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Summary. The article contains definitions and same basic properties of bounded se-
quences (above and below), convergent sequences and the limit of sequences. In the article
there are some properties of real numbers useful in the other theorems of this article.
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The articles [1], [6], [3], [5], [7], [2], and [4] provide the notation and terminology for this paper.
For simplicity, we adopt the following rules:n, m are natural numbers,r, r1, p, g1, g are real

numbers,s1, s′1, s2 are sequences of real numbers,y is a set, andf is a real-yielding function.
We now state several propositions:

(3)1 If 0 < g, then 0< g
2 and 0< g

4.

(4) If 0 < g, then g
2 < g.

(6)2 If 0 < g and 0< p, then 0< g
p.

(7) If 0 ≤ g and 0≤ r andg < g1 andr < r1, theng· r < g1 · r1.

(9)3 −g < r andr < g iff |r|< g.

(10) If 0 < r1 andr1 < r and 0< g, then g
r < g

r1
.

(11) If g 6= 0 andr 6= 0, then|g−1− r−1|= |g−r|
|g|·|r| .

Let f be a real-yielding function. We say thatf is upper bounded if and only if:

(Def. 1) There existsr such that for everyy such thaty∈ dom f holds f (y) < r.

We say thatf is lower bounded if and only if:

(Def. 2) There existsr such that for everyy such thaty∈ dom f holdsr < f (y).

Let us considers1. Let us observe thats1 is upper bounded if and only if:

(Def. 3) There existsr such that for everyn holdss1(n) < r.

Let us observe thats1 is lower bounded if and only if:

1 The propositions (1) and (2) have been removed.
2 The proposition (5) has been removed.
3 The proposition (8) has been removed.
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(Def. 4) There existsr such that for everyn holdsr < s1(n).

Let us considerf . We say thatf is bounded if and only if:

(Def. 5) f is upper bounded and lower bounded.

Let us mention that every real-yielding function which is bounded is also upper bounded and
lower bounded and every real-yielding function which is upper bounded and lower bounded is also
bounded.

The following two propositions are true:

(15)4 s1 is bounded iff there existsr such that 0< r and for everyn holds|s1(n)|< r.

(16) For everyn there existsr such that 0< r and for everymsuch thatm≤ n holds|s1(m)|< r.

Let us considers1. We say thats1 is convergent if and only if:

(Def. 6) There existsg such that for everyp such that 0< p there existsn such that for everymsuch
thatn≤ m holds|s1(m)−g|< p.

Let us considers1. Let us assume thats1 is convergent. The functor lims1 yields a real number
and is defined as follows:

(Def. 7) For everyp such that 0< p there existsn such that for everym such thatn ≤ m holds
|s1(m)− lim s1|< p.

Let us considers1. Then lims1 is a real number.
Next we state a number of propositions:

(19)5 If s1 is convergent ands′1 is convergent, thens1 +s′1 is convergent.

(20) If s1 is convergent ands′1 is convergent, then lim(s1 +s′1) = lim s1 + lim s′1.

(21) If s1 is convergent, thenr s1 is convergent.

(22) If s1 is convergent, then lim(r s1) = r · lim s1.

(23) If s1 is convergent, then−s1 is convergent.

(24) If s1 is convergent, then lim(−s1) =−lim s1.

(25) If s1 is convergent ands′1 is convergent, thens1−s′1 is convergent.

(26) If s1 is convergent ands′1 is convergent, then lim(s1−s′1) = lim s1− lim s′1.

(27) If s1 is convergent, thens1 is bounded.

(28) If s1 is convergent ands′1 is convergent, thens1 s′1 is convergent.

(29) If s1 is convergent ands′1 is convergent, then lim(s1 s′1) = lim s1 · lim s′1.

(30) If s1 is convergent, then if lims1 6= 0, then there existsn such that for everym such that
n≤ mholds |lim s1|

2 < |s1(m)|.

(31) If s1 is convergent and for everyn holds 0≤ s1(n), then 0≤ lim s1.

(32) If s1 is convergent ands′1 is convergent and for everyn holdss1(n) ≤ s′1(n), then lims1 ≤
lim s′1.

(33) If s1 is convergent ands′1 is convergent and for everyn holdss1(n) ≤ s2(n) ands2(n) ≤
s′1(n) and lims1 = lim s′1, thens2 is convergent.

4 The propositions (12)–(14) have been removed.
5 The propositions (17) and (18) have been removed.
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(34) If s1 is convergent ands′1 is convergent and for everyn holdss1(n) ≤ s2(n) ands2(n) ≤
s′1(n) and lims1 = lim s′1, then lims2 = lim s1.

(35) If s1 is convergent and lims1 6= 0 ands1 is non-zero, thens1
−1 is convergent.

(36) If s1 is convergent and lims1 6= 0 ands1 is non-zero, then lim(s1
−1) = (lim s1)−1.

(37) If s′1 is convergent ands1 is convergent and lims1 6= 0 ands1 is non-zero, thens′1/s1 is
convergent.

(38) If s′1 is convergent ands1 is convergent and lims1 6= 0 ands1 is non-zero, then lim(s′1/s1) =
lim s′1
lim s1

.

(39) If s1 is convergent ands2 is bounded and lims1 = 0, thens1 s2 is convergent.

(40) If s1 is convergent ands2 is bounded and lims1 = 0, then lim(s1 s2) = 0.
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