Monotone Real Sequences. Subsequences

Jarosław Kotowicz Warsaw University Białystok

Summary. The article contains definitions of constant, increasing, decreasing, non decreasing, non increasing sequences, the definition of a subsequence and their basic properties.

MML Identifier: SEQM_3.

WWW: http://mizar.org/JFM/Vol1/seqm_3.html

The articles [7], [2], [8], [9], [3], [5], [4], [1], and [6] provide the notation and terminology for this paper.

We follow the rules: n, m, k are natural numbers, r is a real number, and f, s_1 , s_2 , s_3 are sequences of real numbers.

Let f be a partial function from \mathbb{N} to \mathbb{R} . We say that f is increasing if and only if:

(Def. 1) For all m, n such that $m \in \text{dom } f$ and $n \in \text{dom } f$ and m < n holds f(m) < f(n).

We say that f is decreasing if and only if:

(Def. 2) For all m, n such that $m \in \text{dom } f$ and $n \in \text{dom } f$ and m < n holds f(m) > f(n).

We say that f is non-decreasing if and only if:

(Def. 3) For all m, n such that $m \in \text{dom } f$ and $n \in \text{dom } f$ and m < n holds $f(m) \le f(n)$.

We say that f is non-increasing if and only if:

(Def. 4) For all m, n such that $m \in \text{dom } f$ and $n \in \text{dom } f$ and m < n holds $f(m) \ge f(n)$.

Let f be a function. We say that f is constant if and only if:

(Def. 5) For all sets n_1 , n_2 such that $n_1 \in \text{dom } f$ and $n_2 \in \text{dom } f$ holds $f(n_1) = f(n_2)$.

Let us consider s_1 . Let us observe that s_1 is constant if and only if:

(Def. 6) There exists r such that for every n holds $s_1(n) = r$.

Let us consider s_1 . We say that s_1 is monotone if and only if:

(Def. 7) s_1 is non-decreasing and non-increasing.

The following propositions are true:

(7)¹ s_1 is increasing iff for all n, m such that n < m holds $s_1(n) < s_1(m)$.

¹ The propositions (1)–(6) have been removed.

- (8) s_1 is increasing iff for all n, k holds $s_1(n) < s_1(n+1+k)$.
- (9) s_1 is decreasing iff for all n, k holds $s_1(n+1+k) < s_1(n)$.
- (10) s_1 is decreasing iff for all n, m such that n < m holds $s_1(m) < s_1(n)$.
- (11) s_1 is non-decreasing iff for all n, k holds $s_1(n) \le s_1(n+k)$.
- (12) s_1 is non-decreasing iff for all n, m such that $n \le m$ holds $s_1(n) \le s_1(m)$.
- (13) s_1 is non-increasing iff for all n, k holds $s_1(n+k) \le s_1(n)$.
- (14) s_1 is non-increasing iff for all n, m such that $n \le m$ holds $s_1(m) \le s_1(n)$.
- (15) s_1 is constant iff there exists r such that $\operatorname{rng} s_1 = \{r\}$.
- (16) s_1 is constant iff for every n holds $s_1(n) = s_1(n+1)$.
- (17) s_1 is constant iff for all n, k holds $s_1(n) = s_1(n+k)$.
- (18) s_1 is constant iff for all n, m holds $s_1(n) = s_1(m)$.
- (19) If s_1 is increasing, then for every n such that 0 < n holds $s_1(0) < s_1(n)$.
- (20) If s_1 is decreasing, then for every n such that 0 < n holds $s_1(n) < s_1(0)$.
- (21) If s_1 is non-decreasing, then for every n holds $s_1(0) \le s_1(n)$.
- (22) If s_1 is non-increasing, then for every n holds $s_1(n) \le s_1(0)$.
- (23) If s_1 is increasing, then s_1 is non-decreasing.
- (24) If s_1 is decreasing, then s_1 is non-increasing.
- (25) If s_1 is constant, then s_1 is non-decreasing.
- (26) If s_1 is constant, then s_1 is non-increasing.
- (27) If s_1 is non-decreasing and non-increasing, then s_1 is constant.

Let I_1 be a binary relation. We say that I_1 is natural-yielding if and only if:

(Def. 8) $\operatorname{rng} I_1 \subseteq \mathbb{N}$.

Let us note that there exists a sequence of real numbers which is increasing and natural-yielding. A sequence of naturals is a natural-yielding sequence of real numbers.

Let us consider s_1 , k. The functor $s_1 \uparrow k$ yields a sequence of real numbers and is defined by:

(Def. 9) For every n holds $(s_1 \uparrow k)(n) = s_1(n+k)$.

In the sequel N_1 , N_2 denote increasing sequences of naturals.

The following propositions are true:

- $(29)^2$ s_1 is an increasing sequence of naturals if and only if s_1 is increasing and for every n holds $s_1(n)$ is a natural number.
- $(31)^3$ For every *n* holds $(s_1 \cdot N_1)(n) = s_1(N_1(n))$.

Let us consider N_1 , n. Then $N_1(n)$ is a natural number.

Let us consider N_1 , s_1 . Then $s_1 \cdot N_1$ is a sequence of real numbers.

Let us consider N_1 , N_2 . Then $N_2 \cdot N_1$ is an increasing sequence of naturals.

Let us consider N_1 , k. Observe that $N_1 \uparrow k$ is increasing and natural-yielding.

Let us consider s_1 , s_2 . We say that s_1 is a subsequence of s_2 if and only if:

² The proposition (28) has been removed.

³ The proposition (30) has been removed.

(Def. 10) There exists N_1 such that $s_1 = s_2 \cdot N_1$.

Let f be a sequence of real numbers. Let us observe that f is increasing if and only if:

(Def. 11) For every natural number n holds f(n) < f(n+1).

Let us observe that f is decreasing if and only if:

(Def. 12) For every natural number n holds f(n) > f(n+1).

Let us observe that f is non-decreasing if and only if:

(Def. 13) For every natural number n holds $f(n) \le f(n+1)$.

Let us observe that f is non-increasing if and only if:

(Def. 14) For every natural number n holds $f(n) \ge f(n+1)$.

We now state a number of propositions:

- $(33)^4$ For every n holds $n \le N_1(n)$.
- (34) $s_1 \uparrow 0 = s_1$.
- $(35) \quad s_1 \uparrow k \uparrow m = s_1 \uparrow m \uparrow k.$
- (36) $s_1 \uparrow k \uparrow m = s_1 \uparrow (k+m)$.
- (37) $(s_1 + s_2) \uparrow k = s_1 \uparrow k + s_2 \uparrow k$.
- $(38) \quad (-s_1) \uparrow k = -s_1 \uparrow k.$
- (39) $(s_1 s_2) \uparrow k = s_1 \uparrow k s_2 \uparrow k$.
- (40) If s_1 is non-zero, then $s_1 \uparrow k$ is non-zero.
- (41) $s_1^{-1} \uparrow k = (s_1 \uparrow k)^{-1}$.
- (42) $(s_1 s_2) \uparrow k = (s_1 \uparrow k) (s_2 \uparrow k).$
- (43) $(s_1/s_2) \uparrow k = (s_1 \uparrow k)/(s_2 \uparrow k).$
- (44) $(r s_1) \uparrow k = r (s_1 \uparrow k).$
- (45) $(s_1 \cdot N_1) \uparrow k = s_1 \cdot (N_1 \uparrow k).$
- (46) s_1 is a subsequence of s_1 .
- (47) $s_1 \uparrow k$ is a subsequence of s_1 .
- (48) If s_1 is a subsequence of s_2 and s_2 is a subsequence of s_3 , then s_1 is a subsequence of s_3 .
- (49) If s_1 is increasing and s_2 is a subsequence of s_1 , then s_2 is increasing.
- (50) If s_1 is decreasing and s_2 is a subsequence of s_1 , then s_2 is decreasing.
- (51) If s_1 is non-decreasing and s_2 is a subsequence of s_1 , then s_2 is non-decreasing.
- (52) If s_1 is non-increasing and s_2 is a subsequence of s_1 , then s_2 is non-increasing.
- (53) If s_1 is monotone and s_2 is a subsequence of s_1 , then s_2 is monotone.
- (54) If s_1 is constant and s_2 is a subsequence of s_1 , then s_2 is constant.
- (55) If s_1 is constant and s_2 is a subsequence of s_1 , then $s_1 = s_2$.

⁴ The proposition (32) has been removed.

- (56) If s_1 is upper bounded and s_2 is a subsequence of s_1 , then s_2 is upper bounded.
- (57) If s_1 is lower bounded and s_2 is a subsequence of s_1 , then s_2 is lower bounded.
- (58) If s_1 is bounded and s_2 is a subsequence of s_1 , then s_2 is bounded.
- (59)(i) If s_1 is increasing and 0 < r, then $r s_1$ is increasing,
- (ii) if 0 = r, then $r s_1$ is constant, and
- (iii) if s_1 is increasing and r < 0, then $r s_1$ is decreasing.
- (60) If s_1 is decreasing and 0 < r, then $r s_1$ is decreasing and if s_1 is decreasing and r < 0, then $r s_1$ is increasing.
- (61)(i) If s_1 is non-decreasing and $0 \le r$, then $r s_1$ is non-decreasing, and
- (ii) if s_1 is non-decreasing and $r \le 0$, then $r s_1$ is non-increasing.
- (62)(i) If s_1 is non-increasing and $0 \le r$, then $r s_1$ is non-increasing, and
- (ii) if s_1 is non-increasing and $r \le 0$, then $r s_1$ is non-decreasing.
- (63)(i) If s_1 is increasing and s_2 is increasing, then $s_1 + s_2$ is increasing,
- (ii) if s_1 is decreasing and s_2 is decreasing, then $s_1 + s_2$ is decreasing,
- (iii) if s_1 is non-decreasing and s_2 is non-decreasing, then $s_1 + s_2$ is non-decreasing, and
- (iv) if s_1 is non-increasing and s_2 is non-increasing, then $s_1 + s_2$ is non-increasing.
- (64)(i) If s_1 is increasing and s_2 is constant, then $s_1 + s_2$ is increasing,
- (ii) if s_1 is decreasing and s_2 is constant, then $s_1 + s_2$ is decreasing,
- (iii) if s_1 is non-decreasing and s_2 is constant, then $s_1 + s_2$ is non-decreasing, and
- (iv) if s_1 is non-increasing and s_2 is constant, then $s_1 + s_2$ is non-increasing.
- (65) If s_1 is constant, then for every r holds $r s_1$ is constant and $-s_1$ is constant and $|s_1|$ is constant.
- (66) If s_1 is constant and s_2 is constant, then s_1 s_2 is constant and $s_1 + s_2$ is constant.
- (67) If s_1 is constant and s_2 is constant, then $s_1 s_2$ is constant.
- (68)(i) If s_1 is upper bounded and 0 < r, then $r s_1$ is upper bounded,
- (ii) if 0 = r, then $r s_1$ is bounded, and
- (iii) if s_1 is upper bounded and r < 0, then $r s_1$ is lower bounded.
- (69)(i) If s_1 is lower bounded and 0 < r, then $r s_1$ is lower bounded, and
- (ii) if s_1 is lower bounded and r < 0, then $r s_1$ is upper bounded.
- (70) If s_1 is bounded, then for every r holds $r s_1$ is bounded and $-s_1$ is bounded and $|s_1|$ is bounded.
- (71)(i) If s_1 is upper bounded and s_2 is upper bounded, then $s_1 + s_2$ is upper bounded,
- (ii) if s_1 is lower bounded and s_2 is lower bounded, then $s_1 + s_2$ is lower bounded, and
- (iii) if s_1 is bounded and s_2 is bounded, then $s_1 + s_2$ is bounded.
- (72) If s_1 is bounded and s_2 is bounded, then s_1 s_2 is bounded and $s_1 s_2$ is bounded.
- (73) If s_1 is constant, then s_1 is bounded.
- (74) If s_1 is constant, then for every r holds $r s_1$ is bounded and $-s_1$ is bounded and $|s_1|$ is bounded.

- (75)(i) If s_1 is upper bounded and s_2 is constant, then $s_1 + s_2$ is upper bounded,
 - (ii) if s_1 is lower bounded and s_2 is constant, then $s_1 + s_2$ is lower bounded, and
- (iii) if s_1 is bounded and s_2 is constant, then $s_1 + s_2$ is bounded.
- (76)(i) If s_1 is upper bounded and s_2 is constant, then $s_1 s_2$ is upper bounded,
- (ii) if s_1 is lower bounded and s_2 is constant, then $s_1 s_2$ is lower bounded, and
- (iii) if s_1 is bounded and s_2 is constant, then $s_1 s_2$ is bounded and $s_2 s_1$ is bounded and s_1 s_2 is bounded.
- (77) If s_1 is upper bounded and s_2 is non-increasing, then $s_1 + s_2$ is upper bounded.
- (78) If s_1 is lower bounded and s_2 is non-decreasing, then $s_1 + s_2$ is lower bounded.
- (79) For all sets X, x holds $X \mapsto x$ is constant.

Let X, x be sets. Observe that $X \longmapsto x$ is constant.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [4] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/seq_2.html.
- [5] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seq_1.html.
- [6] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funcop_1.html.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [8] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [9] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat 1.html.

Received November 23, 1989

Published January 2, 2004