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1. PRELIMINARIES

One can prove the following propositions:

(3)1 Let N be a set with non empty elements,Sbe a non void AMI overN, ands be a state of
S. Then the instruction locations ofS⊆ doms.

(4) LetN be a set with non empty elements,Sbe an IC-Ins-separated non void non empty AMI
overN, ands be a state ofS. ThenICs∈ doms.

(5) Let N be a set with non empty elements,S be a non empty non void AMI overN, s be a
state ofS, andl be an instruction-location ofS. Thenl ∈ doms.

2. THE SCMFSA COMPUTER

The strict AMISCMFSA over{Z,Z∗} is defined as follows:

(Def. 1) SCMFSA = 〈Z,0(∈ Z), Instr-LocSCMFSA,Z13, InstrSCMFSA,OKSCMFSA,ExecSCMFSA〉.

Let us observe thatSCMFSA is non empty and non void.
Next we state two propositions:

(6)(i) The instruction locations ofSCMFSA 6= Z,

(ii) the instructions ofSCMFSA 6= Z,

(iii) the instruction locations ofSCMFSA 6= the instructions ofSCMFSA,

(iv) the instruction locations ofSCMFSA 6= Z∗, and

(v) the instructions ofSCMFSA 6= Z∗.

(7) ICSCMFSA = 0.

1 The propositions (1) and (2) have been removed.

1 c© Association of Mizar Users
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3. THE MEMORY STRUCTURE

In the sequelk is a natural number.
The subset Int-Locations ofSCMFSA is defined as follows:

(Def. 2) Int-Locations= Data-LocSCMFSA.

The subset FinSeq-Locations ofSCMFSA is defined by:

(Def. 3) FinSeq-Locations= Data∗-LocSCMFSA.

We now state the proposition

(8) The carrier ofSCMFSA = Int-Locations∪FinSeq-Locations∪{ICSCMFSA}∪ the instruction
locations ofSCMFSA.

An object ofSCMFSA is called an integer location if:

(Def. 4) It∈ Data-LocSCMFSA.

An object ofSCMFSA is called a finite sequence location if:

(Def. 5) It∈ Data∗-LocSCMFSA.

In the sequeld1 denotes an integer location,f1 denotes a finite sequence location, andx denotes
a set.

The following propositions are true:

(9) d1 ∈ Int-Locations.

(10) f1 ∈ FinSeq-Locations.

(11) If x∈ Int-Locations, thenx is an integer location.

(12) If x∈ FinSeq-Locations, thenx is a finite sequence location.

(13) Int-Locations misses the instruction locations ofSCMFSA.

(14) FinSeq-Locations misses the instruction locations ofSCMFSA.

(15) Int-Locations misses FinSeq-Locations.

Let k be a natural number. The functor intloc(k) yields an integer location and is defined by:

(Def. 6) intloc(k) = dk.

The functor insloc(k) yields an instruction-location ofSCMFSA and is defined as follows:

(Def. 7) insloc(k) = ik.

The functor fsloc(k) yielding a finite sequence location is defined by:

(Def. 8) fsloc(k) =−(k+1).

We now state a number of propositions:

(16) For all natural numbersk1, k2 such thatk1 6= k2 holds intloc(k1) 6= intloc(k2).

(17) For all natural numbersk1, k2 such thatk1 6= k2 holds fsloc(k1) 6= fsloc(k2).

(18) For all natural numbersk1, k2 such thatk1 6= k2 holds insloc(k1) 6= insloc(k2).

(19) For every integer locationd2 there exists a natural numberi such thatd2 = intloc(i).

(20) For every finite sequence locationf2 there exists a natural numberi such thatf2 = fsloc(i).
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(21) For every instruction-locationi1 of SCMFSA there exists a natural numberi such thati1 =
insloc(i).

(22) Int-Locations is infinite.

(23) FinSeq-Locations is infinite.

(24) The instruction locations ofSCMFSA are infinite.

(25) Every integer location is a data-location.

(26) For every integer locationl holds ObjectKind(l) = Z.

(27) For every finite sequence locationl holds ObjectKind(l) = Z∗.

(28) For every setx such thatx∈ Data-LocSCMFSA holdsx is an integer location.

(29) For every setx such thatx∈ Data∗-LocSCMFSA holdsx is a finite sequence location.

(30) For every setx such thatx∈ Instr-LocSCMFSA holdsx is an instruction-location ofSCMFSA.

Let l1 be an instruction-location ofSCMFSA. The functor Next(l1) yields an instruction-location
of SCMFSA and is defined as follows:

(Def. 9) There exists an elementm1 of Instr-LocSCMFSA such thatm1 = l1 and Next(l1) = Next(m1).

We now state two propositions:

(31) For every instruction-locationl1 of SCMFSA and for every elementm1 of Instr-LocSCMFSA

such thatm1 = l1 holds Next(m1) = Next(l1).

(32) For every natural numberk holds Next(insloc(k)) = insloc(k+1).

For simplicity, we follow the rules:l2, l3 are instruction-locations ofSCMFSA, L1 is an instruction-
location ofSCM, i is an instruction ofSCMFSA, I is an instruction ofSCM, l is an instruction-
location ofSCMFSA, f , g are finite sequence locations,A, B are data-locations, anda, b, c, d3 are
integer locations.

The following proposition is true

(33) If l2 = L1, then Next(l2) = Next(L1).

4. THE INSTRUCTIONSTRUCTURE

Let I be an instruction ofSCMFSA. One can check that InsCode(I) is natural.
Next we state four propositions:

(34) For every instructionI of SCMFSA such that InsCode(I) ≤ 8 holdsI is an instruction of
SCM.

(35) For every instructionI of SCMFSA holds InsCode(I)≤ 12.

(37)2 For every instructioni of SCMFSA and for every instructionI of SCM such thati = I holds
InsCode(i) = InsCode(I).

(38) Every instruction ofSCM is an instruction ofSCMFSA.

Let us considera, b. The functora:=b yields an instruction ofSCMFSA and is defined by:

(Def. 11)3 There existA, B such thata = A andb = B anda:=b = A:=B.

The functor AddTo(a,b) yielding an instruction ofSCMFSA is defined by:

2 The proposition (36) has been removed.
3 The definition (Def. 10) has been removed.



THE scmfsa COMPUTER 4

(Def. 12) There existA, B such thata = A andb = B and AddTo(a,b) = AddTo(A,B).

The functor SubFrom(a,b) yields an instruction ofSCMFSA and is defined as follows:

(Def. 13) There existA, B such thata = A andb = B and SubFrom(a,b) = SubFrom(A,B).

The functor MultBy(a,b) yielding an instruction ofSCMFSA is defined by:

(Def. 14) There existA, B such thata = A andb = B and MultBy(a,b) = MultBy(A,B).

The functor Divide(a,b) yields an instruction ofSCMFSA and is defined by:

(Def. 15) There existA, B such thata = A andb = B and Divide(a,b) = Divide(A,B).

Next we state the proposition

(39) The instruction locations ofSCM = the instruction locations ofSCMFSA.

Let us considerl2. The functor gotol2 yielding an instruction ofSCMFSA is defined as follows:

(Def. 16) There existsL1 such thatl2 = L1 and gotol2 = gotoL1.

Let us considera. The functorif a = 0 goto l2 yields an instruction ofSCMFSA and is defined as
follows:

(Def. 17) There existA, L1 such thata = A andl2 = L1 andif a = 0 goto l2 = if A = 0 gotoL1.

The functorif a > 0 goto l2 yields an instruction ofSCMFSA and is defined by:

(Def. 18) There existA, L1 such thata = A andl2 = L1 andif a > 0 goto l2 = if A > 0 gotoL1.

Let c, i be integer locations and leta be a finite sequence location. The functorc:=ai yielding
an instruction ofSCMFSA is defined by:

(Def. 19) c:=ai = 〈〈9, 〈c,a, i〉〉〉.

The functorai :=c yielding an instruction ofSCMFSA is defined as follows:

(Def. 20) ai :=c = 〈〈10, 〈c,a, i〉〉〉.

Let i be an integer location and leta be a finite sequence location. The functori:=lena yields an
instruction ofSCMFSA and is defined as follows:

(Def. 21) i:=lena = 〈〈11, 〈i,a〉〉〉.

The functora:=〈0, . . . ,0︸ ︷︷ ︸
i

〉 yielding an instruction ofSCMFSA is defined by:

(Def. 22) a:=〈0, . . . ,0︸ ︷︷ ︸
i

〉= 〈〈12, 〈i,a〉〉〉.

Next we state a number of propositions:

(42)4 InsCode(a:=b) = 1.

(43) InsCode(AddTo(a,b)) = 2.

(44) InsCode(SubFrom(a,b)) = 3.

(45) InsCode(MultBy(a,b)) = 4.

(46) InsCode(Divide(a,b)) = 5.

(47) InsCode(goto l3) = 6.

4 The propositions (40) and (41) have been removed.
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(48) InsCode(if a = 0 goto l3) = 7.

(49) InsCode(if a > 0 goto l3) = 8.

(50) InsCode(c:= f1a) = 9.

(51) InsCode( f1a:=c) = 10.

(52) InsCode(a:=lenf1) = 11.

(53) InsCode( f1:=〈0, . . . ,0︸ ︷︷ ︸
a

〉) = 12.

(54) For every instructioni2 of SCMFSA such that InsCode(i2) = 1 there existd1, d3 such that
i2 = d1:=d3.

(55) For every instructioni2 of SCMFSA such that InsCode(i2) = 2 there existd1, d3 such that
i2 = AddTo(d1,d3).

(56) For every instructioni2 of SCMFSA such that InsCode(i2) = 3 there existd1, d3 such that
i2 = SubFrom(d1,d3).

(57) For every instructioni2 of SCMFSA such that InsCode(i2) = 4 there existd1, d3 such that
i2 = MultBy(d1,d3).

(58) For every instructioni2 of SCMFSA such that InsCode(i2) = 5 there existd1, d3 such that
i2 = Divide(d1,d3).

(59) For every instructioni2 of SCMFSA such that InsCode(i2) = 6 there existsl3 such that
i2 = goto l3.

(60) For every instructioni2 of SCMFSA such that InsCode(i2) = 7 there existl3, d1 such that
i2 = if d1 = 0 goto l3.

(61) For every instructioni2 of SCMFSA such that InsCode(i2) = 8 there existl3, d1 such that
i2 = if d1 > 0 goto l3.

(62) For every instructioni2 of SCMFSA such that InsCode(i2) = 9 there exista, b, f1 such that
i2 = b:= f1a.

(63) For every instructioni2 of SCMFSA such that InsCode(i2) = 10 there exista, b, f1 such
that i2 = f1a:=b.

(64) For every instructioni2 of SCMFSA such that InsCode(i2) = 11 there exista, f1 such that
i2 = a:=lenf1.

(65) For every instructioni2 of SCMFSA such that InsCode(i2) = 12 there exista, f1 such that
i2 = f1:=〈0, . . . ,0︸ ︷︷ ︸

a

〉.

5. RELATIONSHIP TO SCM

In the sequelS is a state ofSCM ands, s1 are states ofSCMFSA.
One can prove the following propositions:

(66) For every states of SCMFSA and for every integer locationd holdsd ∈ doms.

(67) f ∈ doms.

(68) f /∈ domS.

(69) For every states of SCMFSA holds Int-Locations⊆ doms.
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(70) For every states of SCMFSA holds FinSeq-Locations⊆ doms.

(71) For every states of SCMFSA holds dom(s� Int-Locations) = Int-Locations.

(72) For every states of SCMFSA holds dom(s�FinSeq-Locations) = FinSeq-Locations.

(73) For every states of SCMFSA and for every instruction i of SCM holds
s�N+·(Instr-LocSCM 7−→ i) is a state ofSCM.

(74) For every statesof SCMFSA and for every states′ of SCM holdss+·s′+·s�Instr-LocSCMFSA

is a state ofSCMFSA.

(75) Let i be an instruction ofSCM, i3 be an instruction ofSCMFSA, s be a state ofSCM, and
s2 be a state ofSCMFSA. If i = i3 ands= s2�N+·(Instr-LocSCM 7−→ i), then Exec(i3,s2) =
s2+·Exec(i,s)+·s2�Instr-LocSCMFSA.

Let s be a state ofSCMFSA and letd be an integer location. Thens(d) is an integer.
Let sbe a state ofSCMFSA and letd be a finite sequence location. Thens(d) is a finite sequence

of elements ofZ.
We now state several propositions:

(76) If S= s�N+·(Instr-LocSCM 7−→ I), thens= s+·S+·s�Instr-LocSCMFSA.

(77) For every elementI of InstrSCMFSA such thatI = i and for everySCMFSA-stateSsuch that
S= s holds Exec(i,s) = Exec-ResSCMFSA(I ,S).

(78) If s1 = s+·S+·s�Instr-LocSCMFSA, thens1(ICSCMFSA) = S(ICSCM).

(79) If s1 = s+·S+·s�Instr-LocSCMFSA andA = a, thenS(A) = s1(a).

(80) If S= s�N+·(Instr-LocSCM 7−→ I) andA = a, thenS(A) = s(a).

Let us mention thatSCMFSA is realistic, IC-Ins-separated, data-oriented, definite, and steady-
programmed.

We now state several propositions:

(81) For every integer locationd2 holdsd2 6= ICSCMFSA.

(82) For every finite sequence locationd2 holdsd2 6= ICSCMFSA.

(83) For every integer locationi1 and for every finite sequence locationd2 holdsi1 6= d2.

(84) For every instruction-locationi1 of SCMFSA and for every integer locationd2 holdsi1 6= d2.

(85) For every instruction-locationi1 of SCMFSA and for every finite sequence locationd2 holds
i1 6= d2.

(86) Lets1, s3 be states ofSCMFSA. Suppose that

(i) IC (s1) = IC (s3),

(ii) for every integer locationa holdss1(a) = s3(a),

(iii) for every finite sequence locationf holdss1( f ) = s3( f ), and

(iv) for every instruction-locationi of SCMFSA holdss1(i) = s3(i).

Thens1 = s3.

(88)5 If S= s�N+·(Instr-LocSCM 7−→ I), thenIC s = ICS.

5 The proposition (87) has been removed.
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6. USERSGUIDE

One can prove the following propositions:

(89) (Exec(a:=b,s))(ICSCMFSA) = Next(ICs) and (Exec(a:=b,s))(a) = s(b) and for everyc
such thatc 6= a holds(Exec(a:=b,s))(c) = s(c) and for everyf holds(Exec(a:=b,s))( f ) =
s( f ).

(90) (Exec(AddTo(a,b),s))(ICSCMFSA) = Next(ICs) and (Exec(AddTo(a,b),s))(a) = s(a) +
s(b) and for everyc such thatc 6= a holds(Exec(AddTo(a,b),s))(c) = s(c) and for everyf
holds(Exec(AddTo(a,b),s))( f ) = s( f ).

(91) (Exec(SubFrom(a,b),s))(ICSCMFSA) = Next(ICs) and (Exec(SubFrom(a,b),s))(a) =
s(a)− s(b) and for everyc such thatc 6= a holds (Exec(SubFrom(a,b),s))(c) = s(c) and
for every f holds(Exec(SubFrom(a,b),s))( f ) = s( f ).

(92) (Exec(MultBy(a,b),s))(ICSCMFSA) = Next(ICs) and(Exec(MultBy(a,b),s))(a) = s(a) ·
s(b) and for everyc such thatc 6= a holds(Exec(MultBy(a,b),s))(c) = s(c) and for everyf
holds(Exec(MultBy(a,b),s))( f ) = s( f ).

(93)(i) (Exec(Divide(a,b),s))(ICSCMFSA) = Next(ICs),

(ii) if a 6= b, then(Exec(Divide(a,b),s))(a) = s(a)÷s(b),

(iii) (Exec(Divide(a,b),s))(b) = s(a)mods(b),

(iv) for everyc such thatc 6= a andc 6= b holds(Exec(Divide(a,b),s))(c) = s(c), and

(v) for every f holds(Exec(Divide(a,b),s))( f ) = s( f ).

(94) (Exec(Divide(a,a),s))(ICSCMFSA) = Next(ICs) and(Exec(Divide(a,a),s))(a) = s(a)mod
s(a) and for everyc such thatc 6= a holds(Exec(Divide(a,a),s))(c) = s(c) and for everyf
holds(Exec(Divide(a,a),s))( f ) = s( f ).

(95) (Exec(goto l ,s))(ICSCMFSA) = l and for everyc holds(Exec(goto l ,s))(c) = s(c) and for
every f holds(Exec(goto l ,s))( f ) = s( f ).

(96)(i) If s(a) = 0, then(Exec(if a = 0 goto l ,s))(ICSCMFSA) = l ,

(ii) if s(a) 6= 0, then(Exec(if a = 0 goto l ,s))(ICSCMFSA) = Next(ICs),

(iii) for every c holds(Exec(if a = 0 goto l ,s))(c) = s(c), and

(iv) for every f holds(Exec(if a = 0 goto l ,s))( f ) = s( f ).

(97)(i) If s(a) > 0, then(Exec(if a > 0 goto l ,s))(ICSCMFSA) = l ,

(ii) if s(a)≤ 0, then(Exec(if a > 0 goto l ,s))(ICSCMFSA) = Next(ICs),

(iii) for every c holds(Exec(if a > 0 goto l ,s))(c) = s(c), and

(iv) for every f holds(Exec(if a > 0 goto l ,s))( f ) = s( f ).

(98)(i) (Exec(c:=ga,s))(ICSCMFSA) = Next(IC s),

(ii) there existsk such thatk = |s(a)| and(Exec(c:=ga,s))(c) = s(g)k,

(iii) for every b such thatb 6= c holds(Exec(c:=ga,s))(b) = s(b), and

(iv) for every f holds(Exec(c:=ga,s))( f ) = s( f ).

(99)(i) (Exec(ga:=c,s))(ICSCMFSA) = Next(IC s),

(ii) there existsk such thatk = |s(a)| and(Exec(ga:=c,s))(g) = s(g)+· (k,s(c)),
(iii) for every b holds(Exec(ga:=c,s))(b) = s(b), and

(iv) for every f such thatf 6= g holds(Exec(ga:=c,s))( f ) = s( f ).
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(100) (Exec(c:=leng,s))(ICSCMFSA) = Next(IC s) and(Exec(c:=leng,s))(c) = lens(g) and for
every b such that b 6= c holds (Exec(c:=leng,s))(b) = s(b) and for every f holds
(Exec(c:=leng,s))( f ) = s( f ).

(101)(i) (Exec(g:=〈0, . . . ,0︸ ︷︷ ︸
c

〉,s))(ICSCMFSA) = Next(ICs),

(ii) there existsk such thatk = |s(c)| and(Exec(g:=〈0, . . . ,0︸ ︷︷ ︸
c

〉,s))(g) = k 7→ 0,

(iii) for every b holds(Exec(g:=〈0, . . . ,0︸ ︷︷ ︸
c

〉,s))(b) = s(b), and

(iv) for every f such thatf 6= g holds(Exec(g:=〈0, . . . ,0︸ ︷︷ ︸
c

〉,s))( f ) = s( f ).

7. HALT INSTRUCTION

The following propositions are true:

(102) For everySCMFSA-stateSsuch thatS= s holdsIC s = ICS.

(103) For every instructioni of SCM and for every instructionI of SCMFSA such thati = I andi
is halting holdsI is halting.

(104) For every instructionI of SCMFSA such that there existsssuch that(Exec(I ,s))(ICSCMFSA)=
Next(IC s) holdsI is non halting.

(105) a:=b is non halting.

(106) AddTo(a,b) is non halting.

(107) SubFrom(a,b) is non halting.

(108) MultBy(a,b) is non halting.

(109) Divide(a,b) is non halting.

(110) gotol2 is non halting.

(111) if a = 0 goto l2 is non halting.

(112) if a > 0 goto l2 is non halting.

(113) c:= fa is non halting.

(114) fa:=c is non halting.

(115) c:=lenf is non halting.

(116) f :=〈0, . . . ,0︸ ︷︷ ︸
c

〉 is non halting.

(117) 〈〈0, /0〉〉 is an instruction ofSCMFSA.

(118) For every instructionI of SCMFSA such thatI = 〈〈0, /0〉〉 holdsI is halting.

(119) For every instructionI of SCMFSA such that InsCode(I) = 0 holdsI = 〈〈0, /0〉〉.
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(120) Let I be a set. ThenI is an instruction ofSCMFSA if and only if one of the following
conditions is satisfied:

I = 〈〈0, /0〉〉 or there exista, b such thatI = a:=b or there exista, b such thatI = AddTo(a,b)
or there exista, b such thatI = SubFrom(a,b) or there exista, b such thatI = MultBy(a,b)
or there exista, b such thatI = Divide(a,b) or there existsl2 such thatI = goto l2 or there
exist l3, d1 such thatI = if d1 = 0 goto l3 or there existl3, d1 such thatI = if d1 > 0 goto l3
or there existb, a, f1 such thatI = a:= f1b or there exista, b, f1 such thatI = f1a:=b or there
exista, f such thatI = a:=lenf or there exista, f such thatI = f :=〈0, . . . ,0︸ ︷︷ ︸

a

〉.

Let us mention thatSCMFSA is halting.
One can prove the following propositions:

(121) For every instructionI of SCMFSA such thatI is halting holdsI = haltSCMFSA.

(122) For every instructionI of SCMFSA such that InsCode(I) = 0 holdsI = haltSCMFSA.

(123) haltSCM = haltSCMFSA.

(124) InsCode(haltSCMFSA) = 0.

(125) For every instructioni of SCM and for every instructionI of SCMFSA such thati = I andi
is non halting holdsI is non halting.

REFERENCES

[1] Grzegorz Bancerek. The ordinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/ordinal1.
html.

[2] Grzegorz Bancerek. Sequences of ordinal numbers.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
ordinal2.html.

[3] Grzegorz Bancerek. K̈onig’s theorem.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/card_3.html.

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.Journal of Formalized Mathematics,
1, 1989.http://mizar.org/JFM/Vol1/finseq_1.html.

[5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions.Journal of Formalized Mathematics, 8, 1996.http:
//mizar.org/JFM/Vol8/funct_7.html.
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