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The articles [2], [11], [4], [1], [8], [7], [5], [3], [6], [12], [9], and [10] provide the notation and
terminology for this paper.

We follow the rules: n, m are natural numbers,a, p, r are real numbers, ands, s1, s2 are
sequences of real numbers.

One can prove the following three propositions:

(1) If 0 < a anda < 1 and for everyn holdss(n) = an+1, thens is convergent and lims= 0.

(2) If a 6= 0, then|a|n = |an|.

(3) If |a|< 1 and for everyn holdss(n) = an+1, thens is convergent and lims= 0.

Let us considers. The functor(∑κ
α=0s(α))κ∈N yielding a sequence of real numbers is defined

as follows:

(Def. 1) (∑κ
α=0s(α))κ∈N(0)= s(0) and for everynholds(∑κ

α=0s(α))κ∈N(n+1)= (∑κ
α=0s(α))κ∈N(n)+

s(n+1).

Let us considers. We say thats is summable if and only if:

(Def. 2) (∑κ
α=0s(α))κ∈N is convergent.

The functor∑s yielding a real number is defined by:

(Def. 3) ∑s= lim((∑κ
α=0s(α))κ∈N).

One can prove the following propositions:

(7)1 If s is summable, thens is convergent and lims= 0.

(8) (∑κ
α=0(s1)(α))κ∈N +(∑κ

α=0(s2)(α))κ∈N = (∑κ
α=0(s1 +s2)(α))κ∈N.

(9) (∑κ
α=0(s1)(α))κ∈N− (∑κ

α=0(s2)(α))κ∈N = (∑κ
α=0(s1−s2)(α))κ∈N.

(10) If s1 is summable ands2 is summable, thens1 + s2 is summable and∑(s1 + s2) = ∑s1 +
∑s2.

1Supported by RPBP.III-24.C8.
1 The propositions (4)–(6) have been removed.
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(11) If s1 is summable ands2 is summable, thens1− s2 is summable and∑(s1− s2) = ∑s1−
∑s2.

(12) (∑κ
α=0(r s)(α))κ∈N = r (∑κ

α=0s(α))κ∈N.

(13) If s is summable, thenr s is summable and∑(r s) = r ·∑s.

(14) For all s, s1 such that for everyn holds s1(n) = s(0) holds (∑κ
α=0(s↑ 1)(α))κ∈N =

(∑κ
α=0s(α))κ∈N ↑1−s1.

(15) If s is summable, then for everyn holdss↑n is summable.

(16) If there existsn such thats↑n is summable, thens is summable.

(17) If for every n holds s1(n) ≤ s2(n), then for everyn holds (∑κ
α=0(s1)(α))κ∈N(n) ≤

(∑κ
α=0(s2)(α))κ∈N(n).

(18) If s is summable, then for everyn holds∑s= (∑κ
α=0s(α))κ∈N(n)+∑(s↑ (n+1)).

(19) If for everyn holds 0≤ s(n), then(∑κ
α=0s(α))κ∈N is non-decreasing.

(20) If for everyn holds 0≤ s(n), then(∑κ
α=0s(α))κ∈N is upper bounded iffs is summable.

(21) If s is summable and for everyn holds 0≤ s(n), then 0≤ ∑s.

(22) If for everyn holds 0≤ s2(n) ands1 is summable and there existsm such that for everyn
such thatm≤ n holdss2(n)≤ s1(n), thens2 is summable.

(24)2 If for every n holds 0≤ s1(n) ands1(n)≤ s2(n) ands2 is summable, thens1 is summable
and∑s1 ≤ ∑s2.

(25) s is summable iff for everyr such that 0< r there existsn such that for everym such that
n≤m holds|(∑κ

α=0s(α))κ∈N(m)− (∑κ
α=0s(α))κ∈N(n)|< r.

(26) If a 6= 1, then(∑κ
α=0((a

κ)κ∈N)(α))κ∈N(n) = 1−an+1

1−a .

(27) If a 6= 1 and for everynholdss(n+1) = a·s(n), then for everynholds(∑κ
α=0s(α))κ∈N(n) =

s(0)·(1−an+1)
1−a .

(28) If |a|< 1, then(aκ)κ∈N is summable and∑((aκ)κ∈N) = 1
1−a.

(29) If |a|< 1 and for everyn holdss(n+1) = a·s(n), thens is summable and∑s= s(0)
1−a.

(30) If for everyn holdss(n) > 0 ands1(n) = s(n+1)
s(n) ands1 is convergent and lims1 < 1, thens

is summable.

(31) If for everyn holdss(n) > 0 and there existsmsuch that for everyn such thatn≥mholds
s(n+1)

s(n) ≥ 1, thens is not summable.

(32) If for everyn holdss(n) ≥ 0 ands1(n) = n
√

s(n) ands1 is convergent and lims1 < 1, then
s is summable.

(33) If for everyn holdss(n) ≥ 0 ands1(n) = n
√

s(n) and there existsm such that for everyn
such thatm≤ n holdss1(n)≥ 1, thens is not summable.

(34) If for everyn holdss(n) ≥ 0 ands1(n) = n
√

s(n) ands1 is convergent and lims1 > 1, then
s is not summable.

Let k, n be natural numbers. Thenkn is a natural number.
One can prove the following three propositions:

2 The proposition (23) has been removed.



SERIES 3

(35) Supposes is non-increasing and for everyn holdss(n) ≥ 0 ands1(n) = 2n · s(2n). Thens
is summable if and only ifs1 is summable.

(36) If p > 1 and for everyn such thatn≥ 1 holdss(n) = 1
np , thens is summable.

(37) If p≤ 1 and for everyn such thatn≥ 1 holdss(n) = 1
np , thens is not summable.

Let us considers. We say thats is absolutely summable if and only if:

(Def. 5)3 |s| is summable.

The following propositions are true:

(39)4 For all n, m such that n ≤ m holds |(∑κ
α=0s(α))κ∈N(m) − (∑κ

α=0s(α))κ∈N(n)| ≤
|(∑κ

α=0|s|(α))κ∈N(m)− (∑κ
α=0|s|(α))κ∈N(n)|.

(40) If s is absolutely summable, thens is summable.

(41) If for everyn holds 0≤ s(n) ands is summable, thens is absolutely summable.

(42) If for everyn holdss(n) 6= 0 ands1(n) = |s|(n+1)
|s|(n) ands1 is convergent and lims1 < 1, then

s is absolutely summable.

(43) If r > 0 and there existsm such that for everyn such thatn≥ m holds|s(n)| ≥ r, thens is
not convergent or lims 6= 0.

(44) If for everyn holdss(n) 6= 0 and there existsmsuch that for everyn such thatn≥mholds
|s|(n+1)
|s|(n) ≥ 1, thens is not summable.

(45) If for everyn holdss1(n) = n
√
|s|(n) ands1 is convergent and lims1 < 1, thens is absolutely

summable.

(46) If for everyn holdss1(n) = n
√
|s|(n) and there existsmsuch that for everyn such thatm≤ n

holdss1(n)≥ 1, thens is not summable.

(47) If for every n holds s1(n) = n
√
|s|(n) and s1 is convergent and lims1 > 1, then s is not

summable.
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