
JOURNAL OF FORMALIZED MATHEMATICS

Volume8, Released 1996, Published 2003

Inst. of Computer Science, Univ. of Białystok

The SCMFSA Computer

Andrzej Trybulec
Warsaw University

Białystok

Yatsuka Nakamura
Shinshu University

Nagano

Piotr Rudnicki
University of Alberta

Edmonton

MML Identifier: SCMFSA_2.

WWW: http://mizar.org/JFM/Vol8/scmfsa_2.html

The articles [18], [25], [1], [2], [20], [23], [26], [19], [3], [14], [4], [8], [15], [6], [17], [7], [11], [10],
[9], [24], [5], [12], [13], [21], [16], and [22] provide the notation and terminology for this paper.

1. PRELIMINARIES

One can prove the following propositions:

(3)1 Let N be a set with non empty elements,Sbe a non void AMI overN, ands be a state of
S. Then the instruction locations ofS⊆ doms.

(4) LetN be a set with non empty elements,Sbe an IC-Ins-separated non void non empty AMI
overN, ands be a state ofS. ThenICs∈ doms.

(5) Let N be a set with non empty elements,S be a non empty non void AMI overN, s be a
state ofS, andl be an instruction-location ofS. Thenl ∈ doms.

2. THE SCMFSA COMPUTER

The strict AMISCMFSA over{Z,Z∗} is defined as follows:

(Def. 1) SCMFSA = 〈Z,0(∈ Z), Instr-LocSCMFSA,Z13, InstrSCMFSA,OKSCMFSA,ExecSCMFSA〉.

Let us observe thatSCMFSA is non empty and non void.
Next we state two propositions:

(6)(i) The instruction locations ofSCMFSA 6= Z,

(ii) the instructions ofSCMFSA 6= Z,

(iii) the instruction locations ofSCMFSA 6= the instructions ofSCMFSA,

(iv) the instruction locations ofSCMFSA 6= Z∗, and

(v) the instructions ofSCMFSA 6= Z∗.

(7) ICSCMFSA = 0.

1 The propositions (1) and (2) have been removed.

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol8/scmfsa_2.html

THE scmfsa COMPUTER 2

3. THE MEMORY STRUCTURE

In the sequelk is a natural number.
The subset Int-Locations ofSCMFSA is defined as follows:

(Def. 2) Int-Locations= Data-LocSCMFSA.

The subset FinSeq-Locations ofSCMFSA is defined by:

(Def. 3) FinSeq-Locations= Data∗-LocSCMFSA.

We now state the proposition

(8) The carrier ofSCMFSA = Int-Locations∪FinSeq-Locations∪{ICSCMFSA}∪ the instruction
locations ofSCMFSA.

An object ofSCMFSA is called an integer location if:

(Def. 4) It∈ Data-LocSCMFSA.

An object ofSCMFSA is called a finite sequence location if:

(Def. 5) It∈ Data∗-LocSCMFSA.

In the sequeld1 denotes an integer location,f1 denotes a finite sequence location, andx denotes
a set.

The following propositions are true:

(9) d1 ∈ Int-Locations.

(10) f1 ∈ FinSeq-Locations.

(11) If x∈ Int-Locations, thenx is an integer location.

(12) If x∈ FinSeq-Locations, thenx is a finite sequence location.

(13) Int-Locations misses the instruction locations ofSCMFSA.

(14) FinSeq-Locations misses the instruction locations ofSCMFSA.

(15) Int-Locations misses FinSeq-Locations.

Let k be a natural number. The functor intloc(k) yields an integer location and is defined by:

(Def. 6) intloc(k) = dk.

The functor insloc(k) yields an instruction-location ofSCMFSA and is defined as follows:

(Def. 7) insloc(k) = ik.

The functor fsloc(k) yielding a finite sequence location is defined by:

(Def. 8) fsloc(k) =−(k+1).

We now state a number of propositions:

(16) For all natural numbersk1, k2 such thatk1 6= k2 holds intloc(k1) 6= intloc(k2).

(17) For all natural numbersk1, k2 such thatk1 6= k2 holds fsloc(k1) 6= fsloc(k2).

(18) For all natural numbersk1, k2 such thatk1 6= k2 holds insloc(k1) 6= insloc(k2).

(19) For every integer locationd2 there exists a natural numberi such thatd2 = intloc(i).

(20) For every finite sequence locationf2 there exists a natural numberi such thatf2 = fsloc(i).

THE scmfsa COMPUTER 3

(21) For every instruction-locationi1 of SCMFSA there exists a natural numberi such thati1 =
insloc(i).

(22) Int-Locations is infinite.

(23) FinSeq-Locations is infinite.

(24) The instruction locations ofSCMFSA are infinite.

(25) Every integer location is a data-location.

(26) For every integer locationl holds ObjectKind(l) = Z.

(27) For every finite sequence locationl holds ObjectKind(l) = Z∗.

(28) For every setx such thatx∈ Data-LocSCMFSA holdsx is an integer location.

(29) For every setx such thatx∈ Data∗-LocSCMFSA holdsx is a finite sequence location.

(30) For every setx such thatx∈ Instr-LocSCMFSA holdsx is an instruction-location ofSCMFSA.

Let l1 be an instruction-location ofSCMFSA. The functor Next(l1) yields an instruction-location
of SCMFSA and is defined as follows:

(Def. 9) There exists an elementm1 of Instr-LocSCMFSA such thatm1 = l1 and Next(l1) = Next(m1).

We now state two propositions:

(31) For every instruction-locationl1 of SCMFSA and for every elementm1 of Instr-LocSCMFSA

such thatm1 = l1 holds Next(m1) = Next(l1).

(32) For every natural numberk holds Next(insloc(k)) = insloc(k+1).

For simplicity, we follow the rules:l2, l3 are instruction-locations ofSCMFSA, L1 is an instruction-
location ofSCM, i is an instruction ofSCMFSA, I is an instruction ofSCM, l is an instruction-
location ofSCMFSA, f , g are finite sequence locations,A, B are data-locations, anda, b, c, d3 are
integer locations.

The following proposition is true

(33) If l2 = L1, then Next(l2) = Next(L1).

4. THE INSTRUCTIONSTRUCTURE

Let I be an instruction ofSCMFSA. One can check that InsCode(I) is natural.
Next we state four propositions:

(34) For every instructionI of SCMFSA such that InsCode(I) ≤ 8 holdsI is an instruction of
SCM.

(35) For every instructionI of SCMFSA holds InsCode(I)≤ 12.

(37)2 For every instructioni of SCMFSA and for every instructionI of SCM such thati = I holds
InsCode(i) = InsCode(I).

(38) Every instruction ofSCM is an instruction ofSCMFSA.

Let us considera, b. The functora:=b yields an instruction ofSCMFSA and is defined by:

(Def. 11)3 There existA, B such thata = A andb = B anda:=b = A:=B.

The functor AddTo(a,b) yielding an instruction ofSCMFSA is defined by:

2 The proposition (36) has been removed.
3 The definition (Def. 10) has been removed.

THE scmfsa COMPUTER 4

(Def. 12) There existA, B such thata = A andb = B and AddTo(a,b) = AddTo(A,B).

The functor SubFrom(a,b) yields an instruction ofSCMFSA and is defined as follows:

(Def. 13) There existA, B such thata = A andb = B and SubFrom(a,b) = SubFrom(A,B).

The functor MultBy(a,b) yielding an instruction ofSCMFSA is defined by:

(Def. 14) There existA, B such thata = A andb = B and MultBy(a,b) = MultBy(A,B).

The functor Divide(a,b) yields an instruction ofSCMFSA and is defined by:

(Def. 15) There existA, B such thata = A andb = B and Divide(a,b) = Divide(A,B).

Next we state the proposition

(39) The instruction locations ofSCM = the instruction locations ofSCMFSA.

Let us considerl2. The functor gotol2 yielding an instruction ofSCMFSA is defined as follows:

(Def. 16) There existsL1 such thatl2 = L1 and gotol2 = gotoL1.

Let us considera. The functorif a = 0 goto l2 yields an instruction ofSCMFSA and is defined as
follows:

(Def. 17) There existA, L1 such thata = A andl2 = L1 andif a = 0 goto l2 = if A = 0 gotoL1.

The functorif a > 0 goto l2 yields an instruction ofSCMFSA and is defined by:

(Def. 18) There existA, L1 such thata = A andl2 = L1 andif a > 0 goto l2 = if A > 0 gotoL1.

Let c, i be integer locations and leta be a finite sequence location. The functorc:=ai yielding
an instruction ofSCMFSA is defined by:

(Def. 19) c:=ai = 〈〈9, 〈c,a, i〉〉〉.

The functorai :=c yielding an instruction ofSCMFSA is defined as follows:

(Def. 20) ai :=c = 〈〈10, 〈c,a, i〉〉〉.

Let i be an integer location and leta be a finite sequence location. The functori:=lena yields an
instruction ofSCMFSA and is defined as follows:

(Def. 21) i:=lena = 〈〈11, 〈i,a〉〉〉.

The functora:=〈0, . . . ,0︸ ︷︷ ︸
i

〉 yielding an instruction ofSCMFSA is defined by:

(Def. 22) a:=〈0, . . . ,0︸ ︷︷ ︸
i

〉= 〈〈12, 〈i,a〉〉〉.

Next we state a number of propositions:

(42)4 InsCode(a:=b) = 1.

(43) InsCode(AddTo(a,b)) = 2.

(44) InsCode(SubFrom(a,b)) = 3.

(45) InsCode(MultBy(a,b)) = 4.

(46) InsCode(Divide(a,b)) = 5.

(47) InsCode(goto l3) = 6.

4 The propositions (40) and (41) have been removed.

THE scmfsa COMPUTER 5

(48) InsCode(if a = 0 goto l3) = 7.

(49) InsCode(if a > 0 goto l3) = 8.

(50) InsCode(c:= f1a) = 9.

(51) InsCode(f1a:=c) = 10.

(52) InsCode(a:=lenf1) = 11.

(53) InsCode(f1:=〈0, . . . ,0︸ ︷︷ ︸
a

〉) = 12.

(54) For every instructioni2 of SCMFSA such that InsCode(i2) = 1 there existd1, d3 such that
i2 = d1:=d3.

(55) For every instructioni2 of SCMFSA such that InsCode(i2) = 2 there existd1, d3 such that
i2 = AddTo(d1,d3).

(56) For every instructioni2 of SCMFSA such that InsCode(i2) = 3 there existd1, d3 such that
i2 = SubFrom(d1,d3).

(57) For every instructioni2 of SCMFSA such that InsCode(i2) = 4 there existd1, d3 such that
i2 = MultBy(d1,d3).

(58) For every instructioni2 of SCMFSA such that InsCode(i2) = 5 there existd1, d3 such that
i2 = Divide(d1,d3).

(59) For every instructioni2 of SCMFSA such that InsCode(i2) = 6 there existsl3 such that
i2 = goto l3.

(60) For every instructioni2 of SCMFSA such that InsCode(i2) = 7 there existl3, d1 such that
i2 = if d1 = 0 goto l3.

(61) For every instructioni2 of SCMFSA such that InsCode(i2) = 8 there existl3, d1 such that
i2 = if d1 > 0 goto l3.

(62) For every instructioni2 of SCMFSA such that InsCode(i2) = 9 there exista, b, f1 such that
i2 = b:= f1a.

(63) For every instructioni2 of SCMFSA such that InsCode(i2) = 10 there exista, b, f1 such
that i2 = f1a:=b.

(64) For every instructioni2 of SCMFSA such that InsCode(i2) = 11 there exista, f1 such that
i2 = a:=lenf1.

(65) For every instructioni2 of SCMFSA such that InsCode(i2) = 12 there exista, f1 such that
i2 = f1:=〈0, . . . ,0︸ ︷︷ ︸

a

〉.

5. RELATIONSHIP TO SCM

In the sequelS is a state ofSCM ands, s1 are states ofSCMFSA.
One can prove the following propositions:

(66) For every states of SCMFSA and for every integer locationd holdsd ∈ doms.

(67) f ∈ doms.

(68) f /∈ domS.

(69) For every states of SCMFSA holds Int-Locations⊆ doms.

THE scmfsa COMPUTER 6

(70) For every states of SCMFSA holds FinSeq-Locations⊆ doms.

(71) For every states of SCMFSA holds dom(s� Int-Locations) = Int-Locations.

(72) For every states of SCMFSA holds dom(s�FinSeq-Locations) = FinSeq-Locations.

(73) For every states of SCMFSA and for every instruction i of SCM holds
s�N+·(Instr-LocSCM 7−→ i) is a state ofSCM.

(74) For every statesof SCMFSA and for every states′ of SCM holdss+·s′+·s�Instr-LocSCMFSA

is a state ofSCMFSA.

(75) Let i be an instruction ofSCM, i3 be an instruction ofSCMFSA, s be a state ofSCM, and
s2 be a state ofSCMFSA. If i = i3 ands= s2�N+·(Instr-LocSCM 7−→ i), then Exec(i3,s2) =
s2+·Exec(i,s)+·s2�Instr-LocSCMFSA.

Let s be a state ofSCMFSA and letd be an integer location. Thens(d) is an integer.
Let sbe a state ofSCMFSA and letd be a finite sequence location. Thens(d) is a finite sequence

of elements ofZ.
We now state several propositions:

(76) If S= s�N+·(Instr-LocSCM 7−→ I), thens= s+·S+·s�Instr-LocSCMFSA.

(77) For every elementI of InstrSCMFSA such thatI = i and for everySCMFSA-stateSsuch that
S= s holds Exec(i,s) = Exec-ResSCMFSA(I ,S).

(78) If s1 = s+·S+·s�Instr-LocSCMFSA, thens1(ICSCMFSA) = S(ICSCM).

(79) If s1 = s+·S+·s�Instr-LocSCMFSA andA = a, thenS(A) = s1(a).

(80) If S= s�N+·(Instr-LocSCM 7−→ I) andA = a, thenS(A) = s(a).

Let us mention thatSCMFSA is realistic, IC-Ins-separated, data-oriented, definite, and steady-
programmed.

We now state several propositions:

(81) For every integer locationd2 holdsd2 6= ICSCMFSA.

(82) For every finite sequence locationd2 holdsd2 6= ICSCMFSA.

(83) For every integer locationi1 and for every finite sequence locationd2 holdsi1 6= d2.

(84) For every instruction-locationi1 of SCMFSA and for every integer locationd2 holdsi1 6= d2.

(85) For every instruction-locationi1 of SCMFSA and for every finite sequence locationd2 holds
i1 6= d2.

(86) Lets1, s3 be states ofSCMFSA. Suppose that

(i) IC (s1) = IC (s3),

(ii) for every integer locationa holdss1(a) = s3(a),

(iii) for every finite sequence locationf holdss1(f) = s3(f), and

(iv) for every instruction-locationi of SCMFSA holdss1(i) = s3(i).

Thens1 = s3.

(88)5 If S= s�N+·(Instr-LocSCM 7−→ I), thenIC s = ICS.

5 The proposition (87) has been removed.

THE scmfsa COMPUTER 7

6. USERSGUIDE

One can prove the following propositions:

(89) (Exec(a:=b,s))(ICSCMFSA) = Next(ICs) and (Exec(a:=b,s))(a) = s(b) and for everyc
such thatc 6= a holds(Exec(a:=b,s))(c) = s(c) and for everyf holds(Exec(a:=b,s))(f) =
s(f).

(90) (Exec(AddTo(a,b),s))(ICSCMFSA) = Next(ICs) and (Exec(AddTo(a,b),s))(a) = s(a) +
s(b) and for everyc such thatc 6= a holds(Exec(AddTo(a,b),s))(c) = s(c) and for everyf
holds(Exec(AddTo(a,b),s))(f) = s(f).

(91) (Exec(SubFrom(a,b),s))(ICSCMFSA) = Next(ICs) and (Exec(SubFrom(a,b),s))(a) =
s(a)− s(b) and for everyc such thatc 6= a holds (Exec(SubFrom(a,b),s))(c) = s(c) and
for every f holds(Exec(SubFrom(a,b),s))(f) = s(f).

(92) (Exec(MultBy(a,b),s))(ICSCMFSA) = Next(ICs) and(Exec(MultBy(a,b),s))(a) = s(a) ·
s(b) and for everyc such thatc 6= a holds(Exec(MultBy(a,b),s))(c) = s(c) and for everyf
holds(Exec(MultBy(a,b),s))(f) = s(f).

(93)(i) (Exec(Divide(a,b),s))(ICSCMFSA) = Next(ICs),

(ii) if a 6= b, then(Exec(Divide(a,b),s))(a) = s(a)÷s(b),

(iii) (Exec(Divide(a,b),s))(b) = s(a)mods(b),

(iv) for everyc such thatc 6= a andc 6= b holds(Exec(Divide(a,b),s))(c) = s(c), and

(v) for every f holds(Exec(Divide(a,b),s))(f) = s(f).

(94) (Exec(Divide(a,a),s))(ICSCMFSA) = Next(ICs) and(Exec(Divide(a,a),s))(a) = s(a)mod
s(a) and for everyc such thatc 6= a holds(Exec(Divide(a,a),s))(c) = s(c) and for everyf
holds(Exec(Divide(a,a),s))(f) = s(f).

(95) (Exec(goto l ,s))(ICSCMFSA) = l and for everyc holds(Exec(goto l ,s))(c) = s(c) and for
every f holds(Exec(goto l ,s))(f) = s(f).

(96)(i) If s(a) = 0, then(Exec(if a = 0 goto l ,s))(ICSCMFSA) = l ,

(ii) if s(a) 6= 0, then(Exec(if a = 0 goto l ,s))(ICSCMFSA) = Next(ICs),

(iii) for every c holds(Exec(if a = 0 goto l ,s))(c) = s(c), and

(iv) for every f holds(Exec(if a = 0 goto l ,s))(f) = s(f).

(97)(i) If s(a) > 0, then(Exec(if a > 0 goto l ,s))(ICSCMFSA) = l ,

(ii) if s(a)≤ 0, then(Exec(if a > 0 goto l ,s))(ICSCMFSA) = Next(ICs),

(iii) for every c holds(Exec(if a > 0 goto l ,s))(c) = s(c), and

(iv) for every f holds(Exec(if a > 0 goto l ,s))(f) = s(f).

(98)(i) (Exec(c:=ga,s))(ICSCMFSA) = Next(IC s),

(ii) there existsk such thatk = |s(a)| and(Exec(c:=ga,s))(c) = s(g)k,

(iii) for every b such thatb 6= c holds(Exec(c:=ga,s))(b) = s(b), and

(iv) for every f holds(Exec(c:=ga,s))(f) = s(f).

(99)(i) (Exec(ga:=c,s))(ICSCMFSA) = Next(IC s),

(ii) there existsk such thatk = |s(a)| and(Exec(ga:=c,s))(g) = s(g)+· (k,s(c)),
(iii) for every b holds(Exec(ga:=c,s))(b) = s(b), and

(iv) for every f such thatf 6= g holds(Exec(ga:=c,s))(f) = s(f).

THE scmfsa COMPUTER 8

(100) (Exec(c:=leng,s))(ICSCMFSA) = Next(IC s) and(Exec(c:=leng,s))(c) = lens(g) and for
every b such that b 6= c holds (Exec(c:=leng,s))(b) = s(b) and for every f holds
(Exec(c:=leng,s))(f) = s(f).

(101)(i) (Exec(g:=〈0, . . . ,0︸ ︷︷ ︸
c

〉,s))(ICSCMFSA) = Next(ICs),

(ii) there existsk such thatk = |s(c)| and(Exec(g:=〈0, . . . ,0︸ ︷︷ ︸
c

〉,s))(g) = k 7→ 0,

(iii) for every b holds(Exec(g:=〈0, . . . ,0︸ ︷︷ ︸
c

〉,s))(b) = s(b), and

(iv) for every f such thatf 6= g holds(Exec(g:=〈0, . . . ,0︸ ︷︷ ︸
c

〉,s))(f) = s(f).

7. HALT INSTRUCTION

The following propositions are true:

(102) For everySCMFSA-stateSsuch thatS= s holdsIC s = ICS.

(103) For every instructioni of SCM and for every instructionI of SCMFSA such thati = I andi
is halting holdsI is halting.

(104) For every instructionI of SCMFSA such that there existsssuch that(Exec(I ,s))(ICSCMFSA)=
Next(IC s) holdsI is non halting.

(105) a:=b is non halting.

(106) AddTo(a,b) is non halting.

(107) SubFrom(a,b) is non halting.

(108) MultBy(a,b) is non halting.

(109) Divide(a,b) is non halting.

(110) gotol2 is non halting.

(111) if a = 0 goto l2 is non halting.

(112) if a > 0 goto l2 is non halting.

(113) c:= fa is non halting.

(114) fa:=c is non halting.

(115) c:=lenf is non halting.

(116) f :=〈0, . . . ,0︸ ︷︷ ︸
c

〉 is non halting.

(117) 〈〈0, /0〉〉 is an instruction ofSCMFSA.

(118) For every instructionI of SCMFSA such thatI = 〈〈0, /0〉〉 holdsI is halting.

(119) For every instructionI of SCMFSA such that InsCode(I) = 0 holdsI = 〈〈0, /0〉〉.

THE scmfsa COMPUTER 9

(120) Let I be a set. ThenI is an instruction ofSCMFSA if and only if one of the following
conditions is satisfied:

I = 〈〈0, /0〉〉 or there exista, b such thatI = a:=b or there exista, b such thatI = AddTo(a,b)
or there exista, b such thatI = SubFrom(a,b) or there exista, b such thatI = MultBy(a,b)
or there exista, b such thatI = Divide(a,b) or there existsl2 such thatI = goto l2 or there
exist l3, d1 such thatI = if d1 = 0 goto l3 or there existl3, d1 such thatI = if d1 > 0 goto l3
or there existb, a, f1 such thatI = a:= f1b or there exista, b, f1 such thatI = f1a:=b or there
exista, f such thatI = a:=lenf or there exista, f such thatI = f :=〈0, . . . ,0︸ ︷︷ ︸

a

〉.

Let us mention thatSCMFSA is halting.
One can prove the following propositions:

(121) For every instructionI of SCMFSA such thatI is halting holdsI = haltSCMFSA.

(122) For every instructionI of SCMFSA such that InsCode(I) = 0 holdsI = haltSCMFSA.

(123) haltSCM = haltSCMFSA.

(124) InsCode(haltSCMFSA) = 0.

(125) For every instructioni of SCM and for every instructionI of SCMFSA such thati = I andi
is non halting holdsI is non halting.

REFERENCES

[1] Grzegorz Bancerek. The ordinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/ordinal1.
html.

[2] Grzegorz Bancerek. Sequences of ordinal numbers.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
ordinal2.html.

[3] Grzegorz Bancerek. K̈onig’s theorem.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/card_3.html.

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.Journal of Formalized Mathematics,
1, 1989.http://mizar.org/JFM/Vol1/finseq_1.html.

[5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions.Journal of Formalized Mathematics, 8, 1996.http:
//mizar.org/JFM/Vol8/funct_7.html.

[6] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.

[7] Czesław Bylínski. Functions from a set to a set.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/funct_
2.html.

[8] Czesław Bylínski. A classical first order language.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/cqc_
lang.html.

[9] Czesław Bylínski. Finite sequences and tuples of elements of a non-empty sets.Journal of Formalized Mathematics, 2, 1990.http:
//mizar.org/JFM/Vol2/finseq_2.html.

[10] Czesław Bylínski. The modification of a function by a function and the iteration of the composition of a function.Journal of Formalized
Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/funct_4.html.

[11] Agata Darmochwał. Finite sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/finset_1.html.

[12] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU.Journal of Formalized Mathematics, 4, 1992. http:
//mizar.org/JFM/Vol4/ami_1.html.

[13] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs.Journal of Formalized Mathematics, 4, 1992.
http://mizar.org/JFM/Vol4/ami_2.html.

[14] Jan Popiołek. Some properties of functions modul and signum.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/
JFM/Vol1/absvalue.html.

[15] Dariusz Surowik. Cyclic groups and some of their properties — part I.Journal of Formalized Mathematics, 3, 1991.http://mizar.
org/JFM/Vol3/gr_cy_1.html.

[16] Yasushi Tanaka. On the decomposition of the states of SCM.Journal of Formalized Mathematics, 5, 1993.http://mizar.org/JFM/
Vol5/ami_5.html.

http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol1/ordinal2.html
http://mizar.org/JFM/Vol1/ordinal2.html
http://mizar.org/JFM/Vol2/card_3.html
http://mizar.org/JFM/Vol1/finseq_1.html
http://mizar.org/JFM/Vol8/funct_7.html
http://mizar.org/JFM/Vol8/funct_7.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol2/cqc_lang.html
http://mizar.org/JFM/Vol2/cqc_lang.html
http://mizar.org/JFM/Vol2/finseq_2.html
http://mizar.org/JFM/Vol2/finseq_2.html
http://mizar.org/JFM/Vol2/funct_4.html
http://mizar.org/JFM/Vol1/finset_1.html
http://mizar.org/JFM/Vol4/ami_1.html
http://mizar.org/JFM/Vol4/ami_1.html
http://mizar.org/JFM/Vol4/ami_2.html
http://mizar.org/JFM/Vol1/absvalue.html
http://mizar.org/JFM/Vol1/absvalue.html
http://mizar.org/JFM/Vol3/gr_cy_1.html
http://mizar.org/JFM/Vol3/gr_cy_1.html
http://mizar.org/JFM/Vol5/ami_5.html
http://mizar.org/JFM/Vol5/ami_5.html

THE scmfsa COMPUTER 10

[17] Andrzej Trybulec. Binary operations applied to functions.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/funcop_1.html.

[18] Andrzej Trybulec. Tarski Grothendieck set theory.Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/JFM/
Axiomatics/tarski.html.

[19] Andrzej Trybulec. Tuples, projections and Cartesian products.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/
Vol1/mcart_1.html.

[20] Andrzej Trybulec. Subsets of real numbers.Journal of Formalized Mathematics, Addenda, 2003.http://mizar.org/JFM/Addenda/
numbers.html.

[21] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer.Journal of Formalized Mathematics,
5, 1993.http://mizar.org/JFM/Vol5/ami_3.html.

[22] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. An extension ofscm. Journal of Formalized Mathematics, 8, 1996.http:
//mizar.org/JFM/Vol8/scmfsa_1.html.

[23] Michał J. Trybulec. Integers.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/int_1.html.

[24] Wojciech A. Trybulec. Pigeon hole principle.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/finseq_
4.html.

[25] Zinaida Trybulec. Properties of subsets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html.

[26] Edmund Woronowicz. Relations and their basic properties.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/relat_1.html.

Received February 7, 1996

Published January 2, 2004

http://mizar.org/JFM/Vol1/funcop_1.html
http://mizar.org/JFM/Vol1/funcop_1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol1/mcart_1.html
http://mizar.org/JFM/Vol1/mcart_1.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Vol5/ami_3.html
http://mizar.org/JFM/Vol8/scmfsa_1.html
http://mizar.org/JFM/Vol8/scmfsa_1.html
http://mizar.org/JFM/Vol2/int_1.html
http://mizar.org/JFM/Vol2/finseq_4.html
http://mizar.org/JFM/Vol2/finseq_4.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	the SCMFSA computer By andrzej trybulec et al.

