The SCM_{FSA} Computer

Andrzej Trybulec Warsaw University Białystok Yatsuka Nakamura Shinshu University Nagano

Piotr Rudnicki University of Alberta Edmonton

MML Identifier: SCMFSA_2.

WWW: http://mizar.org/JFM/Vol8/scmfsa_2.html

The articles [18], [25], [1], [2], [20], [23], [26], [19], [3], [14], [4], [8], [15], [6], [17], [7], [11], [10], [9], [24], [5], [12], [13], [21], [16], and [22] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following propositions:

- (3)¹ Let N be a set with non empty elements, S be a non void AMI over N, and s be a state of S. Then the instruction locations of $S \subseteq \text{dom } s$.
- (4) Let N be a set with non empty elements, S be an IC-Ins-separated non void non empty AMI over N, and S be a state of S. Then $\mathbf{IC}_S \in \text{dom } S$.
- (5) Let N be a set with non empty elements, S be a non empty non void AMI over N, s be a state of S, and l be an instruction-location of S. Then $l \in \text{dom } s$.

2. The **SCM**_{FSA} Computer

The strict AMI **SCM**_{FSA} over $\{\mathbb{Z}, \mathbb{Z}^*\}$ is defined as follows:

 $(Def.\ 1) \quad \textbf{SCM}_{FSA} = \langle \mathbb{Z}, 0 (\in \mathbb{Z}), Instr-Loc_{SCM_{FSA}}, \mathbb{Z}_{13}, Instr_{SCM_{FSA}}, OK_{SCM_{FSA}}, Exec_{SCM_{FSA}} \rangle.$

Let us observe that \mathbf{SCM}_{FSA} is non empty and non void. Next we state two propositions:

- (6)(i) The instruction locations of $SCM_{FSA} \neq \mathbb{Z}$,
- (ii) the instructions of $SCM_{FSA} \neq \mathbb{Z}$,
- (iii) the instruction locations of $SCM_{FSA} \neq the$ instructions of SCM_{FSA} ,
- (iv) the instruction locations of $SCM_{FSA} \neq \mathbb{Z}^*$, and
- (v) the instructions of $SCM_{FSA} \neq \mathbb{Z}^*$.
- (7) $\mathbf{IC}_{\mathbf{SCM}_{FSA}} = 0.$

1

¹ The propositions (1) and (2) have been removed.

3. The Memory Structure

In the sequel *k* is a natural number.

The subset Int-Locations of SCM_{FSA} is defined as follows:

(Def. 2) Int-Locations = Data-Loc_{SCM_{ESA}}.

The subset FinSeq-Locations of SCM_{FSA} is defined by:

(Def. 3) $FinSeq-Locations = Data^*-Loc_{SCM_{FSA}}$.

We now state the proposition

(8) The carrier of $\mathbf{SCM}_{FSA} = Int\text{-Locations} \cup FinSeq\text{-Locations} \cup \{\mathbf{IC}_{\mathbf{SCM}_{FSA}}\} \cup the instruction locations of <math>\mathbf{SCM}_{FSA}$.

An object of **SCM**_{FSA} is called an integer location if:

(Def. 4) It \in Data-Loc_{SCM_{FSA}}.

An object of SCM_{FSA} is called a finite sequence location if:

(Def. 5) It \in Data*-Loc_{SCMFSA}.

In the sequel d_1 denotes an integer location, f_1 denotes a finite sequence location, and x denotes a set.

The following propositions are true:

- (9) $d_1 \in \text{Int-Locations}$.
- (10) $f_1 \in \text{FinSeq-Locations}$.
- (11) If $x \in$ Int-Locations, then x is an integer location.
- (12) If $x \in \text{FinSeq-Locations}$, then x is a finite sequence location.
- (13) Int-Locations misses the instruction locations of **SCM**_{FSA}.
- (14) FinSeq-Locations misses the instruction locations of SCM_{FSA}.
- (15) Int-Locations misses FinSeq-Locations.

Let k be a natural number. The functor intloc(k) yields an integer location and is defined by:

(Def. 6) intloc(k) = \mathbf{d}_k .

The functor insloc(k) yields an instruction-location of **SCM**_{FSA} and is defined as follows:

(Def. 7) $\operatorname{insloc}(k) = \mathbf{i}_k$.

The functor fsloc(k) yielding a finite sequence location is defined by:

(Def. 8) fsloc(k) = -(k+1).

We now state a number of propositions:

- (16) For all natural numbers k_1 , k_2 such that $k_1 \neq k_2$ holds $intloc(k_1) \neq intloc(k_2)$.
- (17) For all natural numbers k_1 , k_2 such that $k_1 \neq k_2$ holds $fsloc(k_1) \neq fsloc(k_2)$.
- (18) For all natural numbers k_1 , k_2 such that $k_1 \neq k_2$ holds $\operatorname{insloc}(k_1) \neq \operatorname{insloc}(k_2)$.
- (19) For every integer location d_2 there exists a natural number i such that $d_2 = \operatorname{intloc}(i)$.
- (20) For every finite sequence location f_2 there exists a natural number i such that $f_2 = \text{fsloc}(i)$.

- (21) For every instruction-location i_1 of **SCM**_{FSA} there exists a natural number i such that $i_1 = \operatorname{insloc}(i)$.
- (22) Int-Locations is infinite.
- (23) FinSeq-Locations is infinite.
- (24) The instruction locations of **SCM**_{FSA} are infinite.
- (25) Every integer location is a data-location.
- (26) For every integer location l holds ObjectKind $(l) = \mathbb{Z}$.
- (27) For every finite sequence location l holds ObjectKind $(l) = \mathbb{Z}^*$.
- (28) For every set x such that $x \in \text{Data-Loc}_{\text{SCM}_{\text{FSA}}}$ holds x is an integer location.
- (29) For every set x such that $x \in \text{Data}^*\text{-Loc}_{\text{SCM}_{\text{FSA}}}$ holds x is a finite sequence location.
- (30) For every set x such that $x \in \text{Instr-Loc}_{SCM_{FSA}}$ holds x is an instruction-location of SCM_{FSA} .

Let l_1 be an instruction-location of \mathbf{SCM}_{FSA} . The functor $Next(l_1)$ yields an instruction-location of \mathbf{SCM}_{FSA} and is defined as follows:

(Def. 9) There exists an element m_1 of Instr-Loc_{SCMFSA} such that $m_1 = l_1$ and Next $(l_1) = \text{Next}(m_1)$. We now state two propositions:

- (31) For every instruction-location l_1 of \mathbf{SCM}_{FSA} and for every element m_1 of Instr-Loc_{SCM_{FSA}} such that $m_1 = l_1$ holds $\operatorname{Next}(m_1) = \operatorname{Next}(l_1)$.
- (32) For every natural number k holds Next(insloc(k)) = insloc(k+1).

For simplicity, we follow the rules: l_2 , l_3 are instruction-locations of \mathbf{SCM}_{FSA} , L_1 is an instruction-location of \mathbf{SCM} , i is an instruction of \mathbf{SCM}_{FSA} , I is an instruction of \mathbf{SCM}_{FSA} , f, g are finite sequence locations, A, B are data-locations, and a, b, c, d_3 are integer locations.

The following proposition is true

(33) If $l_2 = L_1$, then $Next(l_2) = Next(L_1)$.

4. The Instruction Structure

Let I be an instruction of \mathbf{SCM}_{FSA} . One can check that InsCode(I) is natural. Next we state four propositions:

- (34) For every instruction I of \mathbf{SCM}_{FSA} such that $\mathsf{InsCode}(I) \leq 8$ holds I is an instruction of \mathbf{SCM}
- (35) For every instruction *I* of SCM_{FSA} holds $InsCode(I) \le 12$.
- (37)² For every instruction i of **SCM**_{FSA} and for every instruction I of **SCM** such that i = I holds InsCode(i) = InsCode(I).
- (38) Every instruction of **SCM** is an instruction of **SCM**_{FSA}.

Let us consider a, b. The functor a := b yields an instruction of \mathbf{SCM}_{FSA} and is defined by:

(Def. 11)³ There exist A, B such that a = A and b = B and a := b = A := B.

The functor AddTo(a,b) yielding an instruction of SCM_{FSA} is defined by:

² The proposition (36) has been removed.

³ The definition (Def. 10) has been removed.

- (Def. 12) There exist A, B such that a = A and b = B and AddTo(a, b) = AddTo(A, B). The functor SubFrom(a, b) yields an instruction of SCM_{FSA} and is defined as follows:
- (Def. 13) There exist A, B such that a = A and b = B and SubFrom(a,b) = SubFrom(A,B). The functor MultBy(a,b) yielding an instruction of SCM_{FSA} is defined by:
- (Def. 14) There exist A, B such that a = A and b = B and MultBy(a,b) = MultBy(A,B). The functor Divide(a,b) yields an instruction of \mathbf{SCM}_{FSA} and is defined by:
- (Def. 15) There exist A, B such that a = A and b = B and Divide(a,b) = Divide(A,B). Next we state the proposition
 - (39) The instruction locations of \mathbf{SCM} = the instruction locations of \mathbf{SCM}_{FSA} . Let us consider l_2 . The functor goto l_2 yielding an instruction of \mathbf{SCM}_{FSA} is defined as follows:
- (Def. 16) There exists L_1 such that $l_2 = L_1$ and goto $l_2 = \text{goto } L_1$. Let us consider a. The functor **if** a = 0 **goto** l_2 yields an instruction of **SCM**_{FSA} and is defined as follows:
- (Def. 17) There exist A, L_1 such that a = A and $l_2 = L_1$ and **if** a = 0 **goto** $l_2 =$ **if** A = 0 **goto** L_1 . The functor **if** a > 0 **goto** l_2 yields an instruction of **SCM**_{FSA} and is defined by:
- (Def. 18) There exist A, L_1 such that a = A and $l_2 = L_1$ and **if** a > 0 **goto** $l_2 =$ **if** A > 0 **goto** L_1 . Let c, i be integer locations and let a be a finite sequence location. The functor $c := a_i$ yielding an instruction of **SCM**_{FSA} is defined by:
- (Def. 19) $c:=a_i = \langle 9, \langle c, a, i \rangle \rangle$.

The functor $a_i := c$ yielding an instruction of **SCM**_{FSA} is defined as follows:

(Def. 20)
$$a_i := c = \langle 10, \langle c, a, i \rangle \rangle$$
.

Let i be an integer location and let a be a finite sequence location. The functor i:=lena yields an instruction of $\mathbf{SCM}_{\mathrm{FSA}}$ and is defined as follows:

(Def. 21)
$$i := \text{len} a = \langle 11, \langle i, a \rangle \rangle$$
.

The functor $a := \langle \underbrace{0, \dots, 0}_{:} \rangle$ yielding an instruction of **SCM**_{FSA} is defined by:

(Def. 22)
$$a := \langle \underbrace{0, \dots, 0} \rangle = \langle 12, \langle i, a \rangle \rangle.$$

Next we state a number of propositions:

- $(42)^4$ InsCode(a := b) = 1.
- (43) InsCode(AddTo(a,b)) = 2.
- (44) $\operatorname{InsCode}(\operatorname{SubFrom}(a, b)) = 3.$
- (45) InsCode(MultBy(a,b)) = 4.
- (46) InsCode(Divide(a,b)) = 5.
- (47) InsCode(goto l_3) = 6.

⁴ The propositions (40) and (41) have been removed.

- (48) InsCode(**if** a = 0 **goto** l_3) = 7.
- (49) InsCode(**if** a > 0 **goto** l_3) = 8.
- (50) InsCode($c := f_{1a}$) = 9.
- (51) InsCode(f_{1a} :=c) = 10.
- (52) InsCode($a := len f_1$) = 11.
- (53) InsCode $(f_1 := \langle \underbrace{0, \dots, 0}_{a} \rangle) = 12.$
- (54) For every instruction i_2 of \mathbf{SCM}_{FSA} such that $InsCode(i_2) = 1$ there exist d_1 , d_3 such that $i_2 = d_1 := d_3$.
- (55) For every instruction i_2 of **SCM**_{FSA} such that InsCode $(i_2) = 2$ there exist d_1 , d_3 such that $i_2 = \text{AddTo}(d_1, d_3)$.
- (56) For every instruction i_2 of SCM_{FSA} such that $InsCode(i_2) = 3$ there exist d_1 , d_3 such that $i_2 = SubFrom(d_1, d_3)$.
- (57) For every instruction i_2 of SCM_{FSA} such that $InsCode(i_2) = 4$ there exist d_1 , d_3 such that $i_2 = MultBy(d_1, d_3)$.
- (58) For every instruction i_2 of SCM_{FSA} such that $InsCode(i_2) = 5$ there exist d_1 , d_3 such that $i_2 = Divide(d_1, d_3)$.
- (59) For every instruction i_2 of \mathbf{SCM}_{FSA} such that $InsCode(i_2) = 6$ there exists l_3 such that $i_2 = goto \ l_3$.
- (60) For every instruction i_2 of \mathbf{SCM}_{FSA} such that $InsCode(i_2) = 7$ there exist l_3 , d_1 such that $i_2 = \mathbf{if} \ d_1 = 0$ goto l_3 .
- (61) For every instruction i_2 of \mathbf{SCM}_{FSA} such that $InsCode(i_2) = 8$ there exist l_3 , d_1 such that $i_2 = \mathbf{if} \ d_1 > 0$ **goto** l_3 .
- (62) For every instruction i_2 of **SCM**_{FSA} such that InsCode(i_2) = 9 there exist a, b, f_1 such that $i_2 = b := f_{1a}$.
- (63) For every instruction i_2 of **SCM**_{FSA} such that InsCode $(i_2) = 10$ there exist a, b, f_1 such that $i_2 = f_{1a} := b$.
- (64) For every instruction i_2 of \mathbf{SCM}_{FSA} such that $InsCode(i_2) = 11$ there exist a, f_1 such that $i_2 = a := len f_1$.
- (65) For every instruction i_2 of \mathbf{SCM}_{FSA} such that $InsCode(i_2) = 12$ there exist a, f_1 such that $i_2 = f_1 := \langle 0, \dots, 0 \rangle$.

5. RELATIONSHIP TO **SCM**

In the sequel S is a state of **SCM** and s, s_1 are states of **SCM**_{FSA}. One can prove the following propositions:

- (66) For every state s of SCM_{FSA} and for every integer location d holds $d \in dom s$.
- (67) $f \in \text{dom } s$.
- (68) $f \notin \text{dom } S$.
- (69) For every state *s* of **SCM**_{FSA} holds Int-Locations \subseteq dom *s*.

- (70) For every state s of SCM_{FSA} holds FinSeq-Locations $\subseteq dom s$.
- (71) For every state *s* of SCM_{FSA} holds $dom(s \mid Int-Locations) = Int-Locations$.
- (72) For every state s of SCM_{FSA} holds dom(s | FinSeq-Locations) = FinSeq-Locations.
- (73) For every state s of \mathbf{SCM}_{FSA} and for every instruction i of \mathbf{SCM} holds $s \upharpoonright \mathbb{N} + \cdot (\text{Instr-Loc}_{SCM} \longmapsto i)$ is a state of \mathbf{SCM} .
- (74) For every state s of \mathbf{SCM}_{FSA} and for every state s' of \mathbf{SCM} holds $s + \cdot s' + \cdot s \upharpoonright Instr-Loc_{SCM_{FSA}}$ is a state of \mathbf{SCM}_{FSA} .
- (75) Let i be an instruction of **SCM**, i_3 be an instruction of **SCM**_{FSA}, s be a state of **SCM**, and s_2 be a state of **SCM**_{FSA}. If $i = i_3$ and $s = s_2 \upharpoonright \mathbb{N} + \cdot (\text{Instr-Loc}_{\text{SCM}} \longmapsto i)$, then $\text{Exec}(i_3, s_2) = s_2 + \cdot \text{Exec}(i, s) + \cdot s_2 \upharpoonright \text{Instr-Loc}_{\text{SCM}_{\text{FSA}}}$.

Let s be a state of SCM_{FSA} and let d be an integer location. Then s(d) is an integer.

Let s be a state of \mathbf{SCM}_{FSA} and let d be a finite sequence location. Then s(d) is a finite sequence of elements of \mathbb{Z} .

We now state several propositions:

- (76) If $S = s \upharpoonright \mathbb{N} + \cdot (\text{Instr-Loc}_{SCM} \longmapsto I)$, then $s = s + \cdot S + \cdot s \upharpoonright \text{Instr-Loc}_{SCM_{ESA}}$.
- (77) For every element I of $Instr_{SCM_{FSA}}$ such that I = i and for every SCM_{FSA} -state S such that S = s holds $Exec(i, s) = Exec-Res_{SCM_{FSA}}(I, S)$.
- (78) If $s_1 = s + \cdot S + \cdot s \upharpoonright \text{Instr-Loc}_{\text{SCM}_{\text{FSA}}}$, then $s_1(\text{IC}_{\text{SCM}_{\text{FSA}}}) = S(\text{IC}_{\text{SCM}})$.
- (79) If $s_1 = s + \cdot S + \cdot s \upharpoonright \text{Instr-Loc}_{\text{SCM}_{\text{FSA}}}$ and A = a, then $S(A) = s_1(a)$.
- (80) If $S = s \upharpoonright \mathbb{N} + \cdot (\text{Instr-Loc}_{SCM} \longmapsto I)$ and A = a, then S(A) = s(a).

Let us mention that \mathbf{SCM}_{FSA} is realistic, IC-Ins-separated, data-oriented, definite, and steady-programmed.

We now state several propositions:

- (81) For every integer location d_2 holds $d_2 \neq \mathbf{IC}_{\mathbf{SCM}_{ESA}}$.
- (82) For every finite sequence location d_2 holds $d_2 \neq \mathbf{IC}_{\mathbf{SCM}_{\mathbf{FSA}}}$.
- (83) For every integer location i_1 and for every finite sequence location d_2 holds $i_1 \neq d_2$.
- (84) For every instruction-location i_1 of \mathbf{SCM}_{FSA} and for every integer location d_2 holds $i_1 \neq d_2$.
- (85) For every instruction-location i_1 of \mathbf{SCM}_{FSA} and for every finite sequence location d_2 holds $i_1 \neq d_2$.
- (86) Let s_1 , s_3 be states of **SCM**_{FSA}. Suppose that
 - (i) $IC_{(s_1)} = IC_{(s_3)}$,
 - (ii) for every integer location a holds $s_1(a) = s_3(a)$,
- (iii) for every finite sequence location f holds $s_1(f) = s_3(f)$, and
- (iv) for every instruction-location i of \mathbf{SCM}_{FSA} holds $s_1(i) = s_3(i)$.

Then $s_1 = s_3$.

(88)⁵ If
$$S = s \mid \mathbb{N} + \cdot (\text{Instr-Loc}_{SCM} \longmapsto I)$$
, then $\mathbf{IC}_s = \mathbf{IC}_S$.

⁵ The proposition (87) has been removed.

USERS GUIDE

One can prove the following propositions:

- (89) $(\operatorname{Exec}(a:=b,s))(\operatorname{IC}_{\operatorname{SCM}_{\operatorname{FSA}}}) = \operatorname{Next}(\operatorname{IC}_s)$ and $(\operatorname{Exec}(a:=b,s))(a) = s(b)$ and for every c such that $c \neq a$ holds $(\operatorname{Exec}(a:=b,s))(c) = s(c)$ and for every f holds $(\operatorname{Exec}(a:=b,s))(f) = s(f)$.
- (90) $(\text{Exec}(\text{AddTo}(a,b),s))(\mathbf{IC_{SCM_{FSA}}}) = \text{Next}(\mathbf{IC}_s)$ and (Exec(AddTo(a,b),s))(a) = s(a) + s(b) and for every c such that $c \neq a$ holds (Exec(AddTo(a,b),s))(c) = s(c) and for every f holds (Exec(AddTo(a,b),s))(f) = s(f).
- (91) $(\text{Exec}(\text{SubFrom}(a,b),s))(\mathbf{IC}_{\mathbf{SCM}_{\text{FSA}}}) = \text{Next}(\mathbf{IC}_s)$ and (Exec(SubFrom(a,b),s))(a) = s(a) s(b) and for every c such that $c \neq a$ holds (Exec(SubFrom(a,b),s))(c) = s(c) and for every f holds (Exec(SubFrom(a,b),s))(f) = s(f).
- (92) $(\text{Exec}(\text{MultBy}(a,b),s))(\mathbf{IC_{SCM_{FSA}}}) = \text{Next}(\mathbf{IC}_s)$ and $(\text{Exec}(\text{MultBy}(a,b),s))(a) = s(a) \cdot s(b)$ and for every c such that $c \neq a$ holds (Exec(MultBy(a,b),s))(c) = s(c) and for every f holds (Exec(MultBy(a,b),s))(f) = s(f).
- (93)(i) $(\operatorname{Exec}(\operatorname{Divide}(a,b),s))(\mathbf{IC}_{\mathbf{SCM}_{\mathrm{FSA}}}) = \operatorname{Next}(\mathbf{IC}_{s}),$
- (ii) if $a \neq b$, then $(\text{Exec}(\text{Divide}(a,b),s))(a) = s(a) \div s(b)$,
- (iii) $(\operatorname{Exec}(\operatorname{Divide}(a,b),s))(b) = s(a) \operatorname{mod} s(b),$
- (iv) for every c such that $c \neq a$ and $c \neq b$ holds (Exec(Divide(a,b),s))(c) = s(c), and
- (v) for every f holds (Exec(Divide(a,b),s))(f) = s(f).
- (94) $(\text{Exec}(\text{Divide}(a, a), s))(\mathbf{IC}_{\mathbf{SCM}_{FSA}}) = \text{Next}(\mathbf{IC}_s)$ and (Exec(Divide(a, a), s))(a) = s(a) mod s(a) and for every c such that $c \neq a$ holds (Exec(Divide(a, a), s))(c) = s(c) and for every f holds (Exec(Divide(a, a), s))(f) = s(f).
- (95) $(\operatorname{Exec}(\operatorname{goto} l, s))(\mathbf{IC}_{\mathbf{SCM}_{\mathrm{FSA}}}) = l$ and for every c holds $(\operatorname{Exec}(\operatorname{goto} l, s))(c) = s(c)$ and for every f holds $(\operatorname{Exec}(\operatorname{goto} l, s))(f) = s(f)$.
- (96)(i) If s(a) = 0, then $(\text{Exec}(\mathbf{if}\ a = 0\ \mathbf{goto}\ l, s))(\mathbf{IC}_{\mathbf{SCM}_{ESA}}) = l$,
- (ii) if $s(a) \neq 0$, then $(\text{Exec}(\textbf{if } a = 0 \textbf{ goto } l, s))(\textbf{IC}_{\textbf{SCM}_{FSA}}) = \text{Next}(\textbf{IC}_s)$,
- (iii) for every c holds $(\operatorname{Exec}(\mathbf{if}\ a = 0\ \mathbf{goto}\ l, s))(c) = s(c)$, and
- (iv) for every f holds $(\operatorname{Exec}(\mathbf{if}\ a = 0\ \mathbf{goto}\ l, s))(f) = s(f)$.
- (97)(i) If s(a) > 0, then $(\text{Exec}(\text{if } a > 0 \text{ goto } l, s))(\text{IC}_{\text{SCM}_{\text{PSA}}}) = l$,
- (ii) if $s(a) \le 0$, then $(\text{Exec}(\textbf{if } a > 0 \textbf{ goto } l, s))(\textbf{IC}_{\textbf{SCM}_{FSA}}) = \text{Next}(\textbf{IC}_s)$,
- (iii) for every c holds $(\operatorname{Exec}(\operatorname{if} a > 0 \operatorname{goto} l, s))(c) = s(c)$, and
- (iv) for every f holds $(\operatorname{Exec}(\operatorname{if} a > 0 \operatorname{goto} l, s))(f) = s(f)$.
- (98)(i) $(\operatorname{Exec}(c:=g_a,s))(\mathbf{IC}_{\mathbf{SCM}_{\mathsf{FSA}}}) = \operatorname{Next}(\mathbf{IC}_s),$
- (ii) there exists k such that k = |s(a)| and $(\operatorname{Exec}(c:=g_a,s))(c) = s(g)_k$,
- (iii) for every b such that $b \neq c$ holds $(\text{Exec}(c := g_a, s))(b) = s(b)$, and
- (iv) for every f holds $(\operatorname{Exec}(c:=g_a,s))(f)=s(f)$.
- (99)(i) $(\operatorname{Exec}(g_a := c, s))(\mathbf{IC}_{\mathbf{SCM}_{ESA}}) = \operatorname{Next}(\mathbf{IC}_s),$
- (ii) there exists k such that k = |s(a)| and $(\operatorname{Exec}(g_a := c, s))(g) = s(g) + (k, s(c))$,
- (iii) for every b holds $(\text{Exec}(g_a := c, s))(b) = s(b)$, and
- (iv) for every f such that $f \neq g$ holds $(\operatorname{Exec}(g_a := c, s))(f) = s(f)$.

- (100) $(\text{Exec}(c:=\text{len}g,s))(\mathbf{IC_{SCM_{FSA}}}) = \text{Next}(\mathbf{IC}_s)$ and (Exec(c:=leng,s))(c) = lens(g) and for every b such that $b \neq c$ holds (Exec(c:=leng,s))(b) = s(b) and for every f holds (Exec(c:=leng,s))(f) = s(f).
- (101)(i) $(\operatorname{Exec}(g:=\langle \underbrace{0,\ldots,0}_{c}\rangle,s))(\mathbf{IC}_{\mathbf{SCM}_{\mathrm{FSA}}}) = \operatorname{Next}(\mathbf{IC}_{s}),$
 - (ii) there exists k such that k = |s(c)| and $(\operatorname{Exec}(g := \langle \underbrace{0, \dots, 0}_{c} \rangle, s))(g) = k \mapsto 0$,
- (iii) for every b holds $(\operatorname{Exec}(g := \langle \underbrace{0, \dots, 0}_{c} \rangle, s))(b) = s(b)$, and
- (iv) for every f such that $f \neq g$ holds $(\operatorname{Exec}(g := \langle \underbrace{0, \dots, 0}_{f} \rangle, s))(f) = s(f)$.

7. HALT INSTRUCTION

The following propositions are true:

- (102) For every \mathbf{SCM}_{FSA} -state S such that S = s holds $\mathbf{IC}_s = \mathbf{IC}_S$.
- (103) For every instruction i of **SCM** and for every instruction I of **SCM**_{FSA} such that i = I and i is halting holds I is halting.
- (104) For every instruction I of \mathbf{SCM}_{FSA} such that there exists s such that $(\operatorname{Exec}(I, s))(\mathbf{IC}_{\mathbf{SCM}_{FSA}}) = \operatorname{Next}(\mathbf{IC}_s)$ holds I is non halting.
- (105) a := b is non halting.
- (106) AddTo(a,b) is non halting.
- (107) SubFrom(a, b) is non halting.
- (108) MultBy(a,b) is non halting.
- (109) Divide(a,b) is non halting.
- (110) goto l_2 is non halting.
- (111) **if** a = 0 **goto** l_2 is non halting.
- (112) **if** a > 0 **goto** l_2 is non halting.
- (113) $c := f_a$ is non halting.
- (114) $f_a := c$ is non halting.
- (115) c = len f is non halting.
- (116) $f := \langle \underbrace{0, \dots, 0}_{c} \rangle$ is non halting.
- (117) $\langle 0, 0 \rangle$ is an instruction of **SCM**_{FSA}.
- (118) For every instruction I of \mathbf{SCM}_{FSA} such that $I = \langle 0, 0 \rangle$ holds I is halting.
- (119) For every instruction *I* of SCM_{FSA} such that InsCode(I) = 0 holds $I = \{0, \emptyset\}$.

(120) Let I be a set. Then I is an instruction of SCM_{FSA} if and only if one of the following conditions is satisfied:

 $I = \langle 0, \emptyset \rangle$ or there exist a, b such that I = a := b or there exist a, b such that $I = \operatorname{AddTo}(a, b)$ or there exist a, b such that $I = \operatorname{SubFrom}(a, b)$ or there exist a, b such that $I = \operatorname{BultBy}(a, b)$ or there exist a, b such that $I = \operatorname{Divide}(a, b)$ or there exists a, b such that $a := \mathbf{if} d_1 = 0$ goto a := 0 or there exist $a := \mathbf{if} d_1 = 0$ goto a := 0 or there exist $a := \mathbf{if} d_1 = 0$ goto a := 0 or there exist $a := \mathbf{if} d_1 = 0$ goto a := 0 or there exist a := 0 or there exist

Let us mention that **SCM**_{FSA} is halting. One can prove the following propositions:

- (121) For every instruction I of SCM_{FSA} such that I is halting holds $I = halt_{SCM_{FSA}}$.
- (122) For every instruction I of SCM_{FSA} such that InsCode(I) = 0 holds $I = halt_{SCM_{FSA}}$.
- (123) $halt_{SCM} = halt_{SCM_{FSA}}$.
- (124) $InsCode(halt_{SCM_{ESA}}) = 0.$
- (125) For every instruction i of **SCM** and for every instruction I of **SCM**_{FSA} such that i = I and i is non halting holds I is non halting.

REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html.
- [2] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [3] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/funct_7.html.
- [6] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [7] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [8] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.
- [9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [10] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [11] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [12] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_1.html.
- [13] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_2.html.
- [14] Jan Popiotek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/absvalue.html.
- [15] Dariusz Surowik. Cyclic groups and some of their properties part I. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/gr_cy_1.html.
- [16] Yasushi Tanaka. On the decomposition of the states of SCM. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/ami_5.html.

- [17] Andrzej Trybulec. Binary operations applied to functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funcop_1.html.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [19] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/moart_1.html.
- [20] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html
- [21] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vo15/ami_3.html.
- [22] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. An extension of scm. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa_1.html.
- [23] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- [24] Wojciech A. Trybulec. Pigeon hole principle. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [25] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [26] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat 1.html.

Received February 7, 1996

Published January 2, 2004