Subspaces and Cosets of Subspaces in Real Linear Space

Wojciech A. Trybulec Warsaw University

Summary. The following notions are introduced in the article: subspace of a real linear space, zero subspace and improper subspace, coset of a subspace. The relation of a subset of the vectors being linearly closed is also introduced. Basic theorems concerning those notions are proved in the article.

MML Identifier: RLSUB_1.

WWW: http://mizar.org/JFM/Vol1/rlsub_1.html

The articles [4], [3], [8], [6], [5], [1], [9], [2], and [7] provide the notation and terminology for this paper.

For simplicity, we follow the rules: V, X, Y denote real linear spaces, u, v, v_1, v_2 denote vectors of V, a denotes a real number, V_1, V_2, V_3 denote subsets of V, and x denotes a set.

Let us consider V and let us consider V_1 . We say that V_1 is linearly closed if and only if:

(Def. 1) For all v, u such that $v \in V_1$ and $u \in V_1$ holds $v + u \in V_1$ and for all a, v such that $v \in V_1$ holds $a \cdot v \in V_1$.

We now state several propositions:

- (4)¹ If $V_1 \neq \emptyset$ and V_1 is linearly closed, then $0_V \in V_1$.
- (5) If V_1 is linearly closed, then for every ν such that $\nu \in V_1$ holds $-\nu \in V_1$.
- (6) If V_1 is linearly closed, then for all v, u such that $v \in V_1$ and $u \in V_1$ holds $v u \in V_1$.
- (7) $\{0_V\}$ is linearly closed.
- (8) If the carrier of $V = V_1$, then V_1 is linearly closed.
- (9) If V_1 is linearly closed and V_2 is linearly closed and $V_3 = \{v + u : v \in V_1 \land u \in V_2\}$, then V_3 is linearly closed.
- (10) If V_1 is linearly closed and V_2 is linearly closed, then $V_1 \cap V_2$ is linearly closed.

Let us consider V. A real linear space is said to be a subspace of V if it satisfies the conditions (Def. 2).

- (Def. 2)(i) The carrier of it \subseteq the carrier of V,
 - (ii) the zero of it = the zero of V,
 - (iii) the addition of it = (the addition of V) [: the carrier of it, the carrier of it:], and
 - (iv) the external multiplication of it = (the external multiplication of V) [: \mathbb{R} , the carrier of it:].

¹ The propositions (1)–(3) have been removed.

We adopt the following rules: W, W_1 , W_2 denote subspaces of V and w, w_1 , w_2 denote vectors of W.

One can prove the following propositions:

- $(16)^2$ If $x \in W_1$ and W_1 is a subspace of W_2 , then $x \in W_2$.
- (17) If $x \in W$, then $x \in V$.
- (18) w is a vector of V.
- (19) $0_W = 0_V$.
- (20) $0_{(W_1)} = 0_{(W_2)}$.
- (21) If $w_1 = v$ and $w_2 = u$, then $w_1 + w_2 = v + u$.
- (22) If w = v, then $a \cdot w = a \cdot v$.
- (23) If w = v, then -v = -w.
- (24) If $w_1 = v$ and $w_2 = u$, then $w_1 w_2 = v u$.
- (25) $0_V \in W$.
- (26) $0_{(W_1)} \in W_2$.
- (27) $0_W \in V$.
- (28) If $u \in W$ and $v \in W$, then $u + v \in W$.
- (29) If $v \in W$, then $a \cdot v \in W$.
- (30) If $v \in W$, then $-v \in W$.
- (31) If $u \in W$ and $v \in W$, then $u v \in W$.

In the sequel D is a non empty set, d_1 is an element of D, A is a binary operation on D, and M is a function from $[:\mathbb{R}, D:]$ into D.

The following propositions are true:

- (32) Suppose $V_1 = D$ and $d_1 = 0_V$ and A = (the addition of V) $\upharpoonright [:V_1, V_1:]$ and M = (the external multiplication of V) $\upharpoonright [:\mathbb{R}, V_1:]$. Then $\langle D, d_1, A, M \rangle$ is a subspace of V.
- (33) V is a subspace of V.
- (34) For all strict real linear spaces V, X such that V is a subspace of X and X is a subspace of V holds V = X.
- (35) If V is a subspace of X and X is a subspace of Y, then V is a subspace of Y.
- (36) If the carrier of $W_1 \subseteq$ the carrier of W_2 , then W_1 is a subspace of W_2 .
- (37) If for every v such that $v \in W_1$ holds $v \in W_2$, then W_1 is a subspace of W_2 .

Let us consider V. Note that there exists a subspace of V which is strict. One can prove the following propositions:

- (38) For all strict subspaces W_1 , W_2 of V such that the carrier of W_1 = the carrier of W_2 holds $W_1 = W_2$.
- (39) For all strict subspaces W_1 , W_2 of V such that for every v holds $v \in W_1$ iff $v \in W_2$ holds $W_1 = W_2$.

² The propositions (11)–(15) have been removed.

- (40) Let V be a strict real linear space and W be a strict subspace of V. If the carrier of W = the carrier of V, then W = V.
- (41) Let V be a strict real linear space and W be a strict subspace of V. If for every vector v of V holds $v \in W$ iff $v \in V$, then W = V.
- (42) If the carrier of $W = V_1$, then V_1 is linearly closed.
- (43) If $V_1 \neq \emptyset$ and V_1 is linearly closed, then there exists a strict subspace W of V such that $V_1 =$ the carrier of W.

Let us consider V. The functor $\mathbf{0}_V$ yields a strict subspace of V and is defined as follows:

(Def. 3) The carrier of $\mathbf{0}_V = \{0_V\}$.

Let us consider V. The functor Ω_V yielding a strict subspace of V is defined by:

(Def. 4) Ω_V = the RLS structure of V.

We now state several propositions:

- $(48)^3$ $\mathbf{0}_W = \mathbf{0}_V$.
- (49) $\mathbf{0}_{(W_1)} = \mathbf{0}_{(W_2)}$.
- (50) $\mathbf{0}_W$ is a subspace of V.
- (51) $\mathbf{0}_V$ is a subspace of W.
- (52) $\mathbf{0}_{(W_1)}$ is a subspace of W_2 .
- $(54)^4$ Every strict real linear space V is a subspace of Ω_V .

Let us consider V and let us consider v, W. The functor v+W yields a subset of V and is defined as follows:

(Def. 5) $v + W = \{v + u : u \in W\}.$

Let us consider V and let us consider W. A subset of V is called a coset of W if:

(Def. 6) There exists v such that it = v + W.

In the sequel B, C denote cosets of W.

Next we state a number of propositions:

- $(58)^5$ $0_V \in v + W \text{ iff } v \in W.$
- (59) $v \in v + W$.
- (60) $0_V + W =$ the carrier of W.
- (61) $v + \mathbf{0}_V = \{v\}.$
- (62) $v + \Omega_V = \text{the carrier of } V.$
- (63) $0_V \in v + W$ iff v + W = the carrier of W.
- (64) $v \in W$ iff v + W = the carrier of W.
- (65) If $v \in W$, then $a \cdot v + W =$ the carrier of W.
- (66) If $a \neq 0$ and $a \cdot v + W =$ the carrier of W, then $v \in W$.

³ The propositions (44)–(47) have been removed.

⁴ The proposition (53) has been removed.

⁵ The propositions (55)–(57) have been removed.

- (67) $v \in W \text{ iff } -v + W = \text{the carrier of } W.$
- (68) $u \in W \text{ iff } v + W = v + u + W.$
- (69) $u \in W \text{ iff } v + W = (v u) + W.$
- (70) $v \in u + W \text{ iff } u + W = v + W.$
- (71) $v + W = -v + W \text{ iff } v \in W.$
- (72) If $u \in v_1 + W$ and $u \in v_2 + W$, then $v_1 + W = v_2 + W$.
- (73) If $u \in v + W$ and $u \in -v + W$, then $v \in W$.
- (74) If $a \neq 1$ and $a \cdot v \in v + W$, then $v \in W$.
- (75) If $v \in W$, then $a \cdot v \in v + W$.
- (76) $-v \in v + W \text{ iff } v \in W.$
- (77) $u+v \in v+W \text{ iff } u \in W.$
- (78) $v u \in v + W \text{ iff } u \in W.$
- (79) $u \in v + W$ iff there exists v_1 such that $v_1 \in W$ and $u = v + v_1$.
- (80) $u \in v + W$ iff there exists v_1 such that $v_1 \in W$ and $u = v v_1$.
- (81) There exists v such that $v_1 \in v + W$ and $v_2 \in v + W$ iff $v_1 v_2 \in W$.
- (82) If v + W = u + W, then there exists v_1 such that $v_1 \in W$ and $v + v_1 = u$.
- (83) If v + W = u + W, then there exists v_1 such that $v_1 \in W$ and $v v_1 = u$.
- (84) For all strict subspaces W_1 , W_2 of V holds $v + W_1 = v + W_2$ iff $W_1 = W_2$.
- (85) For all strict subspaces W_1 , W_2 of V such that $v + W_1 = u + W_2$ holds $W_1 = W_2$.
- (86) C is linearly closed iff C = the carrier of W.
- (87) For all strict subspaces W_1 , W_2 of V and for every coset C_1 of W_1 and for every coset C_2 of W_2 such that $C_1 = C_2$ holds $W_1 = W_2$.
- (88) $\{v\}$ is a coset of $\mathbf{0}_V$.
- (89) If V_1 is a coset of $\mathbf{0}_V$, then there exists v such that $V_1 = \{v\}$.
- (90) The carrier of W is a coset of W.
- (91) The carrier of V is a coset of Ω_V .
- (92) If V_1 is a coset of Ω_V , then V_1 = the carrier of V.
- (93) $0_V \in C$ iff C = the carrier of W.
- (94) $u \in C \text{ iff } C = u + W.$
- (95) If $u \in C$ and $v \in C$, then there exists v_1 such that $v_1 \in W$ and $u + v_1 = v$.
- (96) If $u \in C$ and $v \in C$, then there exists v_1 such that $v_1 \in W$ and $u v_1 = v$.
- (97) There exists C such that $v_1 \in C$ and $v_2 \in C$ iff $v_1 v_2 \in W$.
- (98) If $u \in B$ and $u \in C$, then B = C.

REFERENCES

- [1] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [2] Czesław Byliński. Functions from a set to a set. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [5] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/mcart_1.html.
- [6] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [7] Wojciech A. Trybulec. Vectors in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/rlvect_l.html.
- [8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [9] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset_ 1.html.

Received July 24, 1989

Published January 2, 2004