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The articles [12], [8], [13], [11], [14], [5], [4], [9], [16], [1], [2], [7], and [6] provide the notation
and terminology for this paper.

Let X be a set and letY be a subset of 2X. Then
⋃

Y is a subset ofX.
In this article we present several logical schemes. The schemeDenestFraenkeldeals with a non

empty setA , a non empty setB, a unary functorF yielding a set, a unary functorG yielding an
element ofB, and a unary predicateP , and states that:

{F (a);a ranges over elements ofB : a ∈ {G(b);b ranges over elements ofA :
P [b]}}= {F (G(a));a ranges over elements ofA : P [a]}

for all values of the parameters.
The schemeEmptyFraenkeldeals with a non empty setA , a unary functorF yielding a set, and

a unary predicateP , and states that:
{F (a);a ranges over elements ofA : P [a]}= /0

provided the following requirement is met:
• It is not true that there exists an elementa of A such thatP [a].

We now state two propositions:

(1) Let L1, L2 be non empty lattice structures. Suppose the lattice structure ofL1 = the lattice
structure ofL2. Leta1, b1 be elements ofL1, a2, b2 be elements ofL2, andX be a set. Suppose
a1 = a2 andb1 = b2. Thena1tb1 = a2tb2 anda1ub1 = a2ub2 anda1 v b1 iff a2 v b2.

(2) Let L1, L2 be non empty lattice structures. Suppose the lattice structure ofL1 = the lattice
structure ofL2. Let a be an element ofL1, b be an element ofL2, andX be a set such that
a = b. Then

(i) av X iff bv X, and

(ii) aw X iff bw X.

Let L be a 1-sorted structure. A unary operation onL is a map fromL into L.
Let L be a non empty lattice structure and letX be a subset ofL. We say thatX is directed if and

only if:

(Def. 1) For every finite subsetY of X there exists an elementx of L such that
⊔

LY v x andx∈ X.

One can prove the following proposition
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(3) For every non empty lattice structureL and for every subsetX of L such thatX is directed
holdsX is non empty.

We introduce quantale structures which are extensions of lattice structure and groupoid and are
systems

〈 a carrier, a join operation, a meet operation, a multiplication〉,
where the carrier is a set and the join operation, the meet operation, and the multiplication are binary
operations on the carrier.

Let us note that there exists a quantale structure which is non empty.
We consider quasinet structures as extensions of quantale structure and multiplicative loop struc-

ture as systems
〈 a carrier, a join operation, a meet operation, a multiplication, a unity〉,

where the carrier is a set, the join operation, the meet operation, and the multiplication are binary
operations on the carrier, and the unity is an element of the carrier.

Let us note that there exists a quasinet structure which is non empty.
Let I1 be a non empty groupoid. We say thatI1 has left-zero if and only if:

(Def. 2) There exists an elementa of I1 such that for every elementb of I1 holdsa·b = a.

We say thatI1 has right-zero if and only if:

(Def. 3) There exists an elementb of I1 such that for every elementa of I1 holdsa·b = b.

Let I1 be a non empty groupoid. We say thatI1 has zero if and only if:

(Def. 4) I1 has left-zero and right-zero.

Let us observe that every non empty groupoid which has zero has also left-zero and right-zero
and every non empty groupoid which has left-zero and right-zero has also zero.

Let us observe that there exists a non empty groupoid which has zero.
Let I1 be a non empty quantale structure. We say thatI1 is right distributive if and only if:

(Def. 5) For every elementa of I1 and for every setX holdsa⊗
⊔

I1 X =
⊔

I1{a⊗b;b ranges over
elements ofI1: b∈ X}.

We say thatI1 is left distributive if and only if:

(Def. 6) For every elementa of I1 and for every setX holds
⊔

I1 X⊗a =
⊔

I1{b⊗a;b ranges over
elements ofI1: b∈ X}.

We say thatI1 is⊗-additive if and only if:

(Def. 7) For all elementsa, b, c of I1 holds(atb)⊗c= a⊗ctb⊗c andc⊗ (atb) = c⊗atc⊗b.

We say thatI1 is⊗-continuous if and only if the condition (Def. 8) is satisfied.

(Def. 8) LetX1, X2 be subsets ofI1. SupposeX1 is directed andX2 is directed. Then
⊔

X1⊗
⊔

X2 =⊔
I1{a⊗b;a ranges over elements ofI1, b ranges over elements ofI1: a∈ X1 ∧ b∈ X2}.

We now state the proposition

(4) Let Q be a non empty quantale structure. Suppose the lattice structure ofQ = the lattice
of subsets of/0. ThenQ is associative, commutative, unital, complete, right distributive, left
distributive, and lattice-like and has zero.

Let A be a non empty set and letb1, b2, b3 be binary operations onA. Note that〈A,b1,b2,b3〉 is
non empty.

One can check that there exists a non empty quantale structure which is associative, commuta-
tive, unital, left distributive, right distributive, complete, and lattice-like and has zero.

The schemeLUBFraenkelDistrdeals with a complete lattice-like non empty quantale structure
A , a binary functorF yielding an element ofA , and setsB, C , and states that:
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⊔
A{

⊔
A{F (a,b);b ranges over elements ofA : b ∈ C};a ranges over elements of

A : a∈ B} =
⊔

A{F (a,b);a ranges over elements ofA ,b ranges over elements of
A : a∈ B ∧ b∈ C}

for all values of the parameters.
In the sequelQ denotes a left distributive right distributive complete lattice-like non empty

quantale structure anda, b, c denote elements ofQ.
Next we state two propositions:

(5) For everyQ and for all setsX, Y holds
⊔

QX⊗
⊔

QY =
⊔

Q{a⊗b : a∈ X ∧ b∈Y}.

(6) (atb)⊗c = a⊗ctb⊗c andc⊗ (atb) = c⊗atc⊗b.

Let A be a non empty set, letb1, b2, b3 be binary operations onA, and lete be an element ofA.
Observe that〈A,b1,b2,b3,e〉 is non empty.

One can verify that there exists a non empty quasinet structure which is complete and lattice-
like.

Let us mention that every complete lattice-like non empty quasinet structure which is left dis-
tributive and right distributive is also⊗-continuous and⊗-additive.

Let us observe that there exists a non empty quasinet structure which is associative, commu-
tative, well unital, left distributive, right distributive, complete, and lattice-like and has zero and
left-zero.

A quantale is an associative left distributive right distributive complete lattice-like non empty
quantale structure. A quasinet is a well unital associative⊗-continuous⊗-additive complete lattice-
like non empty quasinet structure with left-zero.

A Blikle net is a non empty quasinet with zero.
The following proposition is true

(7) For every well unital non empty quasinet structureQ such thatQ is a quantale holdsQ is a
Blikle net.

We use the following convention:Q denotes a quantale anda, b, c, d, D denote elements ofQ.
Next we state two propositions:

(8) If av b, thena⊗cv b⊗c andc⊗av c⊗b.

(9) If av b andcv d, thena⊗cv b⊗d.

Let f be a function. We say thatf is idempotent if and only if:

(Def. 9) f · f = f .

Let L be a non empty lattice structure and letI1 be a unary operation onL. We say thatI1 is
inflationary if and only if:

(Def. 10) For every elementp of L holdspv I1(p).

We say thatI1 is deflationary if and only if:

(Def. 11) For every elementp of L holdsI1(p)v p.

We say thatI1 is monotone if and only if:

(Def. 12) For all elementsp, q of L such thatpv q holdsI1(p)v I1(q).

We say thatI1 is
⊔

-distributive if and only if:

(Def. 13) For every subsetX of L holdsI1(
⊔

X)v
⊔

L{I1(a);a ranges over elements ofL: a∈ X}.

Let L be a lattice. One can check that there exists a unary operation onL which is inflationary,
deflationary, and monotone.

Next we state the proposition
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(10) LetL be a complete lattice andj be a unary operation onL. Supposej is monotone. Then
j is

⊔
-distributive if and only if for every subsetX of L holds j(

⊔
X) =

⊔
L{ j(a);a ranges

over elements ofL: a∈ X}.

Let Q be a non empty quantale structure and letI1 be a unary operation onQ. We say thatI1 is
⊗-monotone if and only if:

(Def. 14) For all elementsa, b of Q holdsI1(a)⊗ I1(b)v I1(a⊗b).

Let Q be a non empty quantale structure and leta, b be elements ofQ. The functora→r b
yielding an element ofQ is defined as follows:

(Def. 15) a→r b =
⊔

Q{c;c ranges over elements ofQ: c⊗av b}.

The functora→l b yielding an element ofQ is defined as follows:

(Def. 16) a→l b =
⊔

Q{c;c ranges over elements ofQ: a⊗cv b}.

One can prove the following propositions:

(11) a⊗bv c iff bv a→l c.

(12) a⊗bv c iff av b→r c.

(13) For every quantaleQ and for all elementss, a, b of Q such thatav b holdsb→r sv a→r s
andb→l sv a→l s.

(14) LetQ be a quantale,s be an element ofQ, and j be a unary operation onQ. If for every
elementa of Q holds j(a) = (a→r s)→r s, then j is monotone.

Let Q be a non empty quantale structure and letI1 be an element ofQ. We say thatI1 is dualizing
if and only if:

(Def. 17) For every elementa of Q holds(a→r I1)→l I1 = a and(a→l I1)→r I1 = a.

We say thatI1 is cyclic if and only if:

(Def. 18) For every elementa of Q holdsa→r I1 = a→l I1.

Next we state several propositions:

(15) c is cyclic iff for all a, b such thata⊗bv c holdsb⊗av c.

(16) For every quantaleQ and for all elementss, a of Q such thats is cyclic holdsav (a→r

s)→r s andav (a→l s)→l s.

(17) For every quantaleQ and for all elementss, a of Q such thats is cyclic holdsa→r s=
((a→r s)→r s)→r s anda→l s= ((a→l s)→l s)→l s.

(18) For every quantaleQ and for all elementss, a, b of Q such thats is cyclic holds((a→r

s)→r s)⊗ ((b→r s)→r s)v (a⊗b→r s)→r s.

(19) If D is dualizing, thenQ is unital and1the multiplication ofQ = D→r D and1the multiplication ofQ =
D→l D.

(20) If a is dualizing, thenb→r c = b⊗ (c→l a)→r a andb→l c = (c→r a)⊗b→l a.

We introduce Girard quantale structures which are extensions of quasinet structure and are sys-
tems

〈 a carrier, a join operation, a meet operation, a multiplication, a unity, an absurd〉,
where the carrier is a set, the join operation, the meet operation, and the multiplication are binary
operations on the carrier, and the unity and the absurd are elements of the carrier.

Let us note that there exists a Girard quantale structure which is non empty.
Let I1 be a non empty Girard quantale structure. We say thatI1 is cyclic if and only if:
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(Def. 19) The absurd ofI1 is cyclic.

We say thatI1 is dualized if and only if:

(Def. 20) The absurd ofI1 is dualizing.

We now state the proposition

(21) LetQ be a non empty Girard quantale structure. Suppose the lattice structure ofQ = the
lattice of subsets of/0. ThenQ is cyclic and dualized.

Let A be a non empty set, letb1, b2, b3 be binary operations onA, and lete1, e2 be elements of
A. Observe that〈A,b1,b2,b3,e1,e2〉 is non empty.

Let us note that there exists a non empty Girard quantale structure which is associative, com-
mutative, well unital, left distributive, right distributive, complete, lattice-like, cyclic, dualized, and
strict.

A Girard quantale is an associative well unital left distributive right distributive complete lattice-
like cyclic dualized non empty Girard quantale structure.

Let G be a Girard quantale structure. The functor⊥G yields an element ofG and is defined by:

(Def. 21) ⊥G = the absurd ofG.

Let G be a non empty Girard quantale structure. The functor>G yields an element ofG and is
defined by:

(Def. 22) >G =⊥G →r ⊥G.

Let a be an element ofG. The functor⊥a yields an element ofG and is defined as follows:

(Def. 23) ⊥a = a→r ⊥G.

Let G be a non empty Girard quantale structure. The functor Negation(G) yields a unary oper-
ation onG and is defined by:

(Def. 24) For every elementa of G holds(Negation(G))(a) =⊥a.

Let G be a non empty Girard quantale structure and letu be a unary operation onG. The functor
⊥u yields a unary operation onG and is defined as follows:

(Def. 25) ⊥u = Negation(G) ·u.

Let G be a non empty Girard quantale structure and leto be a binary operation onG. The functor
⊥o yields a binary operation onG and is defined by:

(Def. 26) ⊥o = Negation(G) ·o.

We use the following convention:Q denotes a Girard quantale,a, a1, a2, b, b1, b2, c denote
elements ofQ, andX denotes a set.

One can prove the following propositions:

(22) ⊥⊥a = a.

(23) If av b, then⊥b v⊥a.

(24) ⊥⊔
Q X = d−eQ{⊥a : a∈ X}.

(25) ⊥d−eQX =
⊔

Q{⊥a : a∈ X}.

(26) ⊥atb =⊥au⊥b and⊥aub =⊥at⊥b.

Let us considerQ, a, b. The functoradeltab yields an element ofQ and is defined as follows:

(Def. 27) adeltab =⊥⊥a⊗⊥b.
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One can prove the following propositions:

(27) a⊗
⊔

QX =
⊔

Q{a⊗b : b∈ X} andadeltad−eQX = d−eQ{adeltac : c∈ X}.

(28)
⊔

QX⊗a =
⊔

Q{b⊗a : b∈ X} andd−eQX deltaa = d−eQ{cdeltaa : c∈ X}.

(29) adeltabuc = (adeltab)u (adeltac) andbucdeltaa = (bdeltaa)u (cdeltaa).

(30) If a1 v b1 anda2 v b2, thena1deltaa2 v b1deltab2.

(31) adeltabdeltac = adeltabdeltac.

(32) a⊗>Q = a and>Q⊗a = a.

(33) adelta⊥Q = a and⊥Qdeltaa = a.

(34) LetQ be a quantale andj be a unary operation onQ. Supposej is monotone, idempotent,
and

⊔
-distributive. Then there exists a complete latticeL such that the carrier ofL = rng j

and for every subsetX of L holds
⊔

X = j(
⊔

QX).
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[6] Czesław Bylínski. Functions from a set to a set.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/funct_
2.html.
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[8] Czesław Bylínski. Some basic properties of sets.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
zfmisc_1.html.

[9] Agata Darmochwał. Finite sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/finset_1.html.

[10] J.-Y. Girard. Linear logic.Theoretical Computer Science, 50(1):1–102, 1987.
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[16] StanisławŻukowski. Introduction to lattice theory.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
lattices.html.

Received May 9, 1994

Published January 2, 2004

http://mizar.org/JFM/Vol4/lattice3.html
http://mizar.org/JFM/Vol4/monoid_0.html
http://mizar.org/JFM/Vol1/binop_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/partfun1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/finset_1.html
http://mizar.org/JFM/Vol1/vectsp_1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/lattices.html
http://mizar.org/JFM/Vol1/lattices.html

	quantales By grzegorz bancerek

