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Summary. In the first section we present properties of fields and Abelian groups in
terms of commutativity, associativity, etc. Next, we are concerned with operatiantuptes
on some set which are generalization of operations on this set. It is used in third section to
introduce then-power of a group and the-power of a field. Besides, we introduce a concept
of indexed family of binary (unary) operations over some indexed family of sets and a product
of such families which is binary (unary) operation on a product of family sets. We use that
product in the last section to introduce the product of a finite sequence of Abelian groups.
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provide the notation and terminology for this paper.

1. ABELIAN GROUPS ANDFIELDS

In this paperG is an Abelian add-associative right complementable right zeroed non empty loop
structure.

One can prove the following two propositions:
(3H The zero ofG is a unity w.r.t. the addition ob.

(4) For every Abelian grou@ holds comps is an inverse operation w.r.t. the addition@f

In the seque; is a non empty loop structure.
One can prove the following proposition

(5) Suppose that
(i) the addition ofG; is commutative and associative,
(i) the zero ofG; is a unity w.r.t. the addition oB1, and
(i) compG; is an inverse operation w.r.t. the addition@f.
ThenG; is an Abelian group.

In the sequeF denotes a field.
Next we state two propositions:

(10E] The zero ofF is a unity w.r.t. the addition df.
(11) The unity ofF is a unity w.r.t. the multiplication ofF.

1 The propositions (1) and (2) have been removed.
2 The propositions (6)—(9) have been removed.
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2. THENn-PrRODUCT OF ABINARY AND A UNARY OPERATION

For simplicity, we follow the rulesF denotes a fielda denotes a natural numbé&r,denotes a non
empty setd denotes an element &@f, B denotes a binary operation & andC denotes a unary
operation orD.

Let us consideD, n, let F be a binary operation ob, and letx, y be elements oD". Then
F°(x,y) is an element ob".

Let D be a non empty set, I€ be a binary operation o, and letn be a natural number. The
functorm"F yields a binary operation oR" and is defined by:

(Def. 1) For all elements, y of D" holds(T'F)(x, y) = F°(X, Y).

Let us consideD, let F be a unary operation oB, and let us considen. The functorn"F
yielding a unary operation oR" is defined by:

(Def. 2) For every elementof D" holds(1"F )(x) = F - x.

Let D be a non empty set, let us consiaerand letx be an element ob. Thenn+— x is an
element oD". We introducen——x as a synonym of — X.
One can prove the following four propositions:

(14§ If Bis commutative, them"B is commutative.
(15) If Bis associative, then"B is associative.
(16) Ifdis a unity w.r.t.B, thenn——d is a unity w.r.t.""B.

(17) If Bis associative and has a unity a@ds an inverse operation w.r.B, thentC is an
inverse operation w.r.ti"B.

3. THE n-POWER OF AGROUP AND OF AFIELD

Let F be a non empty loop structure and let us considelcet us assume thdt is Abelian, add-
associative, right zeroed, and right complementable. The fuR¢tgields a strict Abelian group
and is defined as follows:

(Def. 3) F" = ((the carrier ofF )", "(the addition ofF),(n——the zero ofF qua element of (the
carrier ofF)")).

Let F be an Abelian group and let us considelObserve thak" is non empty.
Let us consideF, n. The functor-2 yielding a function from:the carrier ofF, (the carrier of
F)"] into (the carrier of )" is defined by the condition (Def. 4).

(Def. 4) Letx be an element df andv be an element of (the carrier B)". Then(-})(x, v) = (the
multiplication of F)° (x,v).

Let us consideF, n. Then-dimension vector space ovEryields a strict vector space structure
overF and is defined by the conditions (Def. 5).

(Def. 5)(i) The loop structure of the-dimension vector space over= F", and
(if) the left multiplication of then-dimension vector space over= .

Let us consideF, n. Observe that the-dimension vector space ovEris non empty.

For simplicity, we use the following conventioB: denotes a non empty sét, G denote binary
operations oD, d denotes an element &f, andt;, t, denote elements @".

One can prove the following proposition

(18) If H is distributive w.r.t.G, thenH°(d, G°(t1, t2)) = G°(H°(d,t1), H°(d,t2)).

Let D be a non empty set, letbe a natural number, |& be a binary operation ob, let x be
an element oD, and letv be an element dd". ThenF°(x,v) is an element ob".
Let us consideF, n. Note that ther-dimension vector space ovEris vector space-like.

3 The propositions (12) and (13) have been removed.
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4. SEQUENCES OFNON-EMPTY SETS

In the sequek is a set.
Let us observe that there exists a finite sequence which is non empty and non-empty.
Let f be a non-empty function. One can verify tiigff is functional and non empty.
A sequence of non empty sets is a non empty non-empty finite sequence.
Leta be a non empty function. One can verify that d@ia non empty.
The schem@&EFinSeqgLambddeals with a non empty finite sequengand a unary functof
yielding a set, and states that:
There exists a non empty finite sequenxseuch that lep = lenA2 and for every
element of domA4 holdsp(i) = 7 (i)
for all values of the parameters.
Let a be a non-empty non empty function andiléte an element of dom One can verify that
a(i) is non empty.
Let a be a non-empty non empty function, liebe an element df] a, and leti be an element of
doma. Thenf (i) is an element oé(i).

5. THE PRODUCT OFFAMILIES OF OPERATIONS

In the sequed is a sequence of non empty setis an element of dom, andp is a finite sequence.
Let a be a non-empty non empty function. A function is called a family of binary operations of
aif:

(Def. SE] domit= doma and for every elemertof doma holds it(i) is a binary operation oa(i).
A function is called a family of unary operations aff:
(Def. 9) domit=doma and for every elementof doma holds it(i) is a unary operation oa(i).

Let us considern. Note that every family of binary operations afs finite sequence-like and
every family of unary operations @fis finite sequence-like.
Next we state two propositions:

(19) pisafamily of binary operations @ if and only if lenp = lena and for eveny holdsp(i)
is a binary operation oa(i).

(20) pis afamily of unary operations afif and only if lenp = lena and for everyi holdsp(i)
is a unary operation oa(i).

Let us considea, letb be a family of binary operations af and let us consider Thenb(i) is
a binary operation oa(i).

Let us consides, letu be a family of unary operations af and let us considér Thenu(i) is a
unary operation oa(i).

Let F be a functional non empty set, lebe a unary operation dn, and letf be an element of
F. Thenu(f) is an element oF.

One can prove the following two propositions:

(21) Letd, d’ be unary operations g a. Suppose that for every elemeinbf []a and for every
element of doma holdsd(f)(i) =d'(f)(i). Thend =d'.

(22) For every familyu of unary operations ad holds dom u(k) = aand[](rng, u(k)) C [1a

Let us consider and letu be a family of unary operations @ Then Fregéu) is a unary
operation o] a.
We now state the proposition

(23) Letu be a family of unary operations af f be an element of]a, andi be an element of
doma. Then(Fregéu))(f)(i) = u(i)(f(i)).

4 The definitions (Def. 6) and (Def. 7) have been removed.
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Let F be a functional non empty set, letbe a binary operation o, and letf, g be elements
of F. Thenb(f, g) is an element oF.
We now state the proposition

(24) Letd, d’ be binary operations ofja. Suppose that for all elements g of []a and for
every elemeni of doma holdsd(f, g)(i) =d’(f, g)(i). Thend =d'.

In the sequei denotes an element of dam
Let us considern and letb be a family of binary operations @ The functor[]°b yields a
binary operation offja and is defined as follows:

(Def. 10) For all elementd, g of [Ja and for every elemerit of doma holds ([1°b)(f, g)(i) =
b(i)(f(i), a(i))-

Next we state four propositions:

(25) For every familyb of binary operations cd such that for everyholdsb(i) is commutative
holds[]° b is commutative.

(26) For every familyb of binary operations o& such that for every holdsb(i) is associative
holds[]° b is associative.

(27) Letb be a family of binary operations afand f be an element off]a. If for everyi holds
f(i) is a unity w.r.t.b(i), thenf is a unity w.r.t.[1°b.

(28) Letb be a family of binary operations @& andu be a family of unary operations @t
Suppose that for everiyholdsu(i) is an inverse operation w.r.b(i) andb(i) has a unity.
Then Fregéu) is an inverse operation w.r]° b.

6. THE PrRoDUCT OFFAMILIES OF GROUPS

Let F be a function. We say th&t is Abelian group yielding if and only if:
(Def. 11) Ifx € rngF, thenx is an Abelian group.

Let us note that there exists a finite sequence which is non empty and Abelian group yielding.

A sequence of groups is a non empty Abelian group yielding finite sequence.

Let g be a sequence of groups andilee an element of dom Theng(i) is an Abelian group.

Let g be a sequence of groups. The fundgfields a sequence of non empty sets and is defined
by:

(Def. 12) lerg = leng and for every elemernijtof domg holdsg(j) = the carrier ofy(j).

In the sequed) is a sequence of groups anig an element of dom
Let us consideg, i. Theng(i) is an Abelian group.
Let us consideg. The functor(+g,); yielding a family of binary operations @fis defined by:

(Def. 13) ler{(+g)i) = leng and for everyi holds(+g,)i(i) = the addition ofy(i).
The functor(—g); yielding a family of unary operations gfis defined as follows:
(Def. 14) ler{(—g)i) = leng and for everyi holds(—g;)i(i) = compg(i).
The functor(Qgy )i yields an element ff] g and is defined as follows:
(Def. 15) For every holds(0Og )i(i) = the zero ofy(i).

Let G be a sequence of groups. The fund6 yielding a strict Abelian group is defined as
follows:

(Def. 16) [1G=(MG.M°((+6)). (0a)i)-
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