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Summary. The article contains definitions and properties of convergent serieses.
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The articles([2], [[11], [T4], (1], [[8], [[7], %], 3], [6], [12], [9], and([10] provide the notation and
terminology for this paper.

We follow the rules:n, m are natural numbersa, p, r are real numbers, angl s;, s, are
sequences of real numbers.

One can prove the following three propositions:

(1) If0<aanda< 1 and for everyn holdss(n) = a™*, thensis convergent and lim= 0.
(2) Ifa#0,thenja"=|a"|.
(3) If |]aj < 1 and for everyn holdss(n) = a™1, thensis convergent and lirs= 0.

Let us consides. The functor(S5_qS(a))ken Yielding a sequence of real numbers is defined
as follows:

(Def. 1) (SH_oS(a))ken(0) =s(0) and for everynholds(s §_oS(0))ken(N+1) = (S 5_0S(a))ken(n) +
s(in+1).

Let us consides. We say thas is summable if and only if:
(Def. 2) (3§_0S(a))ken is convergent.
The functory syielding a real number is defined by:
(Def. 3) 3 s=lim((F5_oS(a))ken).

One can prove the following propositions:
(7H If sis summable, theais convergent and lim= 0.
(8) (Ya—o(s1)(@))ken + (Ta—o(S2)())ken = (Ta—o(S1 +%2)(A))ken-

9)  (Ta=o(s1)(@))ken — (Ta—o(S2)(A))ken = (Fa—o(S1 — S2) () )ken-
(10) If 51 is summable and, is summable, thes; + s is summable an§ (s1 + ) = Y51+
5 S

1Supported by RPBP.1I1-24.C8.
1 The propositions (4)—(6) have been removed.
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(11) If 5 is summable and, is summable, thes; — s, is summable an§ (s — ) =y 51—

2%
(12) (Sa-o(rs)(@))xen =T (Ta-0S())xen-
(13) If sis summable, thensis summable an§ (rs) =r-ys.

(14) For all's, s; such that for everyn holds s;(n) = s(0) holds (T§_o(ST 1)())ken =
(Ya=0S())ken T1—s1.

(15) If sis summable, then for everyholdss nis summable.
(16) If there exists such thas1 nis summable, theais summable.

(17) If for every n holds s;(n) < sp(n), then for everyn holds (3§_o(s1)(a))ken(n)
(Ya=0(S2) (@) Jken(n).

(18) If sis summable, then for everyholdsy s= (3 §_oS(a))ken(n) + 5 (ST (N+1)).

IN

(19) If for everyn holds 0< s(n), then(3§_oS(a) )ken is non-decreasing.
(20) If for everyn holds 0< s(n), then(S§_oS(a))ken is upper bounded if§ is summable.
(21) If sis summable and for everyholds 0< s(n), then 0< 5 s.

(22) If for everyn holds 0< sp(n) ands; is summable and there existssuch that for every
such thaim < n holdss;(n) < s1(n), thens; is summable.

(24E] If for every n holds 0< s;(n) ands; (n) < s;(n) ands; is summable, theg is summable
andy s <5y s.

(25) sis summabile iff for every such that O< r there exists1 such that for everyn such that
n < mholds|(F5_oS(a0) Jken(M) = (X5—0S(a) Jken (M| <T.

(26) Ifa+ 1, then(35_o((8)ken)(@))ken(n) = L%

(27) Ifa#1and foreveryholdss(n+1) =a-s(n), then for everyn holds(y §_oS(a))ken(n) =
s(0)-(1-a")
1-a ’

(28) If [a] < 1, then(a¥)yen is summable ang ((a%)xen) = 125

(29) If |a] < 1 and for everynr holdss(n+ 1) = a-s(n), thensis summable an§ s= %.

s(n+1)
s(n)

(30) If for everyn holdss(n) > 0 ands; (n) =
is summable.

ands; is convergent and limy, < 1, thens

(31) If for everyn holdss(n) > 0 and there exists such that for every such thah > mholds

S(Q(ﬁ)l) > 1, thensis not summable.

(32) If for everyn holdss(n) > 0 ands;(n) = v/s(n) ands; is convergent and lirsy < 1, then
sis summable.

(33) If for everyn holdss(n) > 0 ands;(n) = {/s(n) and there exists such that for every
such tham < n holdss; (n) > 1, thensis not summable.

(34) If for everyn holdss(n) > 0 ands;(n) = {/s(n) ands; is convergent and lirsy > 1, then
sis not summable.

Letk, n be natural numbers. Théd is a natural number.
One can prove the following three propositions:

2 The proposition (23) has been removed.
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(35) Supposais non-increasing and for everyholdss(n) > 0 ands;(n) = 2"-s(2"). Thens
is summable if and only i§; is summable.

(36) If p>1and for everyn such than > 1 holdss(n) = n—lp, thensis summable.

(37) If p<1and forevenn such than > 1 holdss(n) = n—lp, thensis not summable.

Let us consides. We say thatis absolutely summable if and only if:
(Def. 5| |s| is summable.

The following propositions are true:

(39@ For all n, m such thatn < m holds |(T§_¢S())ken(M) — (T—oS(@))ken(n)] <

| (Za—olsl(@))ker (M) = (Sa—olsl () ken(n)].
(40) If sis absolutely summable, thetis summable.

(41) If for everyn holds 0< s(n) andsis summable, theais absolutely summable.

(42) If for everyn holdss(n) # 0 ands; (n) = 'S“glrz:)l) ands; is convergent and lis, < 1, then
sis absolutely summabile.

(43) Ifr > 0 and there exists such that for every such thah > mholds|s(n)| > r, thensis
not convergent or lira #£ 0.

(44) If for everyn holdss(n) # 0 and there exists such that for every such than > mholds

‘Sl‘é‘”(ﬁ)l) > 1, thensis not summable.

(45) Iffor everynholdss; (n) = {/|s|(n) ands; is convergent and lirsy < 1, thensis absolutely
summable.

(46) Iffor everynholdss; (n) = {/|s|(n) and there exists1such that for everym such that<n
holdss; (n) > 1, thensis not summable.

(47) If for everyn holdss;(n) = {/|s|(n) ands; is convergent and lirsy > 1, thens is not
summable.
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