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The articles [12], [18], [3], [13], [2], [11], [10], [4], [15], [19], [1], [5], [8], [17], [6], [16], [7], [9],
and [14] provide the notation and terminology for this paper.

In this paperm is a natural number.
Let us observe that every finite partial state ofSCMFSA is finite.
Let p be a finite sequence and letx, y be sets. Note thatp+· (x,y) is finite sequence-like.
We now state four propositions:

(1) For every natural numberk holds|k|= k.

(2) For all natural numbersa, b, c such thata≥ c andb≥ c anda−′ c = b−′ c holdsa = b.

(3) For all natural numbersa, b such thata≥ b holdsa−′ b = a−b.

(4) For all integersa, b such thata < b holdsa≤ b−1.

The schemeCardMono” deals with a setA , a non empty setB, and a unary functorF yielding
a set, and states that:

A ≈ {F (d);d ranges over elements ofB : d ∈ A}
provided the parameters meet the following requirements:

• A ⊆ B, and
• For all elementsd1, d2 of B such thatd1 ∈ A andd2 ∈ A andF (d1) = F (d2) holds

d1 = d2.
One can prove the following propositions:

(5) For all finite sequencesp1, p2, q such thatp1 ⊆ q and p2 ⊆ q and lenp1 = lenp2 holds
p1 = p2.

(8)1 For all finite sequencesp, q such thatp⊆ q holds lenp≤ lenq.

(9) For all finite sequencesp, q and for every natural numberi such that 1≤ i and i ≤ lenp
holds(pa q)(i) = p(i).

(10) For all finite sequencesp, q and for every natural numberi such that 1≤ i and i ≤ lenq
holds(pa q)(lenp+ i) = q(i).

1 The propositions (6) and (7) have been removed.
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(12)2 For every finite sequencep such thatp 6= /0 holds lenp∈ domp.

(13) For every setD holds Flat(εD∗) = εD.

(14) For every setD and for all finite sequencesF , G of elements ofD∗ holds Flat(F a G) =
Flat(F)a Flat(G).

(15) For every setD and for all elementsp, q of D∗ holds Flat(〈p,q〉) = pa q.

(16) For every setD and for all elementsp, q, r of D∗ holds Flat(〈p,q, r〉) = pa qa r.

(17) LetD be a non empty set andp, q be finite sequences of elements ofD. If p⊆ q, then there
exists a finite sequencep′ of elements ofD such thatpa p′ = q.

(18) Let D be a non empty set,p, q be finite sequences of elements ofD, and i be a natural
number. Ifp⊆ q and 1≤ i andi ≤ lenp, thenq(i) = p(i).

(19) For every setD and for all finite sequencesF , G of elements ofD∗ such thatF ⊆ G holds
Flat(F)⊆ Flat(G).

(20) For every finite sequencep holdsp�Seg0= /0.

(21) For all finite sequencesf , g holds f �Seg0= g�Seg0.

(22) For every non empty setD and for every elementx of D holds〈x〉 is a finite sequence of
elements ofD.

(23) LetD be a set andp, q be finite sequences of elements ofD. Thenpa q is a finite sequence
of elements ofD.

Let f be a finite sequence of elements of the instructions ofSCMFSA. The functor Load( f )
yields a finite partial state ofSCMFSA and is defined as follows:

(Def. 1) domLoad( f ) = {insloc(m−′ 1) : m∈ dom f} and for every natural numberk such that
insloc(k) ∈ domLoad( f ) holds(Load( f ))(insloc(k)) = fk+1.

We now state several propositions:

(25)3 For every finite sequencef of elements of the instructions ofSCMFSA holds
cardLoad( f ) = len f .

(26) Let p be a finite sequence of elements of the instructions ofSCMFSA andk be a natural
number. Then insloc(k) ∈ domLoad(p) if and only if k+1∈ domp.

(27) For all natural numbersk, n holdsk < n iff 0 < k+1 andk+1≤ n.

(28) For all natural numbersk, n holdsk < n iff 1 ≤ k+1 andk+1≤ n.

(29) Let p be a finite sequence of elements of the instructions ofSCMFSA andk be a natural
number. Then insloc(k) ∈ domLoad(p) if and only if k < lenp.

(30) For every non empty finite sequencef of elements of the instructions ofSCMFSA holds
1∈ dom f and insloc(0) ∈ domLoad( f ).

(31) For all finite sequencesp, q of elements of the instructions ofSCMFSA holds Load(p) ⊆
Load(pa q).

(32) For all finite sequencesp, q of elements of the instructions ofSCMFSA such thatp⊆ q
holds Load(p)⊆ Load(q).

Let a be an integer location and letk be an integer. The functora:=k yields a finite partial state
of SCMFSA and is defined as follows:

2 The proposition (11) has been removed.
3 The proposition (24) has been removed.
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(Def. 2)(i) There exists a natural numberk1 such thatk1+1= k anda:=k= Load(〈a:= intloc(0)〉a

(k1 7→ AddTo(a, intloc(0)))a 〈haltSCMFSA〉) if k > 0,

(ii) there exists a natural numberk1 such thatk1 + k = 1 anda:=k = Load(〈a:= intloc(0)〉a

(k1 7→ SubFrom(a, intloc(0)))a 〈haltSCMFSA〉), otherwise.

Letabe an integer location and letk be an integer. The functor aSeq(a,k) yields a finite sequence
of elements of the instructions ofSCMFSA and is defined by:

(Def. 3)(i) There exists a natural numberk1 such thatk1+1= k and aSeq(a,k) = 〈a:= intloc(0)〉a

(k1 7→ AddTo(a, intloc(0))) if k > 0,

(ii) there exists a natural numberk1 such thatk1 + k = 1 and aSeq(a,k) = 〈a:= intloc(0)〉a

(k1 7→ SubFrom(a, intloc(0))), otherwise.

The following proposition is true

(33) For every integer locationa and for every integerk holds a:=k = Load((aSeq(a,k)) a

〈haltSCMFSA〉).

Let f be a finite sequence location and letp be a finite sequence of elements ofZ. The functor
aSeq( f , p) yields a finite sequence of elements of the instructions ofSCMFSA and is defined by the
condition (Def. 4).

(Def. 4) There exists a finite sequencep3 of elements of (the instructions ofSCMFSA)∗ such that

(i) lenp3 = lenp,

(ii) for every natural numberk such that 1≤ k andk≤ lenp there exists an integeri such that
i = p(k) andp3(k) = (aSeq(intloc(1),k))a aSeq(intloc(2), i)a 〈 fintloc(1):= intloc(2)〉, and

(iii) aSeq( f , p) = Flat(p3).

Let f be a finite sequence location and letp be a finite sequence of elements ofZ. The functor
f :=p yielding a finite partial state ofSCMFSA is defined by:

(Def. 5) f :=p = Load((aSeq(intloc(1), lenp))a 〈 f :=〈0, . . . ,0︸ ︷︷ ︸
intloc(1)

〉〉a aSeq( f , p)a 〈haltSCMFSA〉).

We now state several propositions:

(34) For every integer locationa holdsa:=1 = Load(〈a:= intloc(0)〉a 〈haltSCMFSA〉).

(35) For every integer locationaholdsa:=0= Load(〈a:= intloc(0)〉a 〈SubFrom(a, intloc(0))〉a

〈haltSCMFSA〉).

(36) Letsbe a state ofSCMFSA. Supposes(intloc(0)) = 1. Let c0 be a natural number. Suppose
ICs = insloc(c0). Let a be an integer location andk be an integer. Supposea 6= intloc(0) and
for every natural numbercsuch thatc∈ domaSeq(a,k) holds(aSeq(a,k))(c) = s(insloc((c0+
c)−′ 1)). Then

(i) for every natural numberi such that i ≤ lenaSeq(a,k) holds IC (Computation(s))(i) =
insloc(c0+ i) and for every integer locationb such thatb 6= a holds(Computation(s))(i)(b) =
s(b) and for every finite sequence locationf holds(Computation(s))(i)( f ) = s( f ), and

(ii) (Computation(s))(lenaSeq(a,k))(a) = k.

(37) Let s be a state ofSCMFSA. SupposeICs = insloc(0) ands(intloc(0)) = 1. Let a be an
integer location andk be an integer. Suppose Load(aSeq(a,k))⊆ s anda 6= intloc(0). Then

(i) for every natural numberi such thati ≤ lenaSeq(a,k) holdsIC (Computation(s))(i) = insloc(i)
and for every integer locationb such thatb 6= a holds(Computation(s))(i)(b) = s(b) and for
every finite sequence locationf holds(Computation(s))(i)( f ) = s( f ), and

(ii) (Computation(s))(lenaSeq(a,k))(a) = k.
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(38) Let s be a state ofSCMFSA. SupposeICs = insloc(0) ands(intloc(0)) = 1. Let a be an
integer location andk be an integer. Supposea:=k⊆ s anda 6= intloc(0). Then

(i) s is halting,

(ii) (Result(s))(a) = k,

(iii) for every integer locationb such thatb 6= a holds(Result(s))(b) = s(b), and

(iv) for every finite sequence locationf holds(Result(s))( f ) = s( f ).

(39) Letsbe a state ofSCMFSA. SupposeIC s = insloc(0) ands(intloc(0)) = 1. Let f be a finite
sequence location andp be a finite sequence of elements ofZ. Supposef :=p⊆ s. Then

(i) s is halting,

(ii) (Result(s))( f ) = p,

(iii) for every integer locationbsuch thatb 6= intloc(1) andb 6= intloc(2) holds(Result(s))(b)=
s(b), and

(iv) for every finite sequence locationg such thatg 6= f holds(Result(s))(g) = s(g).
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