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Summary. The following notions are introduced in the article: subspace of a real
linear space, zero subspace and improper subspace, coset of a subspace. The relation of a
subset of the vectors being linearly closed is also introduced. Basic theorems concerning
those notions are proved in the article.
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The articles [4], [3], [8], [6], [5], [1], [9], [2], and [7] provide the notation and terminology for this
paper.

For simplicity, we follow the rules:V, X, Y denote real linear spaces,u, v, v1, v2 denote vectors
of V, a denotes a real number,V1, V2, V3 denote subsets ofV, andx denotes a set.

Let us considerV and let us considerV1. We say thatV1 is linearly closed if and only if:

(Def. 1) For allv, u such thatv∈ V1 andu∈ V1 holdsv+ u∈ V1 and for alla, v such thatv∈ V1

holdsa·v∈V1.

We now state several propositions:

(4)1 If V1 6= /0 andV1 is linearly closed, then 0V ∈V1.

(5) If V1 is linearly closed, then for everyv such thatv∈V1 holds−v∈V1.

(6) If V1 is linearly closed, then for allv, u such thatv∈V1 andu∈V1 holdsv−u∈V1.

(7) {0V} is linearly closed.

(8) If the carrier ofV = V1, thenV1 is linearly closed.

(9) If V1 is linearly closed andV2 is linearly closed andV3 = {v+u : v∈V1 ∧ u∈V2}, thenV3

is linearly closed.

(10) If V1 is linearly closed andV2 is linearly closed, thenV1∩V2 is linearly closed.

Let us considerV. A real linear space is said to be a subspace ofV if it satisfies the conditions
(Def. 2).

(Def. 2)(i) The carrier of it⊆ the carrier ofV,

(ii) the zero of it= the zero ofV,

(iii) the addition of it= (the addition ofV)�[: the carrier of it, the carrier of it :], and

(iv) the external multiplication of it= (the external multiplication ofV)�[:R, the carrier of it :].
1 The propositions (1)–(3) have been removed.

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol1/rlsub_1.html


SUBSPACES AND COSETS OF SUBSPACES IN REAL. . . 2

We adopt the following rules:W, W1, W2 denote subspaces ofV andw, w1, w2 denote vectors
of W.

One can prove the following propositions:

(16)2 If x∈W1 andW1 is a subspace ofW2, thenx∈W2.

(17) If x∈W, thenx∈V.

(18) w is a vector ofV.

(19) 0W = 0V .

(20) 0(W1) = 0(W2).

(21) If w1 = v andw2 = u, thenw1 +w2 = v+u.

(22) If w = v, thena·w = a·v.

(23) If w = v, then−v =−w.

(24) If w1 = v andw2 = u, thenw1−w2 = v−u.

(25) 0V ∈W.

(26) 0(W1) ∈W2.

(27) 0W ∈V.

(28) If u∈W andv∈W, thenu+v∈W.

(29) If v∈W, thena·v∈W.

(30) If v∈W, then−v∈W.

(31) If u∈W andv∈W, thenu−v∈W.

In the sequelD is a non empty set,d1 is an element ofD, A is a binary operation onD, andM is
a function from[:R, D :] into D.

The following propositions are true:

(32) SupposeV1 = D andd1 = 0V andA = (the addition ofV)�[:V1, V1 :] andM = (the external
multiplication ofV)�[:R, V1 :]. Then〈D,d1,A,M〉 is a subspace ofV.

(33) V is a subspace ofV.

(34) For all strict real linear spacesV, X such thatV is a subspace ofX andX is a subspace of
V holdsV = X.

(35) If V is a subspace ofX andX is a subspace ofY, thenV is a subspace ofY.

(36) If the carrier ofW1 ⊆ the carrier ofW2, thenW1 is a subspace ofW2.

(37) If for everyv such thatv∈W1 holdsv∈W2, thenW1 is a subspace ofW2.

Let us considerV. Note that there exists a subspace ofV which is strict.
One can prove the following propositions:

(38) For all strict subspacesW1, W2 of V such that the carrier ofW1 = the carrier ofW2 holds
W1 = W2.

(39) For all strict subspacesW1, W2 of V such that for everyv holdsv ∈W1 iff v ∈W2 holds
W1 = W2.

2 The propositions (11)–(15) have been removed.
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(40) LetV be a strict real linear space andW be a strict subspace ofV. If the carrier ofW = the
carrier ofV, thenW = V.

(41) LetV be a strict real linear space andW be a strict subspace ofV. If for every vectorv of
V holdsv∈W iff v∈V, thenW = V.

(42) If the carrier ofW = V1, thenV1 is linearly closed.

(43) If V1 6= /0 andV1 is linearly closed, then there exists a strict subspaceW of V such that
V1 = the carrier ofW.

Let us considerV. The functor0V yields a strict subspace ofV and is defined as follows:

(Def. 3) The carrier of0V = {0V}.

Let us considerV. The functorΩV yielding a strict subspace ofV is defined by:

(Def. 4) ΩV = the RLS structure ofV.

We now state several propositions:

(48)3 0W = 0V .

(49) 0(W1) = 0(W2).

(50) 0W is a subspace ofV.

(51) 0V is a subspace ofW.

(52) 0(W1) is a subspace ofW2.

(54)4 Every strict real linear spaceV is a subspace ofΩV .

Let us considerV and let us considerv, W. The functorv+W yields a subset ofV and is defined
as follows:

(Def. 5) v+W = {v+u : u∈W}.

Let us considerV and let us considerW. A subset ofV is called a coset ofW if:

(Def. 6) There existsv such that it= v+W.

In the sequelB, C denote cosets ofW.
Next we state a number of propositions:

(58)5 0V ∈ v+W iff v∈W.

(59) v∈ v+W.

(60) 0V +W = the carrier ofW.

(61) v+0V = {v}.

(62) v+ΩV = the carrier ofV.

(63) 0V ∈ v+W iff v+W = the carrier ofW.

(64) v∈W iff v+W = the carrier ofW.

(65) If v∈W, thena·v+W = the carrier ofW.

(66) If a 6= 0 anda·v+W = the carrier ofW, thenv∈W.

3 The propositions (44)–(47) have been removed.
4 The proposition (53) has been removed.
5 The propositions (55)–(57) have been removed.
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(67) v∈W iff −v+W = the carrier ofW.

(68) u∈W iff v+W = v+u+W.

(69) u∈W iff v+W = (v−u)+W.

(70) v∈ u+W iff u+W = v+W.

(71) v+W =−v+W iff v∈W.

(72) If u∈ v1 +W andu∈ v2 +W, thenv1 +W = v2 +W.

(73) If u∈ v+W andu∈ −v+W, thenv∈W.

(74) If a 6= 1 anda·v∈ v+W, thenv∈W.

(75) If v∈W, thena·v∈ v+W.

(76) −v∈ v+W iff v∈W.

(77) u+v∈ v+W iff u∈W.

(78) v−u∈ v+W iff u∈W.

(79) u∈ v+W iff there existsv1 such thatv1 ∈W andu = v+v1.

(80) u∈ v+W iff there existsv1 such thatv1 ∈W andu = v−v1.

(81) There existsv such thatv1 ∈ v+W andv2 ∈ v+W iff v1−v2 ∈W.

(82) If v+W = u+W, then there existsv1 such thatv1 ∈W andv+v1 = u.

(83) If v+W = u+W, then there existsv1 such thatv1 ∈W andv−v1 = u.

(84) For all strict subspacesW1, W2 of V holdsv+W1 = v+W2 iff W1 = W2.

(85) For all strict subspacesW1, W2 of V such thatv+W1 = u+W2 holdsW1 = W2.

(86) C is linearly closed iffC = the carrier ofW.

(87) For all strict subspacesW1, W2 of V and for every cosetC1 of W1 and for every cosetC2 of
W2 such thatC1 = C2 holdsW1 = W2.

(88) {v} is a coset of0V .

(89) If V1 is a coset of0V , then there existsv such thatV1 = {v}.

(90) The carrier ofW is a coset ofW.

(91) The carrier ofV is a coset ofΩV .

(92) If V1 is a coset ofΩV , thenV1 = the carrier ofV.

(93) 0V ∈C iff C = the carrier ofW.

(94) u∈C iff C = u+W.

(95) If u∈C andv∈C, then there existsv1 such thatv1 ∈W andu+v1 = v.

(96) If u∈C andv∈C, then there existsv1 such thatv1 ∈W andu−v1 = v.

(97) There existsC such thatv1 ∈C andv2 ∈C iff v1−v2 ∈W.

(98) If u∈ B andu∈C, thenB = C.
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