JOURNAL OF FORMALIZED MATHEMATICS
Volume6,  Released 1994,  Published 2003
Inst. of Computer Science, Univ. of Bialystok

Quantales

Grzegorz Bancerek
Institute of Mathematics
Polish Academy of Sciences

Summary. The concepts of Girard quantales (se€ [10] and [15]) and Blikle nets (see
[3]) are introduced.
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The articles[[1P],[[8],[1B],111],[114],15],114],[18], 116],[11],12],17], and_[6] provide the notation
and terminology for this paper.

Let X be a set and léf be a subset o2 Then|JY is a subset oK.

In this article we present several logical schemes. The sciEmestFraenkedeals with a non
empty set4, a non empty seB, a unary functorf yielding a set, a unary functaf yielding an
element ofB, and a unary predicatg, and states that:

{¥ (a);a ranges over elements &# : a € {G(b);b ranges over elements o :
P[b]}} = {¥(G(a));aranges over elements of : P[a]}
for all values of the parameters.
The schem&mptyFraenketleals with a non empty sét, a unary functorf yielding a set, and
a unary predicat®, and states that:
{¥ (a);aranges over elements gf: P[a]} =0
provided the following requirement is met:
e lItis not true that there exists an elemertdf 4 such thatP[a].
We now state two propositions:

(1) LetLy, Lo be non empty lattice structures. Suppose the lattice structure-efthe lattice
structure ol,. Letas, by be elements df;, ap, by be elements df,, andX be a set. Suppose
a; = ap andby = by. Thena; Liby = apLUby anda; Mby = axMby anda; C by iff ay C by.

(2) LetLy, Ly be non empty lattice structures. Suppose the lattice structure-efthe lattice
structure ofL,. Leta be an element of1, b be an element of,, andX be a set such that
a=n"h. Then

() aCXiff bC X, and
(i) adXiff baX.

LetL be a 1-sorted structure. A unary operationLas a map fronL into L.
LetL be a non empty lattice structure andXebe a subset df. We say thaX is directed if and
only if:

(Def. 1) For every finite subs&t of X there exists an elemerbf L such that || Y T xandx € X.

One can prove the following proposition
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(3) For every non empty lattice structureand for every subsef of L such thaiX is directed
holdsX is non empty.

We introduce quantale structures which are extensions of lattice structure and groupoid and are
systems

( acarrier, a join operation, a meet operation, a multiplication
where the carrier is a set and the join operation, the meet operation, and the multiplication are binary
operations on the carrier.

Let us note that there exists a quantale structure which is non empty.

We consider quasinet structures as extensions of quantale structure and multiplicative loop struc-
ture as systems

( acarrier, a join operation, a meet operation, a multiplication, a unity
where the carrier is a set, the join operation, the meet operation, and the multiplication are binary
operations on the carrier, and the unity is an element of the carrier.

Let us note that there exists a quasinet structure which is non empty.

LetI; be a non empty groupoid. We say thahas left-zero if and only if:

(Def. 2) There exists an elemeadf |1 such that for every elemebtof I; holdsa-b=a.
We say that; has right-zero if and only if:
(Def. 3) There exists an elemembdf |1 such that for every elemeatof I, holdsa-b = b.
LetI; be a non empty groupoid. We say thahas zero if and only if:
(Def. 4) 11 has left-zero and right-zero.

Let us observe that every non empty groupoid which has zero has also left-zero and right-zero
and every non empty groupoid which has left-zero and right-zero has also zero.

Let us observe that there exists a non empty groupoid which has zero.

LetI; be a non empty quantale structure. We say that right distributive if and only if:

(Def. 5) For every elemera of 1; and for every seX holdsa®| |, X = ||;,{a® b;b ranges over
elements ofy: b € X}.

We say that is left distributive if and only if:

(Def. 6) For every elemerd of 1; and for every seX holds| |, X®a= | |;,{b®a;b ranges over
elements ofy: b € X}.

We say that; is ®-additive if and only if:
(Def. 7) For all elementa, b, cof I; holds(allb) ®c=a®clUb®candc® (allb) =c®allc®b.
We say that; is ®-continuous if and only if the condition (Def. 8) is satisfied.

(Def. 8) LetX;, X2 be subsets dfi. Suppose; is directed and is directed. Thef | X1 ®| | Xz =
LI, {a® b;aranges over elements bf, b ranges over elements bf a€ X3 A b€ Xz}

We now state the proposition

(4) LetQ be a non empty quantale structure. Suppose the lattice struct@e-dhe lattice
of subsets of. ThenQ is associative, commutative, unital, complete, right distributive, left
distributive, and lattice-like and has zero.

Let A be a non empty set and lef, by, bs be binary operations of. Note that(A, by, by, bs) is
non empty.

One can check that there exists a non empty quantale structure which is associative, commuta-
tive, unital, left distributive, right distributive, complete, and lattice-like and has zero.

The schemé&UBFraenkelDistrdeals with a complete lattice-like non empty quantale structure
A4, a binary functorf yielding an element ofd, and set$B, C, and states that:
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La{l4{¥ (a,b);b ranges over elements d¢f : b € C};a ranges over elements of
A4:ac B} =|]4{F(ab);aranges over elements d¢f, b ranges over elements of
A:a€B AbeC}
for all values of the parameters.
In the sequel denotes a left distributive right distributive complete lattice-like non empty
guantale structure aral b, c denote elements @).
Next we state two propositions:

(5) ForeveryQ and for all setX, Y holds| [o X ® | |gY = lg{a®b:ae X A beY}.
(6) (alUb)®c=awcUb®candc® (allb)=c®alc®b.

Let A be a non empty set, Ik, by, bz be binary operations ofy, and lete be an element oA.
Observe thatA, by, by, bz, €) is non empty.

One can verify that there exists a hon empty quasinet structure which is complete and lattice-
like.

Let us mention that every complete lattice-like non empty quasinet structure which is left dis-
tributive and right distributive is als@-continuous and-additive.

Let us observe that there exists a non empty quasinet structure which is associative, commu-
tative, well unital, left distributive, right distributive, complete, and lattice-like and has zero and
left-zero.

A quantale is an associative left distributive right distributive complete lattice-like non empty
guantale structure. A quasinet is a well unital associaiantinuousr-additive complete lattice-
like non empty quasinet structure with left-zero.

A Blikle net is a non empty quasinet with zero.

The following proposition is true

(7) For every well unital non empty quasinet struct@reuch thaQ is a quantale hold® is a
Blikle net.

We use the following conventior) denotes a quantale aadb, ¢, d, D denote elements @).
Next we state two propositions:

(8) IfaCbh,thenagcCb®candcalCc®b.

(9) IfaCbandcC d, thenaRcCb®d.

Let f be a function. We say thdtis idempotent if and only if:
(Def.9) f-f=*f.

Let L be a non empty lattice structure and llgte a unary operation on. We say that; is
inflationary if and only if:

(Def. 10) For every elememgof L holdsp C 11(p).

We say that, is deflationary if and only if:

(Def. 11) For every elemengof L holdsli(p) C p.

We say that; is monotone if and only if:

(Def. 12) For all elementp, g of L such thatp C g holdsl1(p) C 11(q).

We say that; is| |-distributive if and only if:

(Def. 13) For every subsét of L holdsly(| |X) C | | {l1(a);aranges over elements bf a € X}.

LetL be a lattice. One can check that there exists a unary operatibmdrich is inflationary,
deflationary, and monotone.
Next we state the proposition
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(10) LetL be a complete lattice andbe a unary operation dn Supposg is monotone. Then
j is | |-distributive if and only if for every subset of L holds j(| | X) = ||, {j(a);a ranges
over elements of: a < X}.

Let Q be a non empty quantale structure and{die a unary operation o@. We say that; is
®-monotone if and only if:

(Def. 14) For all elements, b of Q holdsli(a) ® 11(b) C I1(a®b).

Let Q be a non empty quantale structure andaeb be elements o€. The functora — b
yielding an element of is defined as follows:

(Def. 15) a— b=|[lp{c;cranges over elements Qf c®aL b}.
The functora — b yielding an element of) is defined as follows:
(Def. 16) a— b=||g{c;cranges over elements Qf a®cC b}.
One can prove the following propositions:
(11) a®bCciff bCa—c.
(12) a®bCciffaCb—,c.

(13) For every quantal® and for all elements, a, b of Q such thab C bholdsb —; sCa—; s
andb—;sCa—s.

(14) LetQ be a quantales be an element of, andj be a unary operation oQ. If for every
elementa of Q holdsj(a) = (a—r s) —r s, thenj is monotone.

Let Q be a non empty quantale structure and{éte an element dP. We say that; is dualizing
if and only if:

(Def. 17) For every elememtof Q holds(a— 11) — Iy =aand(a— 1) = l1=a
We say that; is cyclic if and only if:
(Def. 18) For every elemertof Q holdsa —, |1 =a— I3.

Next we state several propositions:
(15) ciscycliciff for all a, bsuch tha®@b C choldsb®@al c.

(16) For every quantal® and for all elements, a of Q such thatsis cyclic holdsaC (a —
s) —r sandalC (a—s) — S

(17) For every quantal® and for all elements, a of Q such thats is cyclic holdsa —; s=
((a—rs) —rs) —rsanda—;s=((a—;s)—1S) — S

(18) For every quantal® and for all elements, a, b of Q such thatsis cyclic holds((a —
S)—=rS)®((b—rs)—rs)C (a®b—rs) —rs.

(19) If Disdualizing, therQis unital andlye mutiplication of@ = D —r D andlie multiplication ofQ =
D —, D.

(20) Ifais dualizing, thetb - c=b®(c—ja) »yaandb—jc=(c—;a)®b— a

We introduce Girard quantale structures which are extensions of quasinet structure and are sys-
tems

( a carrier, a join operation, a meet operation, a multiplication, a unity, an apsurd
where the carrier is a set, the join operation, the meet operation, and the multiplication are binary
operations on the carrier, and the unity and the absurd are elements of the carrier.

Let us note that there exists a Girard quantale structure which is non empty.

Letl; be a non empty Girard quantale structure. We saylthatcyclic if and only if:
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(Def. 19) The absurd df; is cyclic.
We say that; is dualized if and only if:
(Def. 20) The absurd df; is dualizing.

We now state the proposition

(21) LetQ be a non empty Girard quantale structure. Suppose the lattice structQre- tifie
lattice of subsets dd. ThenQ is cyclic and dualized.

Let A be a non empty set, I&t, by, bz be binary operations ofy, and lete;, e, be elements of
A. Observe thatA, by, by, b, e, &) is non empty.

Let us note that there exists a non empty Girard quantale structure which is associative, com-
mutative, well unital, left distributive, right distributive, complete, lattice-like, cyclic, dualized, and
strict.

A Girard quantale is an associative well unital left distributive right distributive complete lattice-
like cyclic dualized non empty Girard quantale structure.

Let G be a Girard quantale structure. The functqs yields an element oB and is defined by:

(Def. 21) 1 =the absurd 06.

Let G be a non empty Girard quantale structure. The funcigryields an element of and is
defined by:

(Def.22) Tg=lg—r la.
Letabe an element db. The functorl , yields an element d& and is defined as follows:

Let G be a non empty Girard quantale structure. The functor Neg&ipyields a unary oper-
ation onG and is defined by:

(Def. 24) For every elemertof G holds(Negatior{G))(a) = La.

Let G be a non empty Girard quantale structure and et a unary operation dd. The functor
Ly Yields a unary operation 0@ and is defined as follows:

(Def. 25) 1, = Negatior{G) - u.

Let G be a non empty Girard quantale structure and ke a binary operation o@. The functor
Lo yields a binary operation o8 and is defined by:

(Def. 26) 1, = Negatior{G) - o.

We use the following conventionQ denotes a Girard quantale, a;, ay, b, by, by, ¢ denote
elements of), andX denotes a set.
One can prove the following propositions:

(22) L,,=a
(23) IfaCb,thenlyC 1,.
(24) Ljjox=[lo{LlaraeX}.
(25) J_HQX =o{laraeX}.
(26) Lap=laNlpandlap=_LallLp.
Let us conside®, a, b. The functoradeltab yields an element a and is defined as follows:

(Def. 27) adeltab= 1 |,z ,.
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One can prove the following propositions:

(27) a®l|JgX =|lofa®b:be X} andadelta |oX = [ ]o{adeltac: c € X}.
(28) |oX®@a=|lo{b®a:be X} and[ JoXdeltaa = [ Jo{cdeltaa: c € X}.
(29) adeltabrc = (adeltab) M (adeltac) andbmcdeltaa = (bdeltaa) M (cdeltaa).

(30) Ifa; C by anday C by, thena; deltaa, T by deltab,.

(31) adeltabdeltac = adeltabdeltac.

(32) a®Tg=aandTgoa=a.

(33) adeltalg=aandLlgdeltaa=a.

(34) LetQ be a quantale anflbe a unary operation d@. Supposg is monotone, idempotent,

(1
(2

(4

5]

6]

(7]
8l

[
[10]

[11]

[12]

[13]

[14]

[15]

[16]

and| |-distributive. Then there exists a complete latticeuch that the carrier df = rngj
and for every subset of L holds| |X = j(LIgX).
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