Relations and Their Basic Properties

Edmund Woronowicz Warsaw University Białystok

Summary. We define here: mode Relation as a set of pairs, the domain, the codomain, and the field of relation; the empty and the identity relations, the composition of relations, the image and the inverse image of a set under a relation. Two predicates, = and \subseteq , and three functions, \cup , \cap and \setminus are redefined. Basic facts about the above mentioned notions are presented.

MML Identifier: RELAT_1.

WWW: http://mizar.org/JFM/Vol1/relat_1.html

The articles [2] and [1] provide the notation and terminology for this paper.

In this paper A, X, Y, Y_1 , Y_2 , a, b, c, d, x, y, z are sets.

Let I_1 be a set. We say that I_1 is relation-like if and only if:

(Def. 1) If $x \in I_1$, then there exist y, z such that $x = \langle y, z \rangle$.

Let us note that there exists a set which is relation-like and empty.

A binary relation is a relation-like set.

In the sequel P, P_1 , P_2 , Q, R, S denote binary relations.

We now state four propositions:

- $(3)^1$ If $A \subseteq R$, then A is relation-like.
- (4) $\{\langle x, y \rangle\}$ is relation-like.
- (5) $\{\langle a, b \rangle, \langle c, d \rangle\}$ is relation-like.
- (6) [:X,Y:] is relation-like.

The scheme *Rel Existence* deals with sets \mathcal{A} , \mathcal{B} and a binary predicate \mathcal{P} , and states that: There exists a binary relation R such that for all x, y holds $\langle x, y \rangle \in R$ iff $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}[x, y]$

for all values of the parameters.

Let us consider P, R. Let us observe that P = R if and only if:

(Def. 2) For all a, b holds $\langle a, b \rangle \in P$ iff $\langle a, b \rangle \in R$.

Let us consider P, R. One can verify the following observations:

- * $P \cap R$ is relation-like,
- * $P \cup R$ is relation-like, and

¹ The propositions (1) and (2) have been removed.

* $P \setminus R$ is relation-like.

Let us consider P, R. Let us observe that $P \subseteq R$ if and only if:

(Def. 3) For all a, b such that $\langle a, b \rangle \in P$ holds $\langle a, b \rangle \in R$.

The following two propositions are true:

- $(9)^2$ $X \cap R$ is a binary relation.
- (10) $R \setminus X$ is a binary relation.

Let us consider R. The functor dom R yields a set and is defined by:

(Def. 4) $x \in \text{dom } R$ iff there exists y such that $\langle x, y \rangle \in R$.

Next we state three propositions:

- $(13)^3 \quad \operatorname{dom}(P \cup R) = \operatorname{dom} P \cup \operatorname{dom} R.$
- (14) $\operatorname{dom}(P \cap R) \subseteq \operatorname{dom} P \cap \operatorname{dom} R$.
- (15) $\operatorname{dom} P \setminus \operatorname{dom} R \subseteq \operatorname{dom}(P \setminus R)$.

Let us consider R. The functor rng R yields a set and is defined as follows:

(Def. 5) $y \in \operatorname{rng} R$ iff there exists x such that $\langle x, y \rangle \in R$.

The following propositions are true:

- $(18)^4$ If $x \in \text{dom } R$, then there exists y such that $y \in \text{rng } R$.
- (19) If $y \in \operatorname{rng} R$, then there exists x such that $x \in \operatorname{dom} R$.
- (20) If $\langle x, y \rangle \in R$, then $x \in \text{dom } R$ and $y \in \text{rng } R$.
- (21) $R \subseteq [: dom R, rng R:].$
- (22) $R \cap [: \operatorname{dom} R, \operatorname{rng} R:] = R.$
- (23) If $R = \{\langle x, y \rangle\}$, then dom $R = \{x\}$ and rng $R = \{y\}$.
- (24) If $R = \{\langle a, b \rangle, \langle x, y \rangle\}$, then dom $R = \{a, x\}$ and rng $R = \{b, y\}$.
- (25) If $P \subseteq R$, then dom $P \subseteq \text{dom } R$ and rng $P \subseteq \text{rng } R$.
- (26) $\operatorname{rng}(P \cup R) = \operatorname{rng} P \cup \operatorname{rng} R$.
- (27) $\operatorname{rng}(P \cap R) \subseteq \operatorname{rng} P \cap \operatorname{rng} R$.
- (28) $\operatorname{rng} P \setminus \operatorname{rng} R \subseteq \operatorname{rng}(P \setminus R)$.

Let us consider R. The functor field R yields a set and is defined by:

(Def. 6) field $R = \text{dom } R \cup \text{rng } R$.

The following propositions are true:

- (29) $\operatorname{dom} R \subseteq \operatorname{field} R$ and $\operatorname{rng} R \subseteq \operatorname{field} R$.
- (30) If $\langle a, b \rangle \in R$, then $a \in \text{field } R$ and $b \in \text{field } R$.
- (31) If $P \subseteq R$, then field $P \subseteq \text{field } R$.

² The propositions (7) and (8) have been removed.

³ The propositions (11) and (12) have been removed.

⁴ The propositions (16) and (17) have been removed.

- (32) If $R = \{\langle x, y \rangle\}$, then field $R = \{x, y\}$.
- (33) $\operatorname{field}(P \cup R) = \operatorname{field} P \cup \operatorname{field} R$.
- (34) $\operatorname{field}(P \cap R) \subseteq \operatorname{field} P \cap \operatorname{field} R$.

Let us consider R. The functor R^{\sim} yields a binary relation and is defined as follows:

(Def. 7)
$$\langle x, y \rangle \in R^{\smile}$$
 iff $\langle y, x \rangle \in R$.

Let us note that the functor R^{\sim} is involutive.

We now state several propositions:

$$(37)^5$$
 rng $R = dom(R^{\smile})$ and $dom R = rng(R^{\smile})$.

- (38) $\operatorname{field} R = \operatorname{field}(R^{\smile}).$
- $(39) \quad (P \cap R)^{\smile} = P^{\smile} \cap R^{\smile}.$
- $(40) \quad (P \cup R)^{\smile} = P^{\smile} \cup R^{\smile}.$
- $(41) \quad (P \setminus R)^{\smile} = P^{\smile} \setminus R^{\smile}.$

Let us consider P, R. The functor $P \cdot R$ yielding a binary relation is defined as follows:

(Def. 8)
$$\langle x, y \rangle \in P \cdot R$$
 iff there exists z such that $\langle x, z \rangle \in P$ and $\langle z, y \rangle \in R$.

One can prove the following propositions:

- $(44)^6$ dom $(P \cdot R) \subseteq \text{dom } P$.
- (45) $\operatorname{rng}(P \cdot R) \subseteq \operatorname{rng} R$.
- (46) If $\operatorname{rng} R \subseteq \operatorname{dom} P$, then $\operatorname{dom}(R \cdot P) = \operatorname{dom} R$.
- (47) If dom $P \subseteq \operatorname{rng} R$, then $\operatorname{rng}(R \cdot P) = \operatorname{rng} P$.
- (48) If $P \subseteq R$, then $Q \cdot P \subseteq Q \cdot R$.
- (49) If $P \subseteq Q$, then $P \cdot R \subseteq Q \cdot R$.
- (50) If $P \subseteq R$ and $Q \subseteq S$, then $P \cdot Q \subseteq R \cdot S$.
- (51) $P \cdot (R \cup Q) = P \cdot R \cup P \cdot Q$.
- (52) $P \cdot (R \cap Q) \subseteq (P \cdot R) \cap (P \cdot Q)$.
- (53) $P \cdot R \setminus P \cdot Q \subseteq P \cdot (R \setminus Q)$.
- $(54) \quad (P \cdot R)^{\smile} = R^{\smile} \cdot P^{\smile}.$
- (55) $(P \cdot R) \cdot Q = P \cdot (R \cdot Q)$.

Let us mention that every set which is empty is also relation-like.

Let us observe that \emptyset is relation-like.

Let us observe that there exists a binary relation which is non empty.

Let f be a non empty binary relation. One can check that dom f is non empty and rng f is non empty.

Next we state three propositions:

(56) If for all x, y holds $\langle x, y \rangle \notin R$, then $R = \emptyset$.

⁵ The propositions (35) and (36) have been removed.

⁶ The propositions (42) and (43) have been removed.

$$(60)^7$$
 dom $\emptyset = \emptyset$ and rng $\emptyset = \emptyset$.

$$(62)^8$$
 $\emptyset \cdot R = \emptyset$ and $R \cdot \emptyset = \emptyset$.

Let *X* be an empty set. Observe that dom *X* is empty and rng *X* is empty. Let us consider *R*. Note that $X \cdot R$ is empty and $R \cdot X$ is empty.

The following four propositions are true:

- (63) $R \cdot \emptyset = \emptyset \cdot R$.
- (64) If $dom R = \emptyset$ or $rng R = \emptyset$, then $R = \emptyset$.
- (65) $\operatorname{dom} R = \emptyset \text{ iff rng } R = \emptyset.$
- (66) $0^{\circ} = 0$.

Let X be an empty set. One can verify that X^{\sim} is empty.

The following proposition is true

(67) If rng *R* misses dom *P*, then $R \cdot P = \emptyset$.

Let *R* be a binary relation. We say that *R* is non-empty if and only if:

(Def. 9) $\emptyset \notin \operatorname{rng} R$.

Let us consider X. The functor id_X yields a binary relation and is defined as follows:

(Def. 10)
$$\langle x, y \rangle \in id_X \text{ iff } x \in X \text{ and } x = y.$$

The following propositions are true:

$$(71)^9$$
 dom(id_X) = X and rng(id_X) = X.

- $(72) \quad (\mathrm{id}_X)^{\smile} = \mathrm{id}_X.$
- (73) If for every x such that $x \in X$ holds $\langle x, x \rangle \in R$, then $id_X \subseteq R$.
- (74) $\langle x, y \rangle \in id_X \cdot R \text{ iff } x \in X \text{ and } \langle x, y \rangle \in R.$
- (75) $\langle x, y \rangle \in R \cdot id_Y \text{ iff } y \in Y \text{ and } \langle x, y \rangle \in R.$
- (76) $R \cdot id_X \subseteq R$ and $id_X \cdot R \subseteq R$.
- (77) If $dom R \subseteq X$, then $id_X \cdot R = R$.
- (78) $id_{dom R} \cdot R = R$.
- (79) If $\operatorname{rng} R \subseteq Y$, then $R \cdot \operatorname{id}_Y = R$.
- (80) $R \cdot id_{rngR} = R$.
- (81) $id_0 = 0$.
- (82) If dom R = X and rng $P_2 \subseteq X$ and $P_2 \cdot R = \mathrm{id}_{\mathrm{dom}P_1}$ and $R \cdot P_1 = \mathrm{id}_X$, then $P_1 = P_2$.

Let us consider R, X. The functor $R \upharpoonright X$ yielding a binary relation is defined by:

(Def. 11)
$$\langle x, y \rangle \in R \upharpoonright X \text{ iff } x \in X \text{ and } \langle x, y \rangle \in R.$$

One can prove the following propositions:

⁷ The propositions (57)–(59) have been removed.

⁸ The proposition (61) has been removed.

⁹ The propositions (68)–(70) have been removed.

$$(86)^{10}$$
 $x \in \text{dom}(R \upharpoonright X) \text{ iff } x \in X \text{ and } x \in \text{dom} R.$

(87)
$$\operatorname{dom}(R \upharpoonright X) \subseteq X$$
.

(88)
$$R \upharpoonright X \subseteq R$$
.

(89)
$$\operatorname{dom}(R \upharpoonright X) \subseteq \operatorname{dom} R$$
.

(90)
$$\operatorname{dom}(R \upharpoonright X) = \operatorname{dom} R \cap X$$
.

(91) If
$$X \subseteq \text{dom } R$$
, then $\text{dom}(R \upharpoonright X) = X$.

(92)
$$(R \upharpoonright X) \cdot P \subseteq R \cdot P$$
.

(93)
$$P \cdot (R \upharpoonright X) \subseteq P \cdot R$$
.

(94)
$$R \upharpoonright X = \mathrm{id}_X \cdot R$$
.

(95)
$$R \upharpoonright X = \emptyset$$
 iff dom R misses X .

(96)
$$R \upharpoonright X = R \cap [:X, \operatorname{rng} R:].$$

(97) If dom
$$R \subseteq X$$
, then $R \upharpoonright X = R$.

(98)
$$R \upharpoonright \text{dom} R = R$$
.

(99)
$$\operatorname{rng}(R \upharpoonright X) \subseteq \operatorname{rng} R$$
.

(100)
$$R \upharpoonright X \upharpoonright Y = R \upharpoonright (X \cap Y).$$

(101)
$$R \upharpoonright X \upharpoonright X = R \upharpoonright X$$
.

(102) If
$$X \subseteq Y$$
, then $R \upharpoonright X \upharpoonright Y = R \upharpoonright X$.

(103) If
$$Y \subseteq X$$
, then $R \upharpoonright X \upharpoonright Y = R \upharpoonright Y$.

(104) If
$$X \subseteq Y$$
, then $R \upharpoonright X \subseteq R \upharpoonright Y$.

(105) If
$$P \subseteq R$$
, then $P \upharpoonright X \subseteq R \upharpoonright X$.

(106) If
$$P \subseteq R$$
 and $X \subseteq Y$, then $P \upharpoonright X \subseteq R \upharpoonright Y$.

(107)
$$R \upharpoonright (X \cup Y) = R \upharpoonright X \cup R \upharpoonright Y$$
.

(108)
$$R \upharpoonright (X \cap Y) = (R \upharpoonright X) \cap (R \upharpoonright Y).$$

$$(109) \quad R \upharpoonright (X \setminus Y) = R \upharpoonright X \setminus R \upharpoonright Y.$$

(110)
$$R \upharpoonright \emptyset = \emptyset$$
.

(111)
$$\emptyset \upharpoonright X = \emptyset$$
.

$$(112) \quad (P \cdot R) \upharpoonright X = (P \upharpoonright X) \cdot R.$$

Let us consider Y, R. The functor $Y \upharpoonright R$ yields a binary relation and is defined by:

(Def. 12)
$$\langle x, y \rangle \in Y \upharpoonright R \text{ iff } y \in Y \text{ and } \langle x, y \rangle \in R.$$

We now state a number of propositions:

$$(115)^{11}$$
 $y \in \operatorname{rng}(Y \upharpoonright R)$ iff $y \in Y$ and $y \in \operatorname{rng} R$.

(116)
$$\operatorname{rng}(Y \upharpoonright R) \subseteq Y$$
.

(117)
$$Y \upharpoonright R \subseteq R$$
.

¹⁰ The propositions (83)–(85) have been removed.

¹¹ The propositions (113) and (114) have been removed.

- (118) $\operatorname{rng}(Y \upharpoonright R) \subseteq \operatorname{rng} R$.
- (119) $\operatorname{rng}(Y \upharpoonright R) = \operatorname{rng} R \cap Y$.
- (120) If $Y \subseteq \operatorname{rng} R$, then $\operatorname{rng}(Y \upharpoonright R) = Y$.
- $(121) \quad (Y \upharpoonright R) \cdot P \subseteq R \cdot P.$
- (122) $P \cdot (Y \upharpoonright R) \subseteq P \cdot R$.
- (123) $Y \upharpoonright R = R \cdot id_Y$.
- (124) $Y \upharpoonright R = R \cap [: dom R, Y :].$
- (125) If $\operatorname{rng} R \subseteq Y$, then $Y \upharpoonright R = R$.
- (126) $\operatorname{rng} R \upharpoonright R = R$.
- $(127) \quad Y \upharpoonright (X \upharpoonright R) = (Y \cap X) \upharpoonright R.$
- (128) $Y \upharpoonright (Y \upharpoonright R) = Y \upharpoonright R$.
- (129) If $X \subseteq Y$, then $Y \upharpoonright (X \upharpoonright R) = X \upharpoonright R$.
- (130) If $Y \subseteq X$, then $Y \upharpoonright (X \upharpoonright R) = Y \upharpoonright R$.
- (131) If $X \subseteq Y$, then $X \upharpoonright R \subseteq Y \upharpoonright R$.
- (132) If $P_1 \subseteq P_2$, then $Y \upharpoonright P_1 \subseteq Y \upharpoonright P_2$.
- (133) If $P_1 \subseteq P_2$ and $Y_1 \subseteq Y_2$, then $Y_1 \upharpoonright P_1 \subseteq Y_2 \upharpoonright P_2$.
- (134) $(X \cup Y) \upharpoonright R = X \upharpoonright R \cup Y \upharpoonright R$.
- $(135) \quad (X \cap Y) \upharpoonright R = (X \upharpoonright R) \cap (Y \upharpoonright R).$
- $(136) \quad (X \setminus Y) \upharpoonright R = X \upharpoonright R \setminus Y \upharpoonright R.$
- (137) $\emptyset \upharpoonright R = \emptyset$.
- (138) $Y \upharpoonright \emptyset = \emptyset$.
- (139) $Y \upharpoonright (P \cdot R) = P \cdot (Y \upharpoonright R)$.
- $(140) \quad (Y \upharpoonright R) \upharpoonright X = Y \upharpoonright (R \upharpoonright X).$

Let us consider R, X. The functor $R^{\circ}X$ yielding a set is defined as follows:

(Def. 13) $y \in R^{\circ}X$ iff there exists x such that $\langle x, y \rangle \in R$ and $x \in X$.

One can prove the following propositions:

- $(143)^{12}$ $y \in R^{\circ}X$ iff there exists x such that $x \in \text{dom } R$ and $\langle x, y \rangle \in R$ and $x \in X$.
- (144) $R^{\circ}X \subseteq \operatorname{rng} R$.
- $(145) \quad R^{\circ}X = R^{\circ}(\operatorname{dom}R \cap X).$
- (146) $R^{\circ} \operatorname{dom} R = \operatorname{rng} R$.
- (147) $R^{\circ}X \subseteq R^{\circ} \operatorname{dom} R$.
- (148) $\operatorname{rng}(R \upharpoonright X) = R^{\circ} X$.
- $(149) \quad R^{\circ}\emptyset = \emptyset.$

¹² The propositions (141) and (142) have been removed.

- (150) $0^{\circ}X = 0$.
- (151) $R^{\circ}X = \emptyset$ iff dom *R* misses *X*.
- (152) If $X \neq \emptyset$ and $X \subseteq \text{dom } R$, then $R^{\circ}X \neq \emptyset$.
- $(153) \quad R^{\circ}(X \cup Y) = R^{\circ}X \cup R^{\circ}Y.$
- (154) $R^{\circ}(X \cap Y) \subseteq R^{\circ}X \cap R^{\circ}Y$.
- $(155) \quad R^{\circ}X \setminus R^{\circ}Y \subseteq R^{\circ}(X \setminus Y).$
- (156) If $X \subseteq Y$, then $R^{\circ}X \subseteq R^{\circ}Y$.
- (157) If $P \subseteq R$, then $P^{\circ}X \subseteq R^{\circ}X$.
- (158) If $P \subseteq R$ and $X \subseteq Y$, then $P^{\circ}X \subseteq R^{\circ}Y$.
- $(159) \quad (P \cdot R)^{\circ} X = R^{\circ} P^{\circ} X.$
- (160) $\operatorname{rng}(P \cdot R) = R^{\circ} \operatorname{rng} P$.
- (161) $(R \upharpoonright X)^{\circ} Y \subseteq R^{\circ} Y$.
- $(163)^{13}$ dom $R \cap X \subseteq (R^{\smile})^{\circ} R^{\circ} X$.

Let us consider R, Y. The functor $R^{-1}(Y)$ yielding a set is defined as follows:

(Def. 14) $x \in R^{-1}(Y)$ iff there exists y such that $\langle x, y \rangle \in R$ and $y \in Y$.

Next we state a number of propositions:

- (166)¹⁴ $x \in R^{-1}(Y)$ iff there exists y such that $y \in \operatorname{rng} R$ and $\langle x, y \rangle \in R$ and $y \in Y$.
- $(167) \quad R^{-1}(Y) \subseteq \text{dom } R.$
- (168) $R^{-1}(Y) = R^{-1}(\operatorname{rng} R \cap Y).$
- (169) $R^{-1}(\operatorname{rng} R) = \operatorname{dom} R$.
- (170) $R^{-1}(Y) \subseteq R^{-1}(\operatorname{rng} R)$.
- (171) $R^{-1}(\emptyset) = \emptyset$.
- (172) $0^{-1}(Y) = 0$.
- (173) $R^{-1}(Y) = \emptyset$ iff rng R misses Y.
- (174) If $Y \neq \emptyset$ and $Y \subseteq \operatorname{rng} R$, then $R^{-1}(Y) \neq \emptyset$.
- (175) $R^{-1}(X \cup Y) = R^{-1}(X) \cup R^{-1}(Y)$.
- (176) $R^{-1}(X \cap Y) \subseteq R^{-1}(X) \cap R^{-1}(Y)$.
- (177) $R^{-1}(X) \setminus R^{-1}(Y) \subseteq R^{-1}(X \setminus Y)$.
- (178) If $X \subseteq Y$, then $R^{-1}(X) \subseteq R^{-1}(Y)$.
- (179) If $P \subseteq R$, then $P^{-1}(Y) \subseteq R^{-1}(Y)$.
- (180) If $P \subseteq R$ and $X \subseteq Y$, then $P^{-1}(X) \subseteq R^{-1}(Y)$.
- (181) $(P \cdot R)^{-1}(Y) = P^{-1}(R^{-1}(Y)).$
- (182) $dom(P \cdot R) = P^{-1}(dom R)$.
- (183) $\operatorname{rng} R \cap Y \subseteq (R^{\smile})^{-1} (R^{-1}(Y)).$

¹³ The proposition (162) has been removed.

¹⁴ The propositions (164) and (165) have been removed.

REFERENCES

- [1] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_1.html.
- [2] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.

Received March 15, 1989

Published January 2, 2004