Some Multi Instructions Defined by Sequence of Instructions of SCM_{FSA}

Noriko Asamoto Ochanomizu University Tokyo

MML Identifier: SCMFSA_7.

WWW: http://mizar.org/JFM/Vol8/scmfsa_7.html

The articles [12], [18], [3], [13], [2], [11], [10], [4], [15], [19], [1], [5], [8], [17], [6], [16], [7], [9], and [14] provide the notation and terminology for this paper.

In this paper m is a natural number.

Let us observe that every finite partial state of **SCM**_{FSA} is finite.

Let p be a finite sequence and let x, y be sets. Note that p + (x, y) is finite sequence-like.

We now state four propositions:

- (1) For every natural number k holds |k| = k.
- (2) For all natural numbers a, b, c such that $a \ge c$ and $b \ge c$ and a c = b c holds a = b.
- (3) For all natural numbers a, b such that $a \ge b$ holds a b' = a b.
- (4) For all integers a, b such that a < b holds $a \le b 1$.

The scheme CardMono" deals with a set \mathcal{A} , a non empty set \mathcal{B} , and a unary functor \mathcal{F} yielding a set, and states that:

 $\mathcal{A} \approx \{ \mathcal{F}(d); d \text{ ranges over elements of } \mathcal{B} : d \in \mathcal{A} \}$

provided the parameters meet the following requirements:

- $\mathcal{A} \subseteq \mathcal{B}$, and
- For all elements d_1 , d_2 of \mathcal{B} such that $d_1 \in \mathcal{A}$ and $d_2 \in \mathcal{A}$ and $\mathcal{F}(d_1) = \mathcal{F}(d_2)$ holds $d_1 = d_2$.

One can prove the following propositions:

- (5) For all finite sequences p_1 , p_2 , q such that $p_1 \subseteq q$ and $p_2 \subseteq q$ and len $p_1 = \text{len } p_2$ holds $p_1 = p_2$.
- (8)¹ For all finite sequences p, q such that $p \subseteq q$ holds len $p \le \text{len } q$.
- (9) For all finite sequences p, q and for every natural number i such that $1 \le i$ and $i \le \text{len } p$ holds $(p \cap q)(i) = p(i)$.
- (10) For all finite sequences p, q and for every natural number i such that $1 \le i$ and $i \le \text{len } q$ holds $(p \cap q)(\text{len } p + i) = q(i)$.

1

¹ The propositions (6) and (7) have been removed.

- (12)² For every finite sequence p such that $p \neq \emptyset$ holds len $p \in \text{dom } p$.
- (13) For every set *D* holds $Flat(\varepsilon_{D^*}) = \varepsilon_D$.
- (14) For every set D and for all finite sequences F, G of elements of D^* holds $\operatorname{Flat}(F \cap G) = \operatorname{Flat}(F) \cap \operatorname{Flat}(G)$.
- (15) For every set *D* and for all elements p, q of D^* holds $\operatorname{Flat}(\langle p,q\rangle) = p \cap q$.
- (16) For every set *D* and for all elements p, q, r of D^* holds $\operatorname{Flat}(\langle p, q, r \rangle) = p \cap q \cap r$.
- (17) Let D be a non empty set and p, q be finite sequences of elements of D. If $p \subseteq q$, then there exists a finite sequence p' of elements of D such that $p \cap p' = q$.
- (18) Let D be a non empty set, p, q be finite sequences of elements of D, and i be a natural number. If $p \subseteq q$ and $1 \le i$ and $i \le \text{len } p$, then q(i) = p(i).
- (19) For every set D and for all finite sequences F, G of elements of D^* such that $F \subseteq G$ holds $\operatorname{Flat}(F) \subseteq \operatorname{Flat}(G)$.
- (20) For every finite sequence p holds $p \upharpoonright \text{Seg } 0 = \emptyset$.
- (21) For all finite sequences f, g holds $f \upharpoonright \text{Seg } 0 = g \upharpoonright \text{Seg } 0$.
- (22) For every non empty set D and for every element x of D holds $\langle x \rangle$ is a finite sequence of elements of D.
- (23) Let D be a set and p, q be finite sequences of elements of D. Then $p \cap q$ is a finite sequence of elements of D.

Let f be a finite sequence of elements of the instructions of SCM_{FSA} . The functor Load(f) yields a finite partial state of SCM_{FSA} and is defined as follows:

(Def. 1) $\operatorname{domLoad}(f) = \{\operatorname{insloc}(m-'1) : m \in \operatorname{dom} f\}$ and for every natural number k such that $\operatorname{insloc}(k) \in \operatorname{domLoad}(f) \operatorname{holds}(\operatorname{Load}(f))(\operatorname{insloc}(k)) = f_{k+1}$.

We now state several propositions:

- $(25)^3$ For every finite sequence f of elements of the instructions of SCM_{FSA} holds cardLoad(f) = len f.
- (26) Let p be a finite sequence of elements of the instructions of \mathbf{SCM}_{FSA} and k be a natural number. Then $\operatorname{insloc}(k) \in \operatorname{dom} \operatorname{Load}(p)$ if and only if $k+1 \in \operatorname{dom} p$.
- (27) For all natural numbers k, n holds k < n iff 0 < k + 1 and $k + 1 \le n$.
- (28) For all natural numbers k, n holds k < n iff $1 \le k + 1$ and $k + 1 \le n$.
- (29) Let p be a finite sequence of elements of the instructions of \mathbf{SCM}_{FSA} and k be a natural number. Then $\operatorname{insloc}(k) \in \operatorname{dom} \operatorname{Load}(p)$ if and only if $k < \operatorname{len} p$.
- (30) For every non empty finite sequence f of elements of the instructions of \mathbf{SCM}_{FSA} holds $1 \in \text{dom } f$ and $\text{insloc}(0) \in \text{domLoad}(f)$.
- (31) For all finite sequences p, q of elements of the instructions of \mathbf{SCM}_{FSA} holds $\mathrm{Load}(p) \subseteq \mathrm{Load}(p \cap q)$.
- (32) For all finite sequences p, q of elements of the instructions of SCM_{FSA} such that $p \subseteq q$ holds $Load(p) \subseteq Load(q)$.

Let a be an integer location and let k be an integer. The functor a:=k yields a finite partial state of \mathbf{SCM}_{FSA} and is defined as follows:

² The proposition (11) has been removed.

³ The proposition (24) has been removed.

- (Def. 2)(i) There exists a natural number k_1 such that $k_1 + 1 = k$ and $a := k = \text{Load}(\langle a := \text{intloc}(0) \rangle^{\hat{}} (k_1 \mapsto \text{AddTo}(a, \text{intloc}(0)))^{\hat{}} \langle \textbf{halt}_{SCM_{ESA}} \rangle)$ if k > 0,
 - (ii) there exists a natural number k_1 such that $k_1 + k = 1$ and $a := k = \text{Load}(\langle a := \text{intloc}(0) \rangle \cap \langle k_1 \mapsto \text{SubFrom}(a, \text{intloc}(0)) \rangle \cap \langle \text{halt}_{\text{SCM}_{\text{FSA}}} \rangle)$, otherwise.

Let a be an integer location and let k be an integer. The functor aSeq(a,k) yields a finite sequence of elements of the instructions of \mathbf{SCM}_{FSA} and is defined by:

- (Def. 3)(i) There exists a natural number k_1 such that $k_1 + 1 = k$ and $aSeq(a, k) = \langle a := intloc(0) \rangle \cap (k_1 \mapsto AddTo(a, intloc(0)))$ if k > 0,
 - (ii) there exists a natural number k_1 such that $k_1 + k = 1$ and $aSeq(a,k) = \langle a := intloc(0) \rangle \cap (k_1 \mapsto SubFrom(a, intloc(0)))$, otherwise.

The following proposition is true

(33) For every integer location a and for every integer k holds $a:=k = \text{Load}((a\text{Seq}(a,k)) \cap (\textbf{halt}_{SCM_{FSA}}))$.

Let f be a finite sequence location and let p be a finite sequence of elements of \mathbb{Z} . The functor aSeq(f,p) yields a finite sequence of elements of the instructions of \mathbf{SCM}_{FSA} and is defined by the condition (Def. 4).

- (Def. 4) There exists a finite sequence p_3 of elements of (the instructions of \mathbf{SCM}_{FSA})* such that
 - (i) $\operatorname{len} p_3 = \operatorname{len} p$,
 - (ii) for every natural number k such that $1 \le k$ and $k \le \text{len } p$ there exists an integer i such that i = p(k) and $p_3(k) = (a\text{Seq}(\text{intloc}(1), k)) \cap a\text{Seq}(\text{intloc}(2), i) \cap \langle f_{\text{intloc}(1)} := \text{intloc}(2) \rangle$, and
 - (iii) $aSeq(f, p) = Flat(p_3).$

Let f be a finite sequence location and let p be a finite sequence of elements of \mathbb{Z} . The functor f := p yielding a finite partial state of \mathbf{SCM}_{FSA} is defined by:

$$(\text{Def. 5}) \quad f := p = \operatorname{Load}((\operatorname{aSeq}(\operatorname{intloc}(1), \operatorname{len} p)) \cap \langle f := \langle \underbrace{0, \dots, 0}_{\operatorname{intloc}(1)} \rangle \cap \operatorname{aSeq}(f, p) \cap \langle \operatorname{\textbf{halt}}_{\operatorname{SCM}_{\operatorname{FSA}}} \rangle).$$

We now state several propositions:

- (34) For every integer location a holds $a:=1 = \text{Load}(\langle a:= \text{intloc}(0) \rangle \cap \langle \text{halt}_{SCM_{ESA}} \rangle)$.
- (35) For every integer location a holds $a := 0 = \text{Load}(\langle a := \text{intloc}(0) \rangle \cap \langle \text{SubFrom}(a, \text{intloc}(0)) \rangle \cap \langle \text{halt}_{\text{SCM}_{\text{FSA}}} \rangle)$.
- (36) Let s be a state of \mathbf{SCM}_{FSA} . Suppose $s(\operatorname{intloc}(0)) = 1$. Let c_0 be a natural number. Suppose $\mathbf{IC}_s = \operatorname{insloc}(c_0)$. Let a be an integer location and k be an integer. Suppose $a \neq \operatorname{intloc}(0)$ and for every natural number c such that $c \in \operatorname{dom} \operatorname{aSeq}(a,k)$ holds $(\operatorname{aSeq}(a,k))(c) = s(\operatorname{insloc}((c_0 + c) 1))$. Then
 - (i) for every natural number i such that $i \le \operatorname{lenaSeq}(a,k)$ holds $\mathbf{IC}_{(\operatorname{Computation}(s))(i)} = \operatorname{insloc}(c_0+i)$ and for every integer location b such that $b \ne a$ holds $(\operatorname{Computation}(s))(i)(b) = s(b)$ and for every finite sequence location f holds $(\operatorname{Computation}(s))(i)(f) = s(f)$, and
- (ii) (Computation(s))(len aSeq(a,k))(a) = k.
- (37) Let s be a state of \mathbf{SCM}_{FSA} . Suppose $\mathbf{IC}_s = \mathrm{insloc}(0)$ and $s(\mathrm{intloc}(0)) = 1$. Let a be an integer location and k be an integer. Suppose $\mathrm{Load}(a\mathrm{Seq}(a,k)) \subseteq s$ and $a \neq \mathrm{intloc}(0)$. Then
 - (i) for every natural number i such that $i \le \text{len aSeq}(a,k)$ holds $\mathbf{IC}_{(\text{Computation}(s))(i)} = \text{insloc}(i)$ and for every integer location b such that $b \ne a$ holds (Computation(s))(i)(b) = s(b) and for every finite sequence location f holds (Computation(s))(i)(f) = s(f), and
- (ii) (Computation(s))(len aSeq(a,k))(a) = k.

- (38) Let s be a state of **SCM**_{FSA}. Suppose $\mathbf{IC}_s = \operatorname{insloc}(0)$ and $s(\operatorname{intloc}(0)) = 1$. Let a be an integer location and k be an integer. Suppose $a := k \subseteq s$ and $a \neq \operatorname{intloc}(0)$. Then
 - (i) s is halting,
- (ii) (Result(s))(a) = k,
- (iii) for every integer location b such that $b \neq a$ holds (Result(s))(b) = s(b), and
- (iv) for every finite sequence location f holds (Result(s))(f) = s(f).
- (39) Let s be a state of **SCM**_{FSA}. Suppose **IC**_s = insloc(0) and s(intloc(0)) = 1. Let f be a finite sequence location and p be a finite sequence of elements of \mathbb{Z} . Suppose $f := p \subseteq s$. Then
 - (i) s is halting,
- (ii) (Result(s))(f) = p,
- (iii) for every integer location b such that $b \neq \text{intloc}(1)$ and $b \neq \text{intloc}(2)$ holds (Result(s))(b) = s(b), and
- (iv) for every finite sequence location g such that $g \neq f$ holds (Result(s))(g) = s(g).

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.
- [4] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal2.html.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [6] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/dtconstr.html.
- [7] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- $[8] \ \ Agata \ Darmochwał. \ Finite sets. \ \textit{Journal of Formalized Mathematics}, 1, 1989. \ \texttt{http://mizar.org/JFM/Vol1/finset_1.html}.$
- [9] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_1.html.
- [10] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/binarith.html.
- [11] Jan Popiolek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/absvalue.html.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [13] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html
- [14] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCM_{FSA} computer. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa_2.html.
- [15] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- [16] Wojciech A. Trybulec. Binary operations on finite sequences. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finsop_1.html.
- [17] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [18] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

[19] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received April 24, 1996

Published January 2, 2004