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1. PRELIMINARIES
One can prove the following propositions:

(3H Let N be a set with non empty elemen&be a non void AMI ovelN, ands be a state of
S. Then the instruction locations &C doms.

(4) LetN be a set with non empty elemenBhe an IC-Ins-separated non void non empty AMI
overN, ands be a state 08. ThenICs e doms.

(5) LetN be a set with non empty elemengbe a non empty non void AMI oveM, s be a
state ofS, andl be an instruction-location & Thenl € doms.

2. THE SCMgsa COMPUTER
The strict AMISCMgsa over{Z,Z*} is defined as follows:

(Def. 1) SCMgsa= <Z, 0(6 Z)7 |nStI’-L0030MFSA, 713, InstrSCMFSA, OKSCMFSN EX€%CMFSA>'

Let us observe th&CMgsa is non empty and non void.

Next we state two propositions:

(6)()) The instruction locations CMgsa # Z,

(i) the instructions 0ofSCMgspa # Z,
(i)  the instruction locations 08CMEgsa # the instructions 065CMgga,
(iv) theinstruction locations dBCMgsa # Z*, and

(v) the instructions 06CMgsa # Z*.

(7) 1Cscmesp =0.

1 The propositions (1) and (2) have been removed.
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3. THE MEMORY STRUCTURE

In the sequek is a natural number.
The subset Int-Locations &CMgsa is defined as follows:

(Def. 2) Int-Locations= Data-LoGcmeg,-
The subset FinSeq-Locations 8€Mesp is defined by:
(Def. 3) FinSeg-Locations: Daté -LoCscmeg,-

We now state the proposition

(8) The carrier oSCMpsa = Int-LocationsJ FinSeg-Locations {IC scmeg, } Uthe instruction
locations ofSCMgsa.

An object of SCMEsa is called an integer location if:
(Def. 4) Ite Data-LoGcmegy-
An object of SCMEgsa is called a finite sequence location if:
(Def. 5) Ite Daté-LoCscmeg,-

In the sequetl; denotes an integer locatiofy, denotes a finite sequence location, aminotes
a set.

The following propositions are true:
(9) di € Int-Locations
(10) f; € FinSeg-Locations
(11) If x € Int-Locations thenx is an integer location.
(12) If x e FinSeqg-Locationghenx is a finite sequence location.
(13) Int-Locations misses the instruction locationSS@Mesa.
(14) FinSeg-Locations misses the instruction locationS@Mgsa.
(15) Int-Locations misses FinSeq-Locations.
Let k be a natural number. The functor int{é¢ yields an integer location and is defined by:
(Def. 6) intlodk) = d.
The functor inslo¢k) yields an instruction-location @CMgsa and is defined as follows:
(Def. 7) inslogk) = ik.
The functor fslo¢k) yielding a finite sequence location is defined by:
(Def. 8) fslodk) = —(k+1).
We now state a number of propositions:
(16) For all natural numbets, ky such thak; # ky holds intlogk; ) # intloc(k).
(17) For all natural numbets, ky such thak; # ko holds fslogk; ) # fsloc(ky).
(18) For all natural numbets, ky such thak; # ko holds inslogk;) # insloqky).
(19) For every integer locatioth there exists a natural numbiesuch thatl, = intloc(i).

(20) For every finite sequence locatibnthere exists a natural numbesuch thatf, = fsloc(i).
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(21) For every instruction-location of SCMgsa there exists a natural numbiesuch thai; =
insloq(i).

(22) Int-Locations is infinite.

(23) FinSeg-Locations is infinite.

(24) The instruction locations &@CMgsa are infinite.

(25) Every integer location is a data-location.

(26) For every integer locatidnholds ObjectKindl) = Z.

(27) For every finite sequence locatibholds ObjectKindl ) = Z*.

(28) For every sex such thak € Data-Logcmes, holdsx is an integer location.

(29) For every sex such thak € Data -Locscmg, holdsx is a finite sequence location.

(30) Forevery setsuch thak € Instr-LoGscives, holdsx is an instruction-location dBCMpsa.

Letl4 be aninstruction-location SCMgsa. The functor Nexi1) yields an instruction-location
of SCMgsa and is defined as follows:

(Def. 9) There exists an elemamt of Instr-Locscmeg, such thatm =11 and Nexgl1) = Next(my).

We now state two propositions:

(31) For every instruction-location of SCMgsa and for every elememty of Instr-LoGscmeg,
such thatmy = 11 holds Nex{my) = Next(l1).

(32) For every natural numbérholds Nextinslogk)) = inslogk+1).

For simplicity, we follow the rulesly, 13 are instruction-locations 8CMgsa, L1 is an instruction-
location of SCM, i is an instruction ofSCMEgsa, | is an instruction ofSCM, | is an instruction-
location of SCMEgsa, f, g are finite sequence location, B are data-locations, ardl b, ¢, d; are
integer locations.

The following proposition is true

(33) Ifly =Ly, then Nextlo) = Next(L1).

4. THE INSTRUCTIONSTRUCTURE

Let| be an instruction 08CMgsa. One can check that InsCodeis natural.
Next we state four propositions:

(34) For every instructioh of SCMgsa such that InsCodé) < 8 holdsl is an instruction of
SCM.

(35) For every instructioh of SCMggp holds InsCodé ) < 12

(37E] For every instructiom of SCMgsa and for every instructiohof SCM such that = | holds
InsCodéi) = InsCodé€l).

(38) Every instruction o6CM is an instruction o65CMgga.
Let us considea, b. The functora:=Db yields an instruction 06CMgsa and is defined by:
(Def. 11f] There exis#, B such thaa = A andb = B anda:=b = A:=B.
The functor AddTda, b) yielding an instruction o5CMgsa is defined by:

2 The proposition (36) has been removed.
3 The definition (Def. 10) has been removed.
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(Def. 12) There exish, B such thata= A andb = B and AddTda,b) = AddTo(A, B).
The functor SubFroifa, b) yields an instruction 08CMgsa and is defined as follows:
(Def. 13) There exish, B such thata= A andb = B and SubFrorta, b) = SubFronfA, B).
The functor MultBya, b) yielding an instruction 06CMgga is defined by:
(Def. 14) There exish, B such thata = A andb = B and MultBy(a, b) = MultBy (A, B).
The functor Dividéa, b) yields an instruction 08CMgsa and is defined by:
(Def. 15) There exish, B such thata = A andb = B and Divid€a, b) = Divide(A, B).
Next we state the proposition
(39) The instruction locations &CM = the instruction locations dBCMgsa.
Let us considel,. The functor gotd, yielding an instruction 06CMgsa is defined as follows:
(Def. 16) There existk; such that, = L; and gotd, = gotoL ;.

Let us consider. The functorif a = 0 gotol; yields an instruction 06CMgsa and is defined as
follows:

(Def. 17) There exisA, L; such thab= Aandl, = L; andif a=0gotol, =if A=0gotoL;.
The functorif a > 0 gotol, yields an instruction 08§CMgsa and is defined by:
(Def. 18) There exisA, L; such thaa= A andl, = L; andif a> 0gotol, =if A> 0gotoL;.

Letc, i be integer locations and latbe a finite sequence location. The funatota; yielding
an instruction ofSCMgsap is defined by:

(Def. 19) c:i=a = (9, (c,a,i)).
The functora;:=c yielding an instruction 06CMgsa is defined as follows:
(Def. 20) &:=c= (10, (c,a,i)).

Leti be an integer location and latbe a finite sequence location. The fundteflena yields an
instruction ofSCMgsa and is defined as follows:

(Def. 21) i:=lena= (11, (i,a)).
The functora:=(0, ..., 0) yielding an instruction 06CMgsp is defined by:
_
(Def. 22) a:=(0,...,0) = (12, (i,a)).
e
Next we state a number of propositions:

(42} InsCodga:=b) = 1.

(43) InsCodéAddTo(a,b)) = 2.

(44) InsCodéSubFronga,b)) = 3.

(45) InsCodéMultBy(a,b)) = 4.

(46) InsCodéDivide(a,b)) =5.

(47) InsCodégotols) = 6.

4 The propositions (40) and (41) have been removed.
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(48) InsCodéif a=0gotolz) =7.

(49) InsCodéif a> 0gotols) =8.

(50) InsCodéc:="f1,) =09.

(51) InsCodéfy,:=c) =10.

(52) InsCodéa:=lenf;) =11

(53) InsCodéf1:=(0,...,0)) =12
~——

a

(54) For every instructioip of SCMgsa such that InsCod&) = 1 there existl;, d3 such that
i2 = d1::d3.

(55) For every instructioip of SCMEgsa such that InsCod&) = 2 there existl;, d3 such that
i = AddTo(dy,ds).

(56) For every instructioip of SCMgsa such that InsCodé&) = 3 there existl, dz such that
i = SUbFrOﬁle,dg).

(57) For every instruction, of SCMgsa such that InsCod&) = 4 there exist;, d3 such that
i2 = MultBy(dy,ds).

(58) For every instructionp of SCMgsa such that InsCod&) = 5 there existl;, d3 such that
i> = Divide(ds,ds).

(59) For every instructiom, of SCMgsa such that InsCod&) = 6 there existds such that
i = gotols.

(60) For every instructio, of SCMgsa such that InsCod&) = 7 there exists, d; such that
io =if dp =0gotols.

(61) For every instructio, of SCMgsa such that InsCod&) = 8 there exists, d; such that
ip =if d; > 0gotols.

(62) For every instructioip of SCMgsa such that InsCod&) = 9 there exisg, b, f; such that
ip =b:i="f1,.

(63) For every instructiof, of SCMgsa such that InsCod&) = 10 there exish, b, f1 such
thati, = flaZZb.

(64) For every instruction, of SCMgsa such that InsCod&) = 11 there exisg, f; such that
io = a:=lenf;.

(65) For every instructioip of SCMgsa such that InsCod&) = 12 there exis, f; such that
ir= f1::<0, . ,0>.
N——

a

5. RELATIONSHIP TOSCM

In the sequeBis a state o5CM ands, s; are states 0BCMgsa.
One can prove the following propositions:

(66) For every statsof SCMgsa and for every integer locatiothholdsd € doms.
(67) f edoms.
(68) f ¢ doms

(69) For every state of SCMgsa holds Int-Locations- doms.
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(70) For every stats of SCMgsa holds FinSeg-LocationS doms.
(71) For every stats of SCMgsa holds dongs Int-Locationg = Int-Locations
(72) For every state of SCMgsa holds donts| FinSeg-Locations= FinSeq-Locations

(73) For every states of SCMgsa and for every instructioni of SCM holds
SIN+-(Instr-Logscm — i) is a state oBCM.

(74) For every stateof SCMrsa and for every state of SCM holdss+-S'+-s[Instr-LoGscives,
is a state o0BCMgsa.

(75) Leti be an instruction 06CM, i3 be an instruction 06CMgsa, sbe a state 06CM, and
S be a state 06CMgsa. If | =iz ands= $[N+-(Instr-Locscm — i), then Exe€iz, sp) =
S+-Exedi, s)+-5[INstr-LoGscives,-

Letsbe a state 08CMesa and letd be an integer location. Thes(d) is an integer.

Letsbe a state 06CMgsa and letd be a finite sequence location. Th&d) is a finite sequence
of elements ofZ.

We now state several propositions:

(76) If S=sIN+-(Instr-Logscm — 1), thens = s+-S+-s[Instr-LoGscmeg,-

(77) For every elemeritof Instrscmeg, such that =i and for everySCMgsa-stateS such that
S=sholds Exe¢i,s) = Exec-Rescmeg, (1, 9)-

(78) If sy = s+-S+-s[InStr-LoGs s, thens: (IC semesy) = S(ICscem)-
(79) If s = s+-S+-s[Instr-LoGscimes, aNdA = a, thenS(A) = s1(a).
(80) If S=s|N+-(Instr-Locscm+— 1) andA = a, thenS(A) = s(a).

Let us mention thaBCMEsa is realistic, IC-Ins-separated, data-oriented, definite, and steady-
programmed.
We now state several propositions:

(81) For every integer locatioty holdsd, # IC scmeg,-

(82) For every finite sequence locatidnholdsd; # IC scmega-

(83) For every integer location and for every finite sequence locatidnholdsii # d,.

(84) For every instruction-locatidn of SCMgsa and for every integer locatiagy holdsi # ds.

(85) Forevery instruction-locatidn of SCMgsa and for every finite sequence locatignholds
i1 # da.
(86) Lets), s3 be states 08CMgsa. Suppose that
() 1C(s) =1Cs),
(i) for every integer locatiom holdss; (a) = s3(a),
(iiiy  for every finite sequence locatiohholdss; (f) = s3(f), and
(iv) for every instruction-locatiomn of SCMgsa holdss; (i) = ss(i).
Thens; = ss.

88| If S=s/N+(Instr-Logscwm — 1), thenlCs = ICs

5 The proposition (87) has been removed.
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6. USERSGUIDE
One can prove the following propositions:
(89) (Exeqa:=h,s))(ICscmes,) = Next(ICs) and (Exeqa:=b,s))(a) = s(b) and for everyc
such that # a holds(Exeda:=h, s))(c) = s(c) and for everyf holds(Exeda:=b,s))(f) =
s(f).
(90) (ExeqAddTo(a,b),s))(ICscmess) = Next(ICs) and (ExedAddTo(a,b),s))(a) = s(a) +

s(b) and for everyc such that # a holds (Exed AddTo(a,b),s))(c) = s(c) and for everyf
holds(ExedAddTo(a,b),s))(f) = s(f).

(91) (ExeqSubFrona,b),s))(ICscmess) = Next(ICs) and (ExeqSubFronta,b),s))(a) =
s(a) — s(b) and for everyc such thatc # a holds (Exeq SubFronta,b),s))(c) = s(c) and
for every f holds(Exeq SubFronta, b),s))(f) = s(f).

(92) (ExeqMultBy(a,b),s))(ICscmes,) = Next(ICs) and (ExeqMultBy (a,b),s))(a) = s(a) -
s(b) and for everyc such that # a holds (ExeqMultBy (a,b),s))(c) = s(c) and for everyf
holds(ExedMultBy(a, b),s))(f) = s(f).

(93)()) (ExeqDivide(a,b),s))(ICscmess) = Next(ICs),

(i) if a# b, then(ExedDivide(a,b),s))(a) = s(a) + s(b),
(i)  (ExedDivide(a,b),s))(b) = s(a) mods(b),
(iv) for everyc such that # a andc # b holds(ExeqDivide(a,b), s))(c) = s(c), and
(v) foreveryf holds(ExeqDivide(a,b),s))(f) =s(f).
(94) (ExeqDivide(a,a),s))(ICscmes,) = Next(ICs) and(ExedDivide(a, a),s))(a) = s(a) mod

s(a) and for everyc such that # a holds (ExeqDivide(a,a),s))(c) = s(c) and for everyf
holds(ExedDivide(a, a),s))(f) = s(f).

(95) (Exedqgotol,s))(ICscmes,) = | and for everyc holds (Exeqgotol, s))(c) = s(c) and for
every f holds(Exedgotol,s))(f) =s(f).
(96)(i) If s(a) =0, then(Exeqif a=0gotol,s))(ICscmesp) =1,
(i) if s(a) # 0, then(Exedif a=0gotol,s))(ICscmes,) = Next(ICs),
(iiiy  for every c holds(Exedif a= 0gotol,s))(c) = s(c), and
(iv) for every f holds(Exeqif a=0gotol,s))(f) =s(f).
(97)()) If s(a) > O, then(Exeq(if a> 0gotol,s))(ICscmesp) =1,
(i) if s(a) <0, then(Exedif a> 0gotol,s))(ICscmes,) = Next(ICs),
(iiiy  for every c holds(Exedif a > 0 gotol,s))(c) = s(c), and
(iv) for every f holds(Exedif a> 0gotol,s))(f) =s(f).

(98)(i) (Exedc:=0a,s))(ICscmesn) = Next(ICs),

(i) there existk such thak = |s(a)| and(Exeqc:=ga,S))(c) = S(Q)xk,
(iii)  for every b such thab # ¢ holds(Exeqc:=ga, s))(b) = s(b), and
(iv) foreveryf holds(Exedc:=ga,,s))(f) = s(f).

(99)()) (Exedga:=c,s))(ICscmesa) = Next(ICs),

(i) there existsk such thak = |s(a)| and (Exedda:=¢,s))(g) = s(g) +- (k,s(c)),
(iiiy  for every b holds(Exedga:=c,s))(b) = s(b), and

(iv) foreveryf such thatf # g holds(Exedga:=c,s))(f) = s(f).
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(100) (Exedc:=leng,s))(ICscmess) = Next(ICs) and (Exedqc:=leng,s))(c) = lens(g) and for
every b such thatb # c holds (Exedc:=leng,s))(b) = s(b) and for every f holds
(Exedc:=leng,s))(f) = s(f).

(101)()  (Exedg=(0....,0),5))(ICscmess) = Next(ICy),
C
(i) there existk such thak = |s(c)| and(Exedg:=(0,...,0),s))(g) = k— O,
C
(iiiy  for every b holds(Exedg:=(0,...,0),s))(b) = s(b), and
C

(iv) forevery f such thatf # g holds(Exeqg:=(0,...,0),s))(f) =s(f).

——

Cc

7. HALT INSTRUCTION
The following propositions are true:

(102) For everyfSCMgga-stateSsuch thalS= sholdsICs=ICs.

(103) For every instructionof SCM and for every instructioh of SCMgsa such that = | andi
is halting holdd is halting.

(104) For every instructiohof SCMgsa such that there exisssuch thatExedl,s)) (IC scmesy) =
Next(ICs) holdsl is non halting.

(105) a:=bis non halting.

(106) AddTda,b) is non halting.
(107) SubFrorfe,b) is non halting.
(108) MultBy(a,b) is non halting.
(109) Dividga,b) is non halting.
(110) gotal; is non halting.

(111) if a=0gotol, is non halting.
(112) if a> 0gotols is non halting.
(113) c:=f4is non halting.

(114) fa:=cis non halting.

(115) c:=lenf is non halting.

(116) f:=(0,...,0) is non halting.
N——
Cc

(117) (0, 0) is an instruction 05CMgga.
(118) For every instructioh of SCMgsa such thal = (0, 0) holdsl is halting.
(119) For every instructioh of SCMgsa such that InsCodé) = 0 holdsl = (0, 0).
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(120) Letl be a set. Thet is an instruction ofSCMgsa if and only if one of the following

conditions is satisfied:

| = (O, 0) or there exish, b such thal = a:=b or there exisg, b such thal = AddTo(a, b)

or there exish, b such thal = SubFronfa,b) or there exish, b such that = MultBy(a,b)

or there exist, b such that = Divide(a,b) or there existd, such that = gotol; or there
existls, d; such that = if d; = 0 gotols or there exists, d; such that =if d; > 0gotol;

or there exisb, a, f; such thal = a:=fy,, or there exisg, b, f; such that = f1,:=b or there
exista, f such thal = a:=lenf or there exis#, f such that = f:=(0,...,0).

a

Let us mention thaBCMgga, is halting.
One can prove the following propositions:

(121) For every instructiohof SCMgsa such that is halting holdd = haltscm,g,-

(122) For every instructiohof SCMgsa such that InsCodg) = 0 holdsl = haltscyeg,-

(123) haltscm = haItSCMFSA.

(124) InsCodéhaltscmeg,) = 0.

(125) For every instructionof SCM and for every instructioh of SCMgsa such thai = | andi

(1]

(2

(3]
4

(3]

6]

(7]
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REFERENCES

Grzegorz Bancerek. The ordinal numbedsurnal of Formalized Mathematic4, 1989.http://mizar.org/JFM/Voll/ordinall.
htmll

Grzegorz Bancerek. Sequences of ordinal numbédaairnal of Formalized Mathematicd, 1989. http://mizar.org/JFM/Voll/
ordinal2.htmll

Grzegorz Bancerek. &hig's theoremJournal of Formalized Mathematicg, 1990/http://mizar.org/JFM/Vol2/card_3.htmll

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite seqdiemeed.of Formalized Mathematics
1,1989.http://mizar.orqg/JFM/Voll/finseq_l.htmll

Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functionsnal of Formalized Mathematic8, 1996.http:
//mizar.org/JFM/Vol8/funct_7.htmll

Czestaw Bylihski. Functions and their basic propertidsurnal of Formalized Mathematic$, 1989/http://mizar.org/JFM/Voll/
funct_1.html,

Czestaw Bylhski. Functions from a set to a séburnal of Formalized Mathematic$, 1989/http://mizar.org/JFM/Voll/funct_
2.htmll

Czestaw Bylfski. A classical first order languagdournal of Formalized Mathematic8, 1990/ http://mizar.org/JFM/Vol2/cqc
lang.html}

Czestaw Bylhski. Finite sequences and tuples of elements of a non-emptyJetmal of Formalized Mathematic&, 1990.http:
//mizar.orq/JFM/Vol2/finseq_2.html.

Czestaw Bylhski. The modification of a function by a function and the iteration of the composition of a funddamal of Formalized
Mathematics2, 1990/http://mizar.orqg/JFM/Vol2/funct_4.htmll

Agata Darmochwat. Finite setdournal of Formalized Mathematic$, 1989http://mizar.org/JFM/Voll/finset_1.htmll

Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CBalurnal of Formalized Mathematicg, 1992. http:
//mizar.orqg/JFM/Vold/ami_1.html.

Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of progrdmsnal of Formalized Mathematicgl, 1992.
http://mizar.org/JFM/Vold/ami_2.htmll

Jan Popiotek. Some properties of functions modul and signdmarnal of Formalized Mathematicg&, 1989. http://mizar.org/
JFM/Voll/absvalue.html.

Dariusz Surowik. Cyclic groups and some of their properties — paltlrnal of Formalized Mathematic8, 1991.http://mizar.
org/JFM/Vol3/gr_cy_1.htmll

Yasushi Tanaka. On the decomposition of the states of S&rnal of Formalized Mathematic§, 1993 http://mizar.org/JFM/
Vol5/ami_5.html.


http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol1/ordinal2.html
http://mizar.org/JFM/Vol1/ordinal2.html
http://mizar.org/JFM/Vol2/card_3.html
http://mizar.org/JFM/Vol1/finseq_1.html
http://mizar.org/JFM/Vol8/funct_7.html
http://mizar.org/JFM/Vol8/funct_7.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol2/cqc_lang.html
http://mizar.org/JFM/Vol2/cqc_lang.html
http://mizar.org/JFM/Vol2/finseq_2.html
http://mizar.org/JFM/Vol2/finseq_2.html
http://mizar.org/JFM/Vol2/funct_4.html
http://mizar.org/JFM/Vol1/finset_1.html
http://mizar.org/JFM/Vol4/ami_1.html
http://mizar.org/JFM/Vol4/ami_1.html
http://mizar.org/JFM/Vol4/ami_2.html
http://mizar.org/JFM/Vol1/absvalue.html
http://mizar.org/JFM/Vol1/absvalue.html
http://mizar.org/JFM/Vol3/gr_cy_1.html
http://mizar.org/JFM/Vol3/gr_cy_1.html
http://mizar.org/JFM/Vol5/ami_5.html
http://mizar.org/JFM/Vol5/ami_5.html

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

THE SCMsg COMPUTER 10

Andrzej Trybulec. Binary operations applied to functiordgurnal of Formalized Mathematic4, 1989. http://mizar.org/JrFM/
Voll/funcop_l.html,

Andrzej Trybulec. Tarski Grothendieck set theodpurnal of Formalized Mathematicéxiomatics, 1989http: //mizar.org/JFM/
Axiomatics/tarski.htmll

Andrzej Trybulec. Tuples, projections and Cartesian productstnal of Formalized Mathematics, 1989/http://mizar.org/JFM/
Voll/mcart_1.html}

Andrzej Trybulec. Subsets of real numbelsurnal of Formalized Mathematicéddenda, 2003http://mizar.org/JFM/Addenda/
numbers.htmll

Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of calopuiet.of Formalized Mathematics
5,1993/http://mizar.org/JFM/Vol5/ami_3.htmll

Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. An extensia@tf Journal of Formalized Mathematic8, 1996 /http:
//mizar.orq/JFM/Vol8/scmfsa_1.html.

Michat J. Trybulec. Integerslournal of Formalized Mathematic®, 1990.http://mizar.org/JFM/Vol2/int_1.htmll

Wojciech A. Trybulec. Pigeon hole principldournal of Formalized Mathematic&, 1990.http://mizar.org/JFM/Vol2/finseq |
4. htmll

Zinaida Trybulec. Properties of subselsurnal of Formalized Mathematic$, 1989http: //mizar.org/JFM/Voll/subset_1.htmll

Edmund Woronowicz. Relations and their basic propertisirnal of Formalized Mathematic4, 1989.http://mizar.org/JFM/
Voll/relat_1.html}

Received February 7, 1996

Published January 2, 2004


http://mizar.org/JFM/Vol1/funcop_1.html
http://mizar.org/JFM/Vol1/funcop_1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol1/mcart_1.html
http://mizar.org/JFM/Vol1/mcart_1.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Vol5/ami_3.html
http://mizar.org/JFM/Vol8/scmfsa_1.html
http://mizar.org/JFM/Vol8/scmfsa_1.html
http://mizar.org/JFM/Vol2/int_1.html
http://mizar.org/JFM/Vol2/finseq_4.html
http://mizar.org/JFM/Vol2/finseq_4.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	the SCMFSA computer By andrzej trybulec et al.

