Series¹

Konrad Raczkowski Warsaw University Białystok Andrzej Nędzusiak Warsaw University Białystok

Summary. The article contains definitions and properties of convergent serieses.

MML Identifier: SERIES_1.

WWW: http://mizar.org/JFM/Vol3/series_1.html

The articles [2], [11], [4], [1], [8], [7], [5], [3], [6], [12], [9], and [10] provide the notation and terminology for this paper.

We follow the rules: n, m are natural numbers, a, p, r are real numbers, and s, s_1 , s_2 are sequences of real numbers.

One can prove the following three propositions:

- (1) If 0 < a and a < 1 and for every n holds $s(n) = a^{n+1}$, then s is convergent and $\lim s = 0$.
- (2) If $a \neq 0$, then $|a|^n = |a^n|$.
- (3) If |a| < 1 and for every *n* holds $s(n) = a^{n+1}$, then *s* is convergent and $\lim s = 0$.

Let us consider s. The functor $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa\in\mathbb{N}}$ yielding a sequence of real numbers is defined as follows:

(Def. 1)
$$(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(0) = s(0)$$
 and for every n holds $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(n+1) = (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(n) + s(n+1)$.

Let us consider s. We say that s is summable if and only if:

(Def. 2) $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}$ is convergent.

The functor $\sum s$ yielding a real number is defined by:

(Def. 3)
$$\sum s = \lim((\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}).$$

One can prove the following propositions:

(7)¹ If s is summable, then s is convergent and $\lim s = 0$.

$$(8) \quad (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}} + (\sum_{\alpha=0}^{\kappa} (s_2)(\alpha))_{\kappa \in \mathbb{N}} = (\sum_{\alpha=0}^{\kappa} (s_1 + s_2)(\alpha))_{\kappa \in \mathbb{N}}.$$

$$(9) \quad (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}} - (\sum_{\alpha=0}^{\kappa} (s_2)(\alpha))_{\kappa \in \mathbb{N}} = (\sum_{\alpha=0}^{\kappa} (s_1 - s_2)(\alpha))_{\kappa \in \mathbb{N}}.$$

(10) If s_1 is summable and s_2 is summable, then $s_1 + s_2$ is summable and $\sum (s_1 + s_2) = \sum s_1 + \sum s_2$.

1

¹Supported by RPBP.III-24.C8.

¹ The propositions (4)–(6) have been removed.

SERIES 2

(11) If s_1 is summable and s_2 is summable, then $s_1 - s_2$ is summable and $\sum (s_1 - s_2) = \sum s_1 - \sum s_2$.

- (12) $(\sum_{\alpha=0}^{\kappa} (r s)(\alpha))_{\kappa \in \mathbb{N}} = r (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}.$
- (13) If s is summable, then r s is summable and $\sum (r s) = r \cdot \sum s$.
- (14) For all s, s_1 such that for every n holds $s_1(n) = s(0)$ holds $(\sum_{\alpha=0}^{\kappa} (s \uparrow 1)(\alpha))_{\kappa \in \mathbb{N}} = (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}} \uparrow 1 s_1$.
- (15) If *s* is summable, then for every *n* holds $s \uparrow n$ is summable.
- (16) If there exists n such that $s \uparrow n$ is summable, then s is summable.
- (17) If for every n holds $s_1(n) \leq s_2(n)$, then for every n holds $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(n) \leq (\sum_{\alpha=0}^{\kappa} (s_2)(\alpha))_{\kappa \in \mathbb{N}}(n)$.
- (18) If *s* is summable, then for every *n* holds $\sum s = (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(n) + \sum (s \uparrow (n+1))$.
- (19) If for every n holds $0 \le s(n)$, then $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}$ is non-decreasing.
- (20) If for every n holds $0 \le s(n)$, then $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}$ is upper bounded iff s is summable.
- (21) If *s* is summable and for every *n* holds $0 \le s(n)$, then $0 \le \sum s$.
- (22) If for every n holds $0 \le s_2(n)$ and s_1 is summable and there exists m such that for every n such that $m \le n$ holds $s_2(n) \le s_1(n)$, then s_2 is summable.
- (24)² If for every n holds $0 \le s_1(n)$ and $s_1(n) \le s_2(n)$ and s_2 is summable, then s_1 is summable and $\sum s_1 \le \sum s_2$.
- (25) s is summable iff for every r such that 0 < r there exists n such that for every m such that $n \le m$ holds $|(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(m) (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(n)| < r$.
- $(26) \quad \text{If } a \neq 1, \text{ then } (\textstyle \sum_{\alpha=0}^{\kappa} ((a^{\kappa})_{\kappa \in \mathbb{N}})(\alpha))_{\kappa \in \mathbb{N}}(n) = \frac{1-a^{n+1}}{1-a}.$
- (27) If $a \neq 1$ and for every n holds $s(n+1) = a \cdot s(n)$, then for every n holds $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(n) = \frac{s(0) \cdot (1-a^{n+1})}{1-a}$.
- (28) If |a|<1, then $(a^{\kappa})_{\kappa\in\mathbb{N}}$ is summable and $\sum ((a^{\kappa})_{\kappa\in\mathbb{N}})=\frac{1}{1-a}$.
- (29) If |a| < 1 and for every n holds $s(n+1) = a \cdot s(n)$, then s is summable and $\sum s = \frac{s(0)}{1-a}$.
- (30) If for every n holds s(n) > 0 and $s_1(n) = \frac{s(n+1)}{s(n)}$ and s_1 is convergent and $\lim s_1 < 1$, then s is summable.
- (31) If for every n holds s(n) > 0 and there exists m such that for every n such that $n \ge m$ holds $\frac{s(n+1)}{s(n)} \ge 1$, then s is not summable.
- (32) If for every n holds $s(n) \ge 0$ and $s_1(n) = \sqrt[n]{s(n)}$ and s_1 is convergent and $\lim s_1 < 1$, then s is summable.
- (33) If for every n holds $s(n) \ge 0$ and $s_1(n) = \sqrt[n]{s(n)}$ and there exists m such that for every n such that $m \le n$ holds $s_1(n) \ge 1$, then s is not summable.
- (34) If for every n holds $s(n) \ge 0$ and $s_1(n) = \sqrt[n]{s(n)}$ and s_1 is convergent and $\lim s_1 > 1$, then s is not summable.

Let k, n be natural numbers. Then k^n is a natural number. One can prove the following three propositions:

² The proposition (23) has been removed.

SERIES 3

- (35) Suppose s is non-increasing and for every n holds $s(n) \ge 0$ and $s_1(n) = 2^n \cdot s(2^n)$. Then s is summable if and only if s_1 is summable.
- (36) If p > 1 and for every n such that $n \ge 1$ holds $s(n) = \frac{1}{n^p}$, then s is summable.
- (37) If $p \le 1$ and for every n such that $n \ge 1$ holds $s(n) = \frac{1}{n^p}$, then s is not summable.

Let us consider s. We say that s is absolutely summable if and only if:

 $(Def. 5)^3$ |s| is summable.

The following propositions are true:

- (39)⁴ For all n, m such that $n \leq m$ holds $|(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(m) (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(n)| \leq |(\sum_{\alpha=0}^{\kappa} |s|(\alpha))_{\kappa \in \mathbb{N}}(m) (\sum_{\alpha=0}^{\kappa} |s|(\alpha))_{\kappa \in \mathbb{N}}(n)|$.
- (40) If s is absolutely summable, then s is summable.
- (41) If for every *n* holds $0 \le s(n)$ and *s* is summable, then *s* is absolutely summable.
- (42) If for every n holds $s(n) \neq 0$ and $s_1(n) = \frac{|s|(n+1)}{|s|(n)}$ and s_1 is convergent and $\lim s_1 < 1$, then s is absolutely summable.
- (43) If r > 0 and there exists m such that for every n such that $n \ge m$ holds $|s(n)| \ge r$, then s is not convergent or $\lim s \ne 0$.
- (44) If for every n holds $s(n) \neq 0$ and there exists m such that for every n such that $n \geq m$ holds $\frac{|s|(n+1)}{|s|(n)} \geq 1$, then s is not summable.
- (45) If for every n holds $s_1(n) = \sqrt[n]{|s|(n)}$ and s_1 is convergent and $\lim s_1 < 1$, then s is absolutely summable.
- (46) If for every n holds $s_1(n) = \sqrt[n]{|s|(n)}$ and there exists m such that for every n such that $m \le n$ holds $s_1(n) \ge 1$, then s is not summable.
- (47) If for every n holds $s_1(n) = \sqrt[n]{|s|(n)}$ and s_1 is convergent and $\lim s_1 > 1$, then s is not summable.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2 html
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html.
- [5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seq_2.html.
- [6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seqm_3.html.
- [7] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/seq_1.html.
- [8] Jan Popiołek. Some properties of functions modul and signum. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/
- [9] Konrad Raczkowski. Integer and rational exponents. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/prepower.html.

³ The definition (Def. 4) has been removed.

⁴ The proposition (38) has been removed.

SERIES 4

[10] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/power.html.

- [11] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- $\textbf{[12]} \quad \textbf{Michał J. Trybulec. Integers. } \textit{Journal of Formalized Mathematics}, \textbf{2}, \textbf{1990}. \ \texttt{http://mizar.org/JFM/Vol2/int_1.html.}$

Received October 15, 1990

Published January 2, 2004
