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decreasing, non increasing sequences, the definition of a subsequence and their basic proper-
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The articles [7], [2], [8], [9], [3], [5], [4], [1], and [6] provide the notation and terminology for this
paper.

We follow the rules:n, m, k are natural numbers,r is a real number, andf , s1, s2, s3 are
sequences of real numbers.

Let f be a partial function fromN to R. We say thatf is increasing if and only if:

(Def. 1) For allm, n such thatm∈ dom f andn∈ dom f andm< n holds f (m) < f (n).

We say thatf is decreasing if and only if:

(Def. 2) For allm, n such thatm∈ dom f andn∈ dom f andm< n holds f (m) > f (n).

We say thatf is non-decreasing if and only if:

(Def. 3) For allm, n such thatm∈ dom f andn∈ dom f andm< n holds f (m)≤ f (n).

We say thatf is non-increasing if and only if:

(Def. 4) For allm, n such thatm∈ dom f andn∈ dom f andm< n holds f (m)≥ f (n).

Let f be a function. We say thatf is constant if and only if:

(Def. 5) For all setsn1, n2 such thatn1 ∈ dom f andn2 ∈ dom f holds f (n1) = f (n2).

Let us considers1. Let us observe thats1 is constant if and only if:

(Def. 6) There existsr such that for everyn holdss1(n) = r.

Let us considers1. We say thats1 is monotone if and only if:

(Def. 7) s1 is non-decreasing and non-increasing.

The following propositions are true:

(7)1 s1 is increasing iff for alln, msuch thatn < mholdss1(n) < s1(m).

1 The propositions (1)–(6) have been removed.
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(8) s1 is increasing iff for alln, k holdss1(n) < s1(n+1+k).

(9) s1 is decreasing iff for alln, k holdss1(n+1+k) < s1(n).

(10) s1 is decreasing iff for alln, msuch thatn < mholdss1(m) < s1(n).

(11) s1 is non-decreasing iff for alln, k holdss1(n)≤ s1(n+k).

(12) s1 is non-decreasing iff for alln, m such thatn≤m holdss1(n)≤ s1(m).

(13) s1 is non-increasing iff for alln, k holdss1(n+k)≤ s1(n).

(14) s1 is non-increasing iff for alln, m such thatn≤m holdss1(m)≤ s1(n).

(15) s1 is constant iff there existsr such that rngs1 = {r}.

(16) s1 is constant iff for everyn holdss1(n) = s1(n+1).

(17) s1 is constant iff for alln, k holdss1(n) = s1(n+k).

(18) s1 is constant iff for alln, m holdss1(n) = s1(m).

(19) If s1 is increasing, then for everyn such that 0< n holdss1(0) < s1(n).

(20) If s1 is decreasing, then for everyn such that 0< n holdss1(n) < s1(0).

(21) If s1 is non-decreasing, then for everyn holdss1(0)≤ s1(n).

(22) If s1 is non-increasing, then for everyn holdss1(n)≤ s1(0).

(23) If s1 is increasing, thens1 is non-decreasing.

(24) If s1 is decreasing, thens1 is non-increasing.

(25) If s1 is constant, thens1 is non-decreasing.

(26) If s1 is constant, thens1 is non-increasing.

(27) If s1 is non-decreasing and non-increasing, thens1 is constant.

Let I1 be a binary relation. We say thatI1 is natural-yielding if and only if:

(Def. 8) rngI1 ⊆ N.

Let us note that there exists a sequence of real numbers which is increasing and natural-yielding.
A sequence of naturals is a natural-yielding sequence of real numbers.
Let us considers1, k. The functors1↑k yields a sequence of real numbers and is defined by:

(Def. 9) For everyn holds(s1↑k)(n) = s1(n+k).

In the sequelN1, N2 denote increasing sequences of naturals.
The following propositions are true:

(29)2 s1 is an increasing sequence of naturals if and only ifs1 is increasing and for everyn holds
s1(n) is a natural number.

(31)3 For everyn holds(s1 ·N1)(n) = s1(N1(n)).

Let us considerN1, n. ThenN1(n) is a natural number.
Let us considerN1, s1. Thens1 ·N1 is a sequence of real numbers.
Let us considerN1, N2. ThenN2 ·N1 is an increasing sequence of naturals.
Let us considerN1, k. Observe thatN1↑k is increasing and natural-yielding.
Let us considers1, s2. We say thats1 is a subsequence ofs2 if and only if:

2 The proposition (28) has been removed.
3 The proposition (30) has been removed.
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(Def. 10) There existsN1 such thats1 = s2 ·N1.

Let f be a sequence of real numbers. Let us observe thatf is increasing if and only if:

(Def. 11) For every natural numbern holds f (n) < f (n+1).

Let us observe thatf is decreasing if and only if:

(Def. 12) For every natural numbern holds f (n) > f (n+1).

Let us observe thatf is non-decreasing if and only if:

(Def. 13) For every natural numbern holds f (n)≤ f (n+1).

Let us observe thatf is non-increasing if and only if:

(Def. 14) For every natural numbern holds f (n)≥ f (n+1).

We now state a number of propositions:

(33)4 For everyn holdsn≤ N1(n).

(34) s1↑0 = s1.

(35) s1↑k↑m= s1↑m↑k.

(36) s1↑k↑m= s1↑ (k+m).

(37) (s1 +s2)↑k = s1↑k+s2↑k.

(38) (−s1)↑k =−s1↑k.

(39) (s1−s2)↑k = s1↑k−s2↑k.

(40) If s1 is non-zero, thens1↑k is non-zero.

(41) s1
−1↑k = (s1↑k)−1.

(42) (s1 s2)↑k = (s1↑k) (s2↑k).

(43) (s1/s2)↑k = (s1↑k)/(s2↑k).

(44) (r s1)↑k = r (s1↑k).

(45) (s1 ·N1)↑k = s1 · (N1↑k).

(46) s1 is a subsequence ofs1.

(47) s1↑k is a subsequence ofs1.

(48) If s1 is a subsequence ofs2 ands2 is a subsequence ofs3, thens1 is a subsequence ofs3.

(49) If s1 is increasing ands2 is a subsequence ofs1, thens2 is increasing.

(50) If s1 is decreasing ands2 is a subsequence ofs1, thens2 is decreasing.

(51) If s1 is non-decreasing ands2 is a subsequence ofs1, thens2 is non-decreasing.

(52) If s1 is non-increasing ands2 is a subsequence ofs1, thens2 is non-increasing.

(53) If s1 is monotone ands2 is a subsequence ofs1, thens2 is monotone.

(54) If s1 is constant ands2 is a subsequence ofs1, thens2 is constant.

(55) If s1 is constant ands2 is a subsequence ofs1, thens1 = s2.

4 The proposition (32) has been removed.
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(56) If s1 is upper bounded ands2 is a subsequence ofs1, thens2 is upper bounded.

(57) If s1 is lower bounded ands2 is a subsequence ofs1, thens2 is lower bounded.

(58) If s1 is bounded ands2 is a subsequence ofs1, thens2 is bounded.

(59)(i) If s1 is increasing and 0< r, thenr s1 is increasing,

(ii) if 0 = r, thenr s1 is constant, and

(iii) if s1 is increasing andr < 0, thenr s1 is decreasing.

(60) If s1 is decreasing and 0< r, thenr s1 is decreasing and ifs1 is decreasing andr < 0, then
r s1 is increasing.

(61)(i) If s1 is non-decreasing and 0≤ r, thenr s1 is non-decreasing, and

(ii) if s1 is non-decreasing andr ≤ 0, thenr s1 is non-increasing.

(62)(i) If s1 is non-increasing and 0≤ r, thenr s1 is non-increasing, and

(ii) if s1 is non-increasing andr ≤ 0, thenr s1 is non-decreasing.

(63)(i) If s1 is increasing ands2 is increasing, thens1 +s2 is increasing,

(ii) if s1 is decreasing ands2 is decreasing, thens1 +s2 is decreasing,

(iii) if s1 is non-decreasing ands2 is non-decreasing, thens1 +s2 is non-decreasing, and

(iv) if s1 is non-increasing ands2 is non-increasing, thens1 +s2 is non-increasing.

(64)(i) If s1 is increasing ands2 is constant, thens1 +s2 is increasing,

(ii) if s1 is decreasing ands2 is constant, thens1 +s2 is decreasing,

(iii) if s1 is non-decreasing ands2 is constant, thens1 +s2 is non-decreasing, and

(iv) if s1 is non-increasing ands2 is constant, thens1 +s2 is non-increasing.

(65) If s1 is constant, then for everyr holds r s1 is constant and−s1 is constant and|s1| is
constant.

(66) If s1 is constant ands2 is constant, thens1 s2 is constant ands1 +s2 is constant.

(67) If s1 is constant ands2 is constant, thens1−s2 is constant.

(68)(i) If s1 is upper bounded and 0< r, thenr s1 is upper bounded,

(ii) if 0 = r, thenr s1 is bounded, and

(iii) if s1 is upper bounded andr < 0, thenr s1 is lower bounded.

(69)(i) If s1 is lower bounded and 0< r, thenr s1 is lower bounded, and

(ii) if s1 is lower bounded andr < 0, thenr s1 is upper bounded.

(70) If s1 is bounded, then for everyr holds r s1 is bounded and−s1 is bounded and|s1| is
bounded.

(71)(i) If s1 is upper bounded ands2 is upper bounded, thens1 +s2 is upper bounded,

(ii) if s1 is lower bounded ands2 is lower bounded, thens1 +s2 is lower bounded, and

(iii) if s1 is bounded ands2 is bounded, thens1 +s2 is bounded.

(72) If s1 is bounded ands2 is bounded, thens1 s2 is bounded ands1−s2 is bounded.

(73) If s1 is constant, thens1 is bounded.

(74) If s1 is constant, then for everyr holds r s1 is bounded and−s1 is bounded and|s1| is
bounded.
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(75)(i) If s1 is upper bounded ands2 is constant, thens1 +s2 is upper bounded,

(ii) if s1 is lower bounded ands2 is constant, thens1 +s2 is lower bounded, and

(iii) if s1 is bounded ands2 is constant, thens1 +s2 is bounded.

(76)(i) If s1 is upper bounded ands2 is constant, thens1−s2 is upper bounded,

(ii) if s1 is lower bounded ands2 is constant, thens1−s2 is lower bounded, and

(iii) if s1 is bounded ands2 is constant, thens1−s2 is bounded ands2−s1 is bounded ands1 s2

is bounded.

(77) If s1 is upper bounded ands2 is non-increasing, thens1 +s2 is upper bounded.

(78) If s1 is lower bounded ands2 is non-decreasing, thens1 +s2 is lower bounded.

(79) For all setsX, x holdsX 7−→ x is constant.

Let X, x be sets. Observe thatX 7−→ x is constant.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/
JFM/Vol1/nat_1.html.

[2] Grzegorz Bancerek. The ordinal numbers.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.
html.
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