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Summary. Some operations on the set wtuples of real numbers are introduced.
Addition, difference of such-tuples, complement of atuple and multiplication of these by
real numbers are defined. In these definitions more general properties of binary operations
applied to finite sequences froml [9] are used. Then the fact that certain properties are sat-
isfied by those operations is demonstrated directly fiom [9]. Moreover some properties can
be recognized as being those of real vector space. Multiplicatiortagbles of real numbers
and square power af-tuple of real numbers using for notation of some properties of finite
sums and products of real numbers are defined, followed by definitions of the finite sum and
product ofn-tuples of real numbers using notions and properties introducedlin [11]. A num-
ber of propositions and theorems on sum and product of finite sequences of real numbers are
proved. As additional properties there are proved some properties of real numbers and set
representations of binary operations on real numbers.

MML Identifier: RvSUM_1.

WWW: http://mizar.org/JFM/Vol2/rvsum_1.html

The articles([17],[211],[[8],[[2],[[18],[[12],[11].[[10],[122] [15],[[7],.16],1[4],[15],[114],[116],[13],.[10],
[20], [13], and [9] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules; j, k denote natural numbers,r, ry, r2, r3 denote
elements oR, F, F;, F> denote finite sequences of element&p&ndR, Ry, R, Rz denote elements
of R'.

One can prove the following propositions:

@3l oisaunity w.rt4g.

(4) 1,,=0.

(5) +r has a unity.

(6) -+r is commutative.

(7) +r is associative.

The binary operatior-g onR is defined by:
(Def. 1) —g = +gro(idr,—r).

The following proposition is true

1 The propositions (1) and (2) have been removed.
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OFf —=r(ri.r2)=r1—r2.
The unary operation sgonR is defined by:
(Def. 2) For every holds sgg(r) = r?.
We now state several propositions:
(11§ g is commutative.
(12) g is associative.
(13) 1isaunity w.r.t:g.
(14) 1,=1
(15) -g has a unity.
(16) g is distributive w.r.t.+x.
(17) sgg is distributive w.r.t.-g.
Letx be a real number. The functdy yields a unary operation dR and is defined as follows:
(Def. 3) % = (-r)°(xidg).
We now state several propositions:
A9 L =r-x
(20) L is distributive w.r.t.+g.
(21) —g is aninverse operation w.r4x.
(22) +g has an inverse operation.
(23) The inverse operation W.rtg = —g.
(24) —g is distributive w.r.t. 4.

Let us considef, F,. The functorF; + F, yields a finite sequence of elements®fand is
defined by:

(Def. 4) Fi+F= (+r)°(F1, F).

Let us observe that the functby + F is commutative.
We now state the proposition

(26| If i € dom(Fy + ), then(Fi + ) (i) = Fa(i) + Fa(i).

Let us consider, Ry, Ry. ThenR; + Ry is an element oR'.
Next we state several propositions:

(27) (Ri+R2)(j) = Ru(j) +Re(j).
(28) &R + F = &g.
(29) (r1)+(r2) =(ri+rz).

(30) i—riti—ro=i— (r1+r2).

2 The proposition (8) has been removed.

3 The proposition (10) has been removed.
4 The proposition (18) has been removed.
5 The proposition (25) has been removed.
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32f] Ri+(R+Rs) = (Ri+R) +Rs.
(33) R+i~— (Oquareal number= R

Let us consideF. The functor—F vyielding a finite sequence of elementsbfis defined as
follows:

(Def.5) —F=—g-F.

Let us note that the functoerF is involutive.
We now state two propositions:

(34) donF =dom(—F).
(35) (=F)(i)=—F().

Let us consider, R. Then—Ris an element oR'.
One can prove the following propositions:

(36) Ifr=R(j),then(—R)(j) = —r.

(837) —¢&r =¢R.

(38) —(r)=(-T).

(39) —i—r=ir(-r).

(40) R+—-R=i—0.

(41) IfR 4+ R, =i+ 0, thenRy = —R.
(43)] If =Ry = —Ry, thenR; = Ry.

(44) IfRi+R=Ry+R thenR; = Ry.
45 —-(RRi+R)=-Ri+—Ro.

Let us considefF, F,. The functorF; — F, yields a finite sequence of elements®fand is
defined by:

(Def. 6) F1—F = (—r)°(F1, F2).
We now state the proposition
(47 If i € dom(Fy —Fy), then(Fy — F) (i) = Fu(i) — Fa(i).

Let us consider, Ry, Ry. ThenR; — R, is an element oR'.
Next we state a number of propositions:

(48) (Ri—Re)(J) = Ru(j) — Re(j)-
(49) &g —F =¢g andF — &g = &5.
(80) (r1)—(rz) =(ri—ra).

(Bl) i—ri—irrp=ir(rp—ry).
(52) Ri—Ro=R;+—Ro.

(53) R—i~— (Oquareal number= R
(54) i~ (Oquareal numberrR=—-R

6 The proposition (31) has been removed.
" The proposition (42) has been removed.
8 The proposition (46) has been removed.
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(55) Ri——Ry=Ri+Ry.
(56) —(Ri—Ry) = R, —Ru.

(57) —(Ri—Ry) = —Ri+Ro.

(58) R—R=irs 0.

(59) IfRi—Ry—irs 0, thenR; = Ry.
(60) Ri—Ro—Rs3=R;1— (Ro+Rs).
(61) Ri+(R—Rs)=(Ri+R)—Rs.
(62) Ri—(R—Rs)=(Ri—Rp)+Rs.
(63) Ri=(Ri+R)
(64) Ri=(Ri-R+R

Letr be a real number and let us considrer The functorr - F yielding a finite sequence of
elements oR is defined as follows:

(Def.7) r-F=p%F
One can prove the following two propositions:
(65) dom(r-F) = domF.
66) (r-F)(i)=r-F(i).

Let us considet, letr be a real number, and let us consigefThenr - Ris an element oR'.
One can prove the following propositions:

(67) (r-R)(j)=r-R(j).
(68) r-er =¢R.
(69) r-{r1)={(r-rq).
(70) ri-(i—r2)=ir(ry-ra).
(71) (r1-r2)-R=r1-(r2-R).
(72) (r1+r2)-R=r1-R+r2-R
(73) r-(Ri+R)=r-Ri+r-Ry.
(74) 1R=R
(75) 0-R=i—0.
(76) (-1)-R=-R
Let us consideF. The functor’F yielding a finite sequence of elementsifs defined by:
(Def. 8) 2F =sqr, -F.
Next we state two propositions:
(77) donfF = domF.
(78) (2F)()=F(i)2

Let us consider, R. Then?Ris an element oR'.
The following propositions are true:
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(79) (*R)(j) =R(j)*
(80) 2(eg) = &r.
(81) 2(r)=(r?).
(82) 2(ir=r)=irsr2
(83) >-R="°R
(84) 2(r-R)=r2-?R

Let us considef;, F,. The functorF; e F, yields a finite sequence of elements®fand is
defined by:

(Def.9) FreF=(-p)°(F1, F2).

Let us note that the functdt, e F is commutative.
The following proposition is true

@6f] 1If i € dom(Fye ), then(Fy e Fo) (i) = Fa(i) - Fai).

Let us considei, Ry, Ry. ThenR; R, is an element oR'.
Next we state a number of propositions:

(87) (RieRy)(j) =Ru(j)-Re(j)-

(88) ereF =c¢p.

(89) (ra)e(rz) =(ri-ra).

(919 Rye(R:eRs) = (RieRy) e Rs.

(92) i—reR=r-R

93) i—riei—=ry=i—(ry-ro).

(94) r-(RieRy)=r-RieRy.

96 r-R=i—reR

(97) 2R=ReR

(98) 2(Ri+Ry) =2Ri+2- (RieRy) +2Ry.
(99) ?(Ri—Ry) = (°Ri—2-(RieRy)) +Ry.
(100) 2(RyeRy) =2R;e°Ry.

Let F be a finite sequence of elementskaf The functory F yielding a real number is defined
by:
(Def. 10) SF=+r®F.

The following propositions are true:

(102f7 s(er)=0.
(103) S(r)=r.
(104) S(F~ () =YF+r.

9 The proposition (85) has been removed.
10 The proposition (90) has been removed.
11 The proposition (95) has been removed.
12 The proposition (101) has been removed.
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(105)
(106)

SRTR)=YFR+3 k.
(nN"F)=r+3F
(
X

™M

(107) z I’1,I’2> =r1+ro.
(108)
(109) For every elemerR of RY holdsy R= 0.

ri,r2,r3) =ri+ro+rs.

(110) S(i—r)=i-r.
(111) 3 (i — (O quareal number))= 0.
(112) If for everyj such thatj € Seg holdsRy(j) < Rx(j), theny Ry < T Ro.

(113) If for everyj such thatj € Seg holdsRy(j) < Rx(j) and there exist$ such thatj € Seg
andRy(j) < Ro(j), theny Ry < S Ro.

(114) If for everyi such thai € domF holds O< F(i), then 0< S F.

(115) |If for everyi such thai € domF holds 0< F(i) and there existssuch thai € domF and
0<F(i),then0< S F.

(116) 0< 32F.

(117) S(r-F)=r-3F
(118) ¥
(119) S(Ri+R)=3SRi+ SR
(120) S(Ri—R)=3Ri— SR
(121) Ify?R=0,thenR=i+ 0.
(122) (S(RieR2))?< 2Ry - 52Ry.

LetF be a finite sequence of elementsfofThe functor] F yields a real number and is defined
as follows:

(Def.11) [JF = -z ®F.

Next we state a number of propositions:

(12413 (e=) =

(125) ) =

(126) NF~ () =nF-r
(127) N(R"R)=NFkAMNF.
(128) N ~"F)=r-nF
(129) [(ra,rz) =r1-ra.

(130) (ra,ra,r3) =ri-ra-rs.

(131) For every elemem of R% holds[JR= 1.
(132) (i — (1 quareal number)}= 1.
(133) There existk such thak € domF andF (k) =0 iff [JF = 0.

13 The proposition (123) has been removed.
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