Properties of Binary Relations¹

Edmund Woronowicz Warsaw University Białystok Anna Zalewska Warsaw University Białystok

Summary. The paper contains definitions of some properties of binary relations: reflexivity, irreflexivity, symmetry, asymmetry, antisymmetry, connectedness, strong connectedness, and transitivity. Basic theorems relating the above mentioned notions are given.

MML Identifier: RELAT_2.
WWW: http://mizar.org/JFM/Vol1/relat_2.html

The articles [2], [1], and [3] provide the notation and terminology for this paper. We follow the rules: *X* denotes a set, *x*, *y*, *z* denote sets, and *P*, *R* denote binary relations. Let us consider *R*, *X*. We say that *R* is reflexive in *X* if and only if:

(Def. 1) If $x \in X$, then $\langle x, x \rangle \in R$.

We say that *R* is irreflexive in *X* if and only if:

(Def. 2) If $x \in X$, then $\langle x, x \rangle \notin R$.

We say that *R* is symmetric in *X* if and only if:

(Def. 3) If $x \in X$ and $y \in X$ and $\langle x, y \rangle \in R$, then $\langle y, x \rangle \in R$.

We say that *R* is antisymmetric in *X* if and only if:

- (Def. 4) If $x \in X$ and $y \in X$ and $\langle x, y \rangle \in R$ and $\langle y, x \rangle \in R$, then x = y.
- We say that *R* is asymmetric in *X* if and only if:
- (Def. 5) If $x \in X$ and $y \in X$ and $\langle x, y \rangle \in R$, then $\langle y, x \rangle \notin R$.

We say that *R* is connected in *X* if and only if:

(Def. 6) If $x \in X$ and $y \in X$ and $x \neq y$, then $\langle x, y \rangle \in R$ or $\langle y, x \rangle \in R$.

We say that R is strongly connected in X if and only if:

(Def. 7) If $x \in X$ and $y \in X$, then $\langle x, y \rangle \in R$ or $\langle y, x \rangle \in R$.

We say that *R* is transitive in *X* if and only if:

(Def. 8) If $x \in X$ and $y \in X$ and $z \in X$ and $\langle x, y \rangle \in R$ and $\langle y, z \rangle \in R$, then $\langle x, z \rangle \in R$.

Let us consider R. We say that R is reflexive if and only if:

```
(Def. 9) R is reflexive in field R.
```

¹Supported by RPBP.III-24.C1.

We say that *R* is irreflexive if and only if:

(Def. 10) R is irreflexive in field R.

We say that *R* is symmetric if and only if:

- (Def. 11) *R* is symmetric in field *R*.We say that *R* is antisymmetric if and only if:
- (Def. 12) *R* is antisymmetric in field *R*. We say that *R* is asymmetric if and only if:
- (Def. 13) R is asymmetric in field R.

We say that *R* is connected if and only if:

(Def. 14) R is connected in field R.

We say that *R* is strongly connected if and only if:

(Def. 15) R is strongly connected in field R.

We say that *R* is transitive if and only if:

(Def. 16) R is transitive in field R.

One can prove the following propositions:

- $(17)^1$ *R* is reflexive iff $id_{fieldR} \subseteq R$.
- (18) R is irreflexive iff id_{fieldR} misses R.
- (19) *R* is antisymmetric in *X* iff $R \setminus id_X$ is asymmetric in *X*.
- (20) If *R* is asymmetric in *X*, then $R \cup id_X$ is antisymmetric in *X*.
- (21) If *R* is antisymmetric in *X*, then $R \setminus id_X$ is asymmetric in *X*.
- (22) If *R* is symmetric and transitive, then *R* is reflexive.
- (23) id_X is symmetric and id_X is transitive.
- (24) id_X is antisymmetric and id_X is reflexive.
- (25) If R is irreflexive and transitive, then R is asymmetric.
- (26) If R is asymmetric, then R is irreflexive and antisymmetric.
- (27) If *R* is reflexive, then R^{\sim} is reflexive.
- (28) If *R* is irreflexive, then R^{\sim} is irreflexive.
- (29) If *R* is reflexive, then dom $R = \text{dom}(R^{\sim})$ and $\text{rng} R = \text{rng}(R^{\sim})$.
- (30) *R* is symmetric iff $R = R^{\sim}$.
- (31) If *P* is reflexive and *R* is reflexive, then $P \cup R$ is reflexive and $P \cap R$ is reflexive.
- (32) If *P* is irreflexive and *R* is irreflexive, then $P \cup R$ is irreflexive and $P \cap R$ is irreflexive.
- (33) If *P* is irreflexive, then $P \setminus R$ is irreflexive.
- (34) If *R* is symmetric, then R^{\sim} is symmetric.

¹ The propositions (1)–(16) have been removed.

- (35) If *P* is symmetric and *R* is symmetric, then $P \cup R$ is symmetric and $P \cap R$ is symmetric and $P \setminus R$ is symmetric.
- (36) If *R* is asymmetric, then R^{\sim} is asymmetric.
- (37) If *P* is asymmetric and *R* is asymmetric, then $P \cap R$ is asymmetric.
- (38) If *P* is asymmetric, then $P \setminus R$ is asymmetric.
- (39) *R* is antisymmetric iff $R \cap R^{\smile} \subseteq id_{dom R}$.
- (40) If *R* is antisymmetric, then R^{\sim} is antisymmetric.
- (41) If *P* is antisymmetric, then $P \cap R$ is antisymmetric and $P \setminus R$ is antisymmetric.
- (42) If *R* is transitive, then R^{\sim} is transitive.
- (43) If *P* is transitive and *R* is transitive, then $P \cap R$ is transitive.
- (44) *R* is transitive iff $R \cdot R \subseteq R$.
- (45) *R* is connected iff [: field *R*, field *R*:] \ id_{field R} \subseteq *R* \cup *R*^{\sim}.
- (46) If R is strongly connected, then R is connected and reflexive.
- (47) *R* is strongly connected iff [: field *R*, field *R*:] = $R \cup R^{\sim}$.

References

- Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_ 1.html.
- [2] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [3] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received March 15, 1989

Published January 2, 2004