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Summary. The article contains definitions and same basic properties of bounded se-
quences (above and below), convergent sequences and the limit of sequences. In the article
there are some properties of real numbers useful in the other theorems of this article.
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The articlesl[1],[[6],[3],%], 7], [2], and[4] provide the notation and terminology for this paper.
For simplicity, we adopt the following rules), m are natural numbers, r1, p, g1, g are real
numberss,, s}, s, are sequences of real numberss a set, and is a real-yielding function.
We now state several propositions:

@3] 110 <g,then0< § and 0< §.

(4) 1f0<gthen<g.

(6ﬂ If 0 < gand 0< p, then 0< .

(7) 1f0<gandO<randg<g;andr<rj,theng-r <g;-ri.
OF —g<randr <giff |r| <g.

(10) IfOo<riandr; <rand0<g, then? < ot

11) Ifg+£0andr #0, then|g~1—r—1| = 191
(11) Ifg# #0, 9 ERG

Let f be a real-yielding function. We say thais upper bounded if and only if:
(Def. 1) There exists such that for every such thay € domf holdsf(y) <r.
We say thaff is lower bounded if and only if:
(Def. 2) There exists such that for every such thaty € domf holdsr < f(y).
Let us consides;. Let us observe tha is upper bounded if and only if:
(Def. 3) There exists such that for every holdss; (n) < r.

Let us observe tha; is lower bounded if and only if:

1 The propositions (1) and (2) have been removed.
2 The proposition (5) has been removed.
3 The proposition (8) has been removed.
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(Def. 4) There exists such that for every holdsr < s;(n).
Let us considerf. We say thaff is bounded if and only if:
(Def. 5) f is upper bounded and lower bounded.

Let us mention that every real-yielding function which is bounded is also upper bounded and
lower bounded and every real-yielding function which is upper bounded and lower bounded is also
bounded.

The following two propositions are true:

(15@ s1 is bounded iff there existssuch that O< r and for everyn holds|s;(n)| <.

(16) For everynthere exists such that O< r and for everymsuch tham < nholds|s;(m)| <.

Let us consides;. We say thas; is convergent if and only if:

(Def. 6) There existg such that for every such that O< p there exists such that for everynsuch
thatn < mholds|s;(m) —g| < p.

Let us consides;. Let us assume that is convergent. The functor lis yields a real number
and is defined as follows:

(Def. 7) For everyp such that O< p there existsn such that for everyn such thain < m holds
|s(m) —limsg| < p.

Let us consides;. Then lims; is a real number.
Next we state a number of propositions:

(19@ If s is convergent and is convergent, thes, +s; is convergent.

(20) If 51 is convergent and, is convergent, then lii$; +s;) = lims; +1lims).
(21) If 1 is convergent, thens; is convergent.

(22) If s is convergent, then lims;) =r-lims;.

(23) If 1 is convergent, ther-s; is convergent.

(24) If 5 is convergent, then lifa-s1) = —lim s;.

(25) If 51 is convergent and, is convergent, thes; —s; is convergent.

(26) If 51 is convergent and, is convergent, then lifi$; — s;) = lims; —lims).
(27) If 1 is convergent, theg is bounded.

(28) If 51 is convergent and, is convergent, thes; s, is convergent.

(29) If 51 is convergent and, is convergent, then lifi$; S}) =lims; -lims).

(30) If s is convergent, then if lirm # O, then there exista such that for everyn such that
n < mholds ™M < |s;(m)).

(31) If 51 is convergent and for everyholds 0< s;(n), then 0< lim ;.

(32) If s is convergent and; is convergent and for everyholdss;(n) < s;(n), then lims; <
lims,.

(83) If 51 is convergent and,; is convergent and for eveny holdss; (n) < s;(n) andsy(n) <
s1(n) and lims; = lim s}, thens; is convergent.

4 The propositions (12)—(14) have been removed.
5 The propositions (17) and (18) have been removed.
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(34) If 51 is convergent and; is convergent and for evenyholdss; (n) < s;(n) ands(n) <
s;(n) and lims; = lim sy, then lims; = lim s;.

(385) If s is convergent and lirs; # 0 ands; is non-zero, thes; ~* is convergent.
(36) If s is convergent and lirsy # 0 ands; is non-zero, then lirfs; 1) = (lims;) L.

(387) If 8} is convergent and; is convergent and lirsy # 0 ands; is non-zero, thers| /s; is
convergent.

(38) Ifs; is convergent ang; is convergent and lirs, # 0 ands; is non-zero, then lirfs; /s;) =
lims;

lims; *

(39) If s is convergent and; is bounded and lir, = 0, thens; s, is convergent.

(40) If 5 is convergent ane, is bounded and lirgy = 0, then lim(s; ;) = 0.
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