 \cup S_2$ is defined as follows:

(Def. 4) $Z \in S_1 \cup S_2$ iff there exist X, Y such that $X \in S_1$ and $Y \in S_2$ and $Z = X \cup Y$.

Let us note that the functor $S_1 \cup S_2$ is commutative. The functor $S_1 \cap S_2$ is defined as follows:

(Def. 5) $Z \in S_1 \cap S_2$ iff there exist X, Y such that $X \in S_1$ and $Y \in S_2$ and $Z = X \cap Y$.

Let us notice that the functor $S_1 \cap S_2$ is commutative. The functor $S_1 \setminus S_2$ is defined by:

(Def. 6) $Z \in S_1 \setminus S_2$ iff there exist X, Y such that $X \in S_1$ and $Y \in S_2$ and $Z = X \setminus Y$.

We now state a number of propositions:

- $(29)^4$ S_1 is finer than $S_1 \cup S_1$.
- (30) $S_1 \cap S_1$ is finer than S_1 .
- (31) $S_1 \setminus S_1$ is finer than S_1 .
- $(34)^5$ If S_1 meets S_2 , then $\bigcap S_1 \cap \bigcap S_2 = \bigcap (S_1 \cap S_2)$.
- (35) If $S_2 \neq \emptyset$, then $X \cup \bigcap S_2 = \bigcap (\{X\} \cup S_2)$.
- $(36) \quad X \cap \bigcup S_2 = \bigcup (\{X\} \cap S_2).$
- (37) If $S_2 \neq \emptyset$, then $X \setminus \bigcup S_2 = \bigcap (\{X\} \setminus \setminus S_2)$.
- (38) If $S_2 \neq \emptyset$, then $X \setminus \bigcap S_2 = \bigcup (\{X\} \setminus \setminus S_2)$.
- $(39) \quad \bigcup (S_1 \cap S_2) \subseteq \bigcup S_1 \cap \bigcup S_2.$
- (40) If $S_1 \neq \emptyset$ and $S_2 \neq \emptyset$, then $\bigcap S_1 \cup \bigcap S_2 \subseteq \bigcap (S_1 \cup S_2)$.
- $(41) \quad \bigcap (S_1 \setminus S_2) \subseteq \bigcap S_1 \setminus \bigcap S_2.$

Let *D* be a set. Family of subsets of *D* is defined by:

² The propositions (13)–(16) have been removed.

³ The proposition (22) has been removed.

⁴ The propositions (26)–(28) have been removed.

⁵ The propositions (32) and (33) have been removed.

(Def. 7) It $\subseteq 2^D$.

Let D be a set. We see that the family of subsets of D is a subset of 2^{D} .

Let *D* be a set. Note that there exists a family of subsets of *D* which is empty and there exists a family of subsets of *D* which is non empty.

In the sequel F, G are families of subsets of D and P is a subset of D.

Let us consider D, F. Then $\bigcup F$ is a subset of D.

Let us consider D, F. Then $\bigcap F$ is a subset of D.

We now state the proposition

(44)⁶ If for every P holds $P \in F$ iff $P \in G$, then F = G.

The scheme SubFamEx deals with a set \mathcal{A} and a unary predicate \mathcal{P} , and states that:

There exists a family F of subsets of $\mathcal A$ such that for every subset B of $\mathcal A$ holds $B \in F$ iff $\mathcal P[B]$

for all values of the parameters.

Let us consider D, F. The functor F^c yielding a family of subsets of D is defined as follows:

(Def. 8) For every subset *P* of *D* holds $P \in F^c$ iff $P^c \in F$.

Let us note that the functor F^{c} is involutive.

The following three propositions are true:

- $(46)^7$ If $F \neq \emptyset$, then $F^c \neq \emptyset$.
- (47) If $F \neq \emptyset$, then $\Omega_D \setminus \bigcup F = \bigcap (F^c)$.
- (48) If $F \neq \emptyset$, then $\bigcup (F^{c}) = \Omega_{D} \setminus \bigcap F$.

REFERENCES

- Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [2] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [3] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received April 5, 1989

Published January 2, 2004

⁶ The propositions (42) and (43) have been removed.

⁷ The proposition (45) has been removed.