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Summary. The following notions are introduced in the article: subspace of a real
linear space, zero subspace and improper subspace, coset of a subspace. The relation of a
subset of the vectors being linearly closed is also introduced. Basic theorems concerning
those notions are proved in the article.
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The articles[[4],[[3],1[8],[6], [5], [1], [9], [2], and([7] provide the notation and terminology for this
paper.

For simplicity, we follow the rulesV, X, Y denote real linear spacas,v, vi, Vo denote vectors
of V, adenotes a real numbaé#;, Vo, V3 denote subsets ®f, andx denotes a set.

Let us consideY and let us considar;. We say thaV is linearly closed if and only if:

(Def. 1) For allv, u such thatv € V1 andu € V; holdsv+ u € V; and for alla, v such thatv € V;
holdsa-v e V;.

We now state several propositions:

(4H If V1 # 0 andV; is linearly closed, then\0e V.

(5) IfVvyislinearly closed, then for evemysuch thaw € V; holds—v € V;.

(6) If Vyis linearly closed, then for all, u such thaw € V; andu € V; holdsv—u € V;.
(7) {Ov}islinearly closed.

(8) If the carrier oV = V1, thenV; is linearly closed.

(9) IfVyislinearly closed anl; is linearly closed anlf; = {v+u:veV; A ueV,}, thenVs
is linearly closed.

(20) If V1 is linearly closed an¥, is linearly closed, the; NV is linearly closed.

Let us consideY. A real linear space is said to be a subspacé fit satisfies the conditions
(Def. 2).
(Def. 2)()) The carrier of itC the carrier oV,
(ii) the zero of it=the zero ol,
(iii)  the addition of it= (the addition ol)|[: the carrier of it, the carrier of it:and
(iv) the external multiplication of i& (the external multiplication d¥ ) [ R, the carrier of it]:

1 The propositions (1)—(3) have been removed.
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We adopt the following rulesiV, Wi, W> denote subspaces ¥fandw, wi, w, denote vectors
of W.
One can prove the following propositions:

(16@ If x e Wy andW; is a subspace afb, thenx € Ws.
(A7) IfxeW,thenxeV.

(18) wis a vector oiV.

(19) Qv =0v.

(20) Q) =Owy)-

(21) Ifwy =vandw;, = u, thenw; +wp = v+u.
(22) Ifw=yv,thena-w=a-v.

(23) Ifw=yv,then—v=—w.

(24) Ifwy =vandw, = u, thenw; —wp =v—u.
(25) Gy eW.

(26) OQwy) €Wo.

(27) QyeV.

(28) IfueW andveW, thenu+veW.

(29) IfveW, thena-veW.

(30) IfveW, then—veW.

(31) IfueWandveW,thenu—veW.

In the sequeD is a non empty setl; is an element oD, A is a binary operation oB, andM is
a function from[R, D] into D.
The following propositions are true:

(32) Suppos#®; =D andd; = 0y andA = (the addition o) [[:V1, V1 ] andM = (the external
multiplication of V) [[ R, V1 ]. Then(D,d;,A, M) is a subspace of.

(33) V isasubspace of.

(34) For all strict real linear spac®¥s X such thaV is a subspace of andX is a subspace of
V holdsV = X.

(35) IfVis asubspace of andX is a subspace of, thenV is a subspace of.
(36) If the carrier ofAy C the carrier oAy, thenW, is a subspace ofb.
(37) If for everyv such thay € Wy holdsv € Ws, thenW, is a subspace a&fb.

Let us consideY. Note that there exists a subspac&aofhich is strict.
One can prove the following propositions:

(38) For all strict subspacé#¥;, W, of V such that the carrier aiy = the carrier oM, holds
W =Wo.

(39) For all strict subspacé#, W, of V such that for every holdsv € W, iff v € W, holds
W =Wo.

2 The propositions (11)-(15) have been removed.
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(40) LetV be a strict real linear space avbe a strict subspace 9f. If the carrier oW = the
carrier ofV, thenW = V.

(41) LetV be a strict real linear space awdibe a strict subspace ®f. If for every vector of
V holdsv € W iff v eV, thenW =V.

(42) If the carrier oW =V, thenV; is linearly closed.

(43) If V1 # 0 andV; is linearly closed, then there exists a strict subsp&lcef V such that
V4 = the carrier ofW.

Let us consideY. The functorOy yields a strict subspace ¥fand is defined as follows:
(Def. 3) The carrier oby = {0y }.
Let us consideY. The functorQy yielding a strict subspace bfis defined by:
(Def. 4) Qy =the RLS structure o¥.
We now state several propositions:
(48f] ow=o0v.
(49)  Owy) = Owy)-
(50) Ow is a subspace of.
(51) Oy is asubspace &f.
(52) O, is a subspace kb
(54&] Every strict real linear spad¢is a subspace @y .

Let us consideY and let us considar, W. The functoiv+W yields a subset of and is defined
as follows:

(Def.5) v+W = {v+u:ueW}.
Let us consideY and let us considal/. A subset ol is called a coset diV if:
(Def. 6) There exists such that i=v+W.

In the sequeB, C denote cosets .
Next we state a number of propositions:

(58F oy ev+Wiff veWw.

(59) vev+Ww.

(60) Oy +W = the carrier ofV.

(61) v+0y ={v}.

(62) v+ Qy =the carrier ol.

(63) Oy e v+ W iff v+W = the carrier ofV.
(64) veW iff v+W = the carrier ofV.

(65) IfveW,thena-v+W = the carrier ofV.

(66) Ifa+#0anda-v+W = the carrier oW, thenve W.

3 The propositions (44)-(47) have been removed.
4 The proposition (53) has been removed.
5 The propositions (55)—(57) have been removed.
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ve W iff —v4+W = the carrier ofV.

ueWiff v+W =v+u+W.

ueWiff v4W = (v—u) +W.

veu+Wiff u+W =v+4+W.

V+W = —v+Wiff ve W.

Ifuevi+W andue v, +W, thenvy +W = v +W.

Ifue v+W andu e —v+W, thenve W.

Ifa£1anda-vev+W, thenve W.

If ve W, thena-vev+W.

—vev+Wiff ve W.

u+vev+Wiff uew.

v—uev+Wiff ue w.

u € v+ W iff there existsvy such thati; € W andu = v+ vj.

u € v+ W iff there existsvy such that; € W andu=v—vj.

There existy such that, € v+W andvo, e v+W iff vi —vo € W.

If vi+W = u+W, then there existg; such that; € W andv+v; = u.
If vi+W = u+W, then there existg; such that; ¢ W andv—v; = u.
For all strict subspac&¥;, W, of V holdsv+W; = v+ W iff Wy =Wb.
For all strict subspac&¥;, W, of V such thawv +W; = u+W, holdsWj = Ws.
Cis linearly closed iffC = the carrier ofw.

For all strict subspac#¥;, W, of V and for every coset; of Wy and for every coset; of

W5 such thatC; = C; holdsW;, = Ws.
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{v} is a coset oDy .

If V1 is a coset 0By, then there existg such that/; = {v}.

The carrier ofV is a coset ofV.

The carrier oV is a coset of)y.

If V1 is a coset ofdy, thenV; = the carrier olV.

Q; € Ciff C =the carrier ofV.

ueCiff C=u+W.

If ue C andv € C, then there existg; such that; e W andu+vy = V.
If ue C andv € C, then there existg; such that; e W andu—v; = .
There exist€ such that; € Candv, € Ciiff vi —vo € W.

Ifue BandueC, thenB=_C.
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