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Summary. Basic facts of arithmetics of real numbers are presented: definitions and
properties of the complement element, the inverse element, subtraction and division; some
basic properties of the set REAL (e.g. density), and the scheme of separation for sets of reals.
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The articles [2], [4], [1], and [3] provide the notation and terminology for this paper.
In this paperx, y, z, t denote real numbers.
Let us note that every element ofR is real.
A real number is an element ofR.
Let x be a real number. Then−x is a real number. Thenx−1 is a real number.
Let x, y be real numbers. Thenx+y is a real number. Thenx ·y is a real number. Thenx−y is

a real number. Thenxy is a real number.
The following propositions are true:

(25)1 x−0 = x.

(26) −0 = 0.

(49)2 If x≤ y, thenx−z≤ y−z.

(50) x≤ y iff −y≤−x.

(52)3 If x≤ y andz≤ 0, theny·z≤ x ·z.

(53) If x+z≤ y+z, thenx≤ y.

(54) If x−z≤ y−z, thenx≤ y.

(55) If x≤ y andz≤ t, thenx+z≤ y+ t.

Let y, x be real numbers. Let us observe thatx < y if and only if:

(Def. 5)4 x≤ y andx 6= y.

We now state a number of propositions:

(66)5 x < 0 iff 0 <−x.

1 The propositions (1)–(24) have been removed.
2 The propositions (27)–(48) have been removed.
3 The proposition (51) has been removed.
4 The definitions (Def. 1)–(Def. 4) have been removed.
5 The propositions (56)–(65) have been removed.
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(67) If x < y andz≤ t, thenx+z< y+ t.

(69)6 If 0 < x, theny < y+x.

(70) If 0 < z andx < y, thenx ·z< y·z.

(71) If z< 0 andx < y, theny·z< x ·z.

(72) If 0 < z, then 0< z−1.

(73) If 0 < z, thenx < y iff x
z < y

z.

(74) If z< 0, thenx < y iff y
z < x

z.

(75) If x < y, then there existsz such thatx < z andz< y.

(76) For everyx there existsy such thatx < y.

(77) For everyx there existsy such thaty < x.

The schemeSepRealconcerns a unary predicateP , and states that:
There exists a subsetX of R such that for every real numberx holdsx∈ X iff P [x]

for all values of the parameters.
Next we state four propositions:

(84)7 x+y≤ z iff x≤ z−y.

(86)8 x≤ y+z iff x−y≤ z.

(92)9 If x ≤ y and z≤ t, then x− t ≤ y− z and if x < y and z≤ t or x ≤ y and z < t, then
x− t < y−z.

(93) 0≤ x ·x.
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6 The proposition (68) has been removed.
7 The propositions (78)–(83) have been removed.
8 The proposition (85) has been removed.
9 The propositions (87)–(91) have been removed.
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