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Summary. The article contains definitions of constant, increasing, decreasing, non
decreasing, non increasing sequences, the definition of a subsequence and their basic proper-
ties.
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The articlesl[¥],12],[18],19], [3], [%5], [4], [1], and[&] provide the notation and terminology for this
paper.

We follow the rules:n, m, k are natural numbers, is a real number, and, s, s, s3 are
sequences of real numbers.

Let f be a partial function fronlN to R. We say thaff is increasing if and only if:

(Def. 1) For allm, n such thatn € domf andn € domf andm < n holds f (m) < f(n).
We say thatff is decreasing if and only if:

(Def. 2) For allm, n such thatm € domf andn € domf andm < n holds f (m) > f(n).
We say thaff is non-decreasing if and only if:

(Def. 3) For allm, n such thatn € domf andn € domf andm < n holds f (m) < f(n).
We say thaff is non-increasing if and only if:

(Def. 4) For allm, n such thatn € domf andn € domf andm < n holds f (m) > f(n).
Let f be a function. We say thdtis constant if and only if:

(Def. 5) For all sets11, ny such than; € domf andn, € domf holdsf(n;) = f(ny).
Let us consides;. Let us observe tha is constant if and only if:

(Def. 6) There exists such that for every holdss; (n) =r.

Let us consides;. We say that; is monotone if and only if:

(Def. 7) s is non-decreasing and non-increasing.

The following propositions are true:

(7E] s1 is increasing iff for alln, msuch than < mholdss; (n) < sp(m).

1 The propositions (1)-(6) have been removed.
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(8) s isincreasing iff for alln, k holdss; (n) < s;(n+1+K).
(9) s is decreasing iff for alh, k holdss;(n+ 1+ K) < s1(n).
(10) s is decreasing iff for alh, m such than < mholdss;(m) < sy(n).
(11) s is non-decreasing iff for ath, k holdss; (n) < s;(n+k).
(12) s is non-decreasing iff for ath, m such than < mholdss; (n) < s;(m).
(13) s is non-increasing iff for alh, k holdss; (n+k) < s;(n).
(14) s is non-increasing iff for alh, msuch thah < mholdss; (m) < si(n).
(15) s is constant iff there existssuch that rng, = {r}.
(16) s is constant iff for everyr holdss; (n) = sp(n+1).
(17) s is constant iff for alln, k holdss; (n) = s;(n+ k).
(18) s is constant iff for alln, mholdss; (n) = s;(m).
(19) |If 51 is increasing, then for everysuch that O< n holdss; (0) < s1(n).
(20) |If 51 is decreasing, then for everysuch that 0< n holdss; (n) < s1(0).
(21) If 51 is non-decreasing, then for evanholdss; (0) < si(n).
(22) If 51 is non-increasing, then for evenyholdss; (n) < s1(0).
(23) |If sy isiincreasing, thes; is non-decreasing.
(24) If s is decreasing, thes is non-increasing.
(25) If g is constant, thes; is non-decreasing.
(26) If 5 is constant, thes; is non-increasing.
(27) If 5 is non-decreasing and non-increasing, theis constant.
Let 1y be a binary relation. We say thigtis natural-yielding if and only if:
(Def.8) g1 CN.

Let us note that there exists a sequence of real numbers which is increasing and natural-yielding.
A sequence of naturals is a natural-yielding sequence of real numbers.
Let us consides, k. The functors; T k yields a sequence of real numbers and is defined by:

(Def. 9) For evenyn holds(s; Tk)(n) = s1(n+Kk).

In the sequeN;, N, denote increasing sequences of naturals.
The following propositions are true:

(ZQE] s is an increasing sequence of naturals if and ondy i§ increasing and for everyholds
s1(n) is a natural number.

(31 For everyn holds(s; - Np)(n) = s1(Nz(n)).

Let us consideNy, n. ThenNy(n) is a natural number.

Let us consideNs, s;. Thens; - N; is a sequence of real numbers.

Let us consideN;, N2. ThenN, - Nj is an increasing sequence of naturals.
Let us consideN;, k. Observe thal; Tk is increasing and natural-yielding.
Let us consides;, s;. We say thas; is a subsequence ef if and only if:

2 The proposition (28) has been removed.
3 The proposition (30) has been removed.
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(Def. 10) There existdl; such thas; = s - Nj.

Let f be a sequence of real numbers. Let us observeftigincreasing if and only if:

(Def. 11) For every natural numbarholdsf(n) < f(n+1).

Let us observe thaft is decreasing if and only if:

(Def. 12) For every natural numbarholdsf(n) > f(n+1).

Let us observe that is non-decreasing if and only if:

(Def. 13) For every natural numbatholds f (n) < f(n+1).

Let us observe thatt is non-increasing if and only if:

(Def. 14) For every natural numbatholds f (n) > f(n+1).

We now state a number of propositions:

(33ff] For everyn holdsn < Ny(n).

(34)
(39)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)

s110=g.

ssTkTm=s TmTk.

st TkTm=s1(k+m).

(s1+ ) Tk=s1Tk+s Tk

(—s1) Tk=—s1 Tk

(s1—%)Tk=s1Tk—s5Tk.

If s1 is non-zero, thes; Tk is non-zero.

s k= (s 1kt

(s12) Tk=(s11K) (s2TK).

(s1/s2) Tk=(s11K)/(s2TkK).

(rsp))Tk=r (s17k).

(s1-N1) Tk=s1- (N1 TK).

s is a subsequence &f.

s Tkis a subsequence &f.

If 51 is a subsequence sf ands; is a subsequence &f, thens; is a subsequence sf.
If 5 is increasing and; is a subsequence &f, thens; is increasing.

If 51 is decreasing ansp is a subsequence sf, thens; is decreasing.

If 51 is non-decreasing argd is a subsequence ef, thens; is non-decreasing.
If 51 is non-increasing angb is a subsequence ef, thens; is non-increasing.
If 51 is monotone ang; is a subsequence sf, thens; is monotone.

If 51 is constant and, is a subsequence sf, thens; is constant.

If 51 is constant and; is a subsequence 6f, thens; = s,.

4 The proposition (32) has been removed.
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(56) If 1 is upper bounded arsg is a subsequence ef, thens; is upper bounded.
(57) If 1 is lower bounded ansb is a subsequence ef, thens; is lower bounded.
(58) If s is bounded and; is a subsequence sf, thens; is bounded.
(59)(i) If 51 isincreasing and & r, thenr s; is increasing,

(i) if 0 =r,thenrs; is constant, and

(iii) if s1isincreasing and < 0, thenr s; is decreasing.

(60) If s1is decreasing and @ r, thenr s; is decreasing and # is decreasing and< 0, then
r s; is increasing.
(61)(i) If 51 is non-decreasing and<0r, thenr s; is non-decreasing, and
(i) if 1 is non-decreasing arrd< 0, thenr s; is hon-increasing.

(62)(i) If 51 is non-increasing and € r, thenr s; is non-increasing, and
(i) if s is non-increasing and< 0, thenr s; is non-decreasing.

(63)(i) If s1isincreasing and; is increasing, thes; +$; is increasing,

(i) if s is decreasing ansp is decreasing, them + s, is decreasing,

(i) if s is non-decreasing argl is non-decreasing, thes + s, is non-decreasing, and
(iv) if 1 is non-increasing angb is non-increasing, thes + s is non-increasing.

(64)(i) If 5 isincreasing and; is constant, thes; + s, is increasing,

(i) if 1 is decreasing ansp is constant, thes; + s, is decreasing,

(iii) if s is non-decreasing argl is constant, theg; + s, is non-decreasing, and
(iv) if s1is non-increasing ansb is constant, thes; + s, is hon-increasing.

(65) If 51 is constant, then for eveny holdsr s; is constant and-s; is constant ands;| is
constant.

(66) If 5 is constant and; is constant, thes; s, is constant and; + < is constant.
(67) If s is constant and; is constant, thes; — s, is constant.

(68)(i) If 51 is upper bounded and<@r, thenr s, is upper bounded,
@iy if 0 =r, thenrs; is bounded, and
(iii) if s1is upper bounded and< 0, thenr s; is lower bounded.

(69)()) If 51 is lower bounded and € r, thenr s; is lower bounded, and
(i) if s islower bounded and< 0O, thenr s; is upper bounded.

(70) If 51 is bounded, then for eveny holdsr s; is bounded and-s; is bounded ands, | is
bounded.

(71)(i) If 51 is upper bounded arsg is upper bounded, thess + s, is upper bounded,
(i) if s islower bounded ang is lower bounded, thes; + s is lower bounded, and
(iii) if s1is bounded ang; is bounded, ther; + 5, is bounded.

(72) If 51 is bounded ang; is bounded, ther; s, is bounded and; — s, is bounded.
(73) If 1 is constant, thes; is bounded.

(74) If 51 is constant, then for eveny holdsr s; is bounded and-s; is bounded ands, | is
bounded.
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(75)()) If 51 is upper bounded arsj is constant, thes; + S is upper bounded,
(i) if 1 is lower bounded ang; is constant, thes; + s; is lower bounded, and
(i) if s is bounded and; is constant, thes; + s is bounded.

(76)(i) If 51 is upper bounded arsl is constant, thes; — s, is upper bounded,
(i) if 1 is lower bounded ang; is constant, thes; — s; is lower bounded, and
(iii) if s;is bounded ang; is constant, theg, — s, is bounded and, — s; is bounded ang; s,
is bounded.
(77) If s is upper bounded argd is non-increasing, thes + S is upper bounded.
(78) If s is lower bounded ans is non-decreasing, thesa + s, is lower bounded.

(79) For all set, x holdsX — x is constant.

Let X, x be sets. Observe th&t—— x is constant.
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