Basic Properties of Real Numbers ## Krzysztof Hryniewiecki Warsaw University **Summary.** Basic facts of arithmetics of real numbers are presented: definitions and properties of the complement element, the inverse element, subtraction and division; some basic properties of the set REAL (e.g. density), and the scheme of separation for sets of reals. MML Identifier: REAL_1. WWW: http://mizar.org/JFM/Vol1/real_1.html The articles [2], [4], [1], and [3] provide the notation and terminology for this paper. In this paper x, y, z, t denote real numbers. Let us note that every element of \mathbb{R} is real. A real number is an element of \mathbb{R} . Let x be a real number. Then -x is a real number. Then x^{-1} is a real number. Let x, y be real numbers. Then x + y is a real number. Then $x \cdot y$ is a real number. Then $\frac{x}{y}$ is a real number. The following propositions are true: - $(25)^1$ x-0=x. - $(26) \quad -0 = 0.$ - $(49)^2$ If x < y, then x z < y z. - (50) $x \le y \text{ iff } -y \le -x.$ - $(52)^3$ If $x \le y$ and $z \le 0$, then $y \cdot z \le x \cdot z$. - (53) If $x+z \le y+z$, then $x \le y$. - (54) If $x z \le y z$, then $x \le y$. - (55) If $x \le y$ and $z \le t$, then $x + z \le y + t$. Let y, x be real numbers. Let us observe that x < y if and only if: (Def. 5)⁴ $$x \le y$$ and $x \ne y$. We now state a number of propositions: $$(66)^5$$ $x < 0$ iff $0 < -x$. ¹ The propositions (1)–(24) have been removed. ² The propositions (27)–(48) have been removed. ³ The proposition (51) has been removed. ⁴ The definitions (Def. 1)–(Def. 4) have been removed. ⁵ The propositions (56)–(65) have been removed. - (67) If x < y and $z \le t$, then x + z < y + t. - $(69)^6$ If 0 < x, then y < y + x. - (70) If 0 < z and x < y, then $x \cdot z < y \cdot z$. - (71) If z < 0 and x < y, then $y \cdot z < x \cdot z$. - (72) If 0 < z, then $0 < z^{-1}$. - (73) If 0 < z, then x < y iff $\frac{x}{z} < \frac{y}{z}$. - (74) If z < 0, then x < y iff $\frac{y}{z} < \frac{x}{z}$. - (75) If x < y, then there exists z such that x < z and z < y. - (76) For every x there exists y such that x < y. - (77) For every x there exists y such that y < x. The scheme SepReal concerns a unary predicate \mathcal{P} , and states that: There exists a subset X of \mathbb{R} such that for every real number x holds $x \in X$ iff $\mathcal{P}[x]$ for all values of the parameters. Next we state four propositions: $$(84)^7 \quad x + y \le z \text{ iff } x \le z - y.$$ $$(86)^8$$ $x \le y + z \text{ iff } x - y \le z.$ - (92) If $x \le y$ and $z \le t$, then $x t \le y z$ and if x < y and $z \le t$ or $x \le y$ and z < t, then x t < y z. - $(93) \quad 0 \le x \cdot x.$ ## REFERENCES - [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. - [2] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html. - [3] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html - [4] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. Received January 8, 1989 Published January 2, 2004 ⁶ The proposition (68) has been removed. ⁷ The propositions (78)–(83) have been removed. ⁸ The proposition (85) has been removed. ⁹ The propositions (87)–(91) have been removed.