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Summary. The article includes theorems concerning properties of relations defined
as a subset of the Cartesian product of two sets (mode RelatiérYoffhereX,Y are sets).
Some notions, introduced inl[4] such as domain, codomain, field of a relation, composition of
relations, image and inverse image of a set under a relation are redefined.

MML Identifier: RELSET_1.
WWW: http://mizar.org/JFM/Voll/relset_1.html

The articlesl[2],[[1],[[3], and [4] provide the notation and terminology for this paper.
We adopt the following conventiom, B, X, X1,Y, Y1, Yz, Z denote sets ana X, y denote sets.
Let us consideK, Y. Relation betweeiX andY is defined by:

(Def. 1) IC[X, Y.

Let us consideK, Y. We see that the relation betwe¥randY is a subset of X, Y .
Let us consideK, Y. Note that every subset 6K, Y ] is relation-like.

In the sequeP, R denote relations betweetiandy.

One can prove the following propositions:

(4E] If AC R thenAis a relation betweeK andY.

(6E] If a€ R, then there exist, y such tha = (x, y) andx € X andy € Y.

(SH If xe X andy €Y, then{(x, y)} is a relation betweeK andY.

(9) For every binary relatioR such that dorR C X holdsRis a relation betweeK and rngR.
(10) For every binary relatioR such that rngr C Y holdsRis a relation between doRiandY.

(11) For every binary relatioR such that dorRC X and rnRC Y holdsRis a relation between
X andY.

(12) domRC X and rngRCY.

(13) IfdomR C X1, thenRis a relation betweeK; andY.
(14) IfrngRC Y, thenRis a relation betweeK andY;.
(15) If X C Xy, thenRis a relation betweeK; andY.

(16) IfY C Yy, thenRis arelation betweeX andY;.

1 The propositions (1)—(3) have been removed.
2 The proposition (5) has been removed.
3 The proposition (7) has been removed.
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(17) If X C Xz andY C Y, thenRis a relation betweeK; andY;.

Let us consideK, Y, P, R. ThenPURIs a relation betweeK andY. ThenPNR s a relation
betweenX andY. ThenP\ Ris a relation betweeK andY.

Let us consideK, Y, R. Then donRis a subset oK. Then rngRis a subset oY .

The following propositions are true:

(19| fieldRC XUY.
(ZZE] For everyx such thai € X there existy such thatx, y} € Riff domR=X.
(23) For everyy such thay € Y there existx such thatx, y) € RiffrngR=Y.

Let us consideK, Y, R. ThenR~ is a relation betwee¥ andX.

Let us considekK, Y1, Yo, Z, let P be a relation betweeX andY;, and letR be a relation between
Y> andZ. ThenP-Ris a relation betweeK andZ.

Next we state several propositions:

(24) domR~)=rngRand rndR~) = domR.

(25) 0is arelation betweeK andY.

(26) If Ris arelation betweefi andY, thenR = 0.
(27) If Ris arelation betweeK and0, thenR= 0.
(28) idx C[X, X1.

(29) idy is a relation betweeK andX.

(30) Ifida € R thenA C domRandA C rngR.
(31) Ifidx € R, thenX =domRandX C rngR.
(32) Ifidy € R thenY C domRandY =rngR.

Let us consideK, Y, R, A. ThenRJA s a relation betweeK andY.
Let us consideK, Y, B, R. ThenBJ|Ris a relation betweeK andY.
Next we state four propositions:

(33) RIX;is arelation betweeK; andY.
(34) If X C Xy, thenR|Xy =R.
(35) Y1[Ris arelation betweeK andY;.
(36) IfY CYq, theni|R=R.

Let us consideK, Y, R, A. ThenR°Aiis a subset of. ThenR 1(A) is a subset oK.
Next we state two propositions:

(38f] R°X =mgRandR*(Y) = domR.
(39) RPR(Y)=rngRandR*(R°X) = domR.

The schem&el On Set Exleals with a sefd, a setB, and a binary predicat®, and states that:
There exists a relatioR between4 and B such that for alk, y holds(x, y) € Riff
x € 4 andy € B andP[x,y]
for all values of the parameters.
Let us consideK. A binary relation onX is a relation betweeK andX.
In the sequeR s a binary relation oiX.
The following proposition is true

4 The proposition (18) has been removed.
5 The propositions (20) and (21) have been removed.
6 The proposition (37) has been removed.
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(45f] R-idx =Randid-R=R

For simplicity, we adopt the following rule®, D1, D2, E, F denote non empty set® denotes
a relation betweeb andE, x denotes an element &f, andy denotes an element &f.
We now state several propositions:

(46) idp #0.
(47) For every element of D holdsx € domR iff there exists an elementof E such that(x,
y) eR

(48) For every element of E holdsy € rngR iff there exists an elementof D such that(x,
y)eR

(49) For every elememnt of D such thatx € domR there exists an elememgtof E such that
yerngR.

(50) For every elemeny of E such thaty € rngR there exists an elememntof D such that
x € domR.

(51) LetP be arelation betweelh andE, R be a relation betweels andF, x be an element of
D, andz be an element df. Then(x, z) € P-Rif and only if there exists an elemenbf E
such that(x, y) € Pand(y, z) e R

(52) ye R°D; iff there exists an elememntof D such that(x, y} € Randx € Dj.
(53) x < RY(D,) iff there exists an elementof E such that(x, y) € Randy € D.

The schem®&el On Dom Exleals with non empty sets, B and a binary predicat&, and states
that:
There exists a relatioR betweenq and B such that for every elemenrtof 2 and
for every elemeny of B holds(x, y) € Rif and only if P[x,y]
for all values of the parameters.
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" The propositions (40)—(44) have been removed.
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