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Summary. In the first section we present properties of fields and Abelian groups in
terms of commutativity, associativity, etc. Next, we are concerned with operations onn-tuples
on some set which are generalization of operations on this set. It is used in third section to
introduce then-power of a group and then-power of a field. Besides, we introduce a concept
of indexed family of binary (unary) operations over some indexed family of sets and a product
of such families which is binary (unary) operation on a product of family sets. We use that
product in the last section to introduce the product of a finite sequence of Abelian groups.

MML Identifier: PRVECT_1.
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The articles [13], [7], [16], [1], [17], [5], [6], [4], [11], [15], [10], [8], [3], [14], [2], [12], and [9]
provide the notation and terminology for this paper.

1. ABELIAN GROUPS ANDFIELDS

In this paperG is an Abelian add-associative right complementable right zeroed non empty loop
structure.

One can prove the following two propositions:

(3)1 The zero ofG is a unity w.r.t. the addition ofG.

(4) For every Abelian groupG holds compG is an inverse operation w.r.t. the addition ofG.

In the sequelG1 is a non empty loop structure.
One can prove the following proposition

(5) Suppose that

(i) the addition ofG1 is commutative and associative,

(ii) the zero ofG1 is a unity w.r.t. the addition ofG1, and

(iii) compG1 is an inverse operation w.r.t. the addition ofG1.

ThenG1 is an Abelian group.

In the sequelF denotes a field.
Next we state two propositions:

(10)2 The zero ofF is a unity w.r.t. the addition ofF .

(11) The unity ofF is a unity w.r.t. the multiplication ofF .
1 The propositions (1) and (2) have been removed.
2 The propositions (6)–(9) have been removed.
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2. THE n-PRODUCT OF ABINARY AND A UNARY OPERATION

For simplicity, we follow the rules:F denotes a field,n denotes a natural number,D denotes a non
empty set,d denotes an element ofD, B denotes a binary operation onD, andC denotes a unary
operation onD.

Let us considerD, n, let F be a binary operation onD, and letx, y be elements ofDn. Then
F◦(x, y) is an element ofDn.

Let D be a non empty set, letF be a binary operation onD, and letn be a natural number. The
functorπnF yields a binary operation onDn and is defined by:

(Def. 1) For all elementsx, y of Dn holds(πnF)(x, y) = F◦(x, y).

Let us considerD, let F be a unary operation onD, and let us considern. The functorπnF
yielding a unary operation onDn is defined by:

(Def. 2) For every elementx of Dn holds(πnF)(x) = F ·x.

Let D be a non empty set, let us considern, and letx be an element ofD. Thenn 7→ x is an
element ofDn. We introducen7−→. x as a synonym ofn 7→ x.

One can prove the following four propositions:

(14)3 If B is commutative, thenπnB is commutative.

(15) If B is associative, thenπnB is associative.

(16) If d is a unity w.r.t.B, thenn7−→. d is a unity w.r.t.πnB.

(17) If B is associative and has a unity andC is an inverse operation w.r.t.B, thenπnC is an
inverse operation w.r.t.πnB.

3. THE n-POWER OF AGROUP AND OF AFIELD

Let F be a non empty loop structure and let us considern. Let us assume thatF is Abelian, add-
associative, right zeroed, and right complementable. The functorFn yields a strict Abelian group
and is defined as follows:

(Def. 3) Fn = 〈(the carrier ofF)n,πn(the addition ofF),(n7−→. the zero ofF qua element of (the
carrier ofF)n)〉.

Let F be an Abelian group and let us considern. Observe thatFn is non empty.
Let us considerF , n. The functor·nF yielding a function from[: the carrier ofF , (the carrier of

F)n :] into (the carrier ofF)n is defined by the condition (Def. 4).

(Def. 4) Letx be an element ofF andv be an element of (the carrier ofF)n. Then(·nF)(x, v) = (the
multiplication ofF)◦(x,v).

Let us considerF , n. Then-dimension vector space overF yields a strict vector space structure
overF and is defined by the conditions (Def. 5).

(Def. 5)(i) The loop structure of then-dimension vector space overF = Fn, and

(ii) the left multiplication of then-dimension vector space overF = ·nF .

Let us considerF , n. Observe that then-dimension vector space overF is non empty.
For simplicity, we use the following convention:D denotes a non empty set,H, G denote binary

operations onD, d denotes an element ofD, andt1, t2 denote elements ofDn.
One can prove the following proposition

(18) If H is distributive w.r.t.G, thenH◦(d,G◦(t1, t2)) = G◦(H◦(d, t1), H◦(d, t2)).

Let D be a non empty set, letn be a natural number, letF be a binary operation onD, let x be
an element ofD, and letv be an element ofDn. ThenF◦(x,v) is an element ofDn.

Let us considerF , n. Note that then-dimension vector space overF is vector space-like.

3 The propositions (12) and (13) have been removed.
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4. SEQUENCES OFNON-EMPTY SETS

In the sequelx is a set.
Let us observe that there exists a finite sequence which is non empty and non-empty.
Let f be a non-empty function. One can verify that∏ f is functional and non empty.
A sequence of non empty sets is a non empty non-empty finite sequence.
Let a be a non empty function. One can verify that doma is non empty.
The schemeNEFinSeqLambdadeals with a non empty finite sequenceA and a unary functorF

yielding a set, and states that:
There exists a non empty finite sequencep such that lenp = lenA and for every
elementi of domA holdsp(i) = F (i)

for all values of the parameters.
Let a be a non-empty non empty function and leti be an element of doma. One can verify that

a(i) is non empty.
Let a be a non-empty non empty function, letf be an element of∏a, and leti be an element of

doma. Then f (i) is an element ofa(i).

5. THE PRODUCT OFFAMILIES OF OPERATIONS

In the sequela is a sequence of non empty sets,i is an element of doma, andp is a finite sequence.
Let a be a non-empty non empty function. A function is called a family of binary operations of

a if:

(Def. 8)4 domit= doma and for every elementi of doma holds it(i) is a binary operation ona(i).

A function is called a family of unary operations ofa if:

(Def. 9) domit= doma and for every elementi of doma holds it(i) is a unary operation ona(i).

Let us considera. Note that every family of binary operations ofa is finite sequence-like and
every family of unary operations ofa is finite sequence-like.

Next we state two propositions:

(19) p is a family of binary operations ofa if and only if lenp = lena and for everyi holdsp(i)
is a binary operation ona(i).

(20) p is a family of unary operations ofa if and only if lenp = lena and for everyi holdsp(i)
is a unary operation ona(i).

Let us considera, let b be a family of binary operations ofa, and let us consideri. Thenb(i) is
a binary operation ona(i).

Let us considera, let u be a family of unary operations ofa, and let us consideri. Thenu(i) is a
unary operation ona(i).

Let F be a functional non empty set, letu be a unary operation onF , and let f be an element of
F . Thenu( f ) is an element ofF .

One can prove the following two propositions:

(21) Letd, d′ be unary operations on∏a. Suppose that for every elementf of ∏a and for every
elementi of doma holdsd( f )(i) = d′( f )(i). Thend = d′.

(22) For every familyu of unary operations ofa holds domκ u(κ) = a and∏(rngκ u(κ))⊆ ∏a.

Let us considera and letu be a family of unary operations ofa. Then Frege(u) is a unary
operation on∏a.

We now state the proposition

(23) Letu be a family of unary operations ofa, f be an element of∏a, andi be an element of
doma. Then(Frege(u))( f )(i) = u(i)( f (i)).

4 The definitions (Def. 6) and (Def. 7) have been removed.
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Let F be a functional non empty set, letb be a binary operation onF , and let f , g be elements
of F . Thenb( f , g) is an element ofF .

We now state the proposition

(24) Let d, d′ be binary operations on∏a. Suppose that for all elementsf , g of ∏a and for
every elementi of doma holdsd( f , g)(i) = d′( f , g)(i). Thend = d′.

In the sequeli denotes an element of doma.
Let us considera and letb be a family of binary operations ofa. The functor∏◦b yields a

binary operation on∏a and is defined as follows:

(Def. 10) For all elementsf , g of ∏a and for every elementi of doma holds (∏◦b)( f , g)(i) =
b(i)( f (i), g(i)).

Next we state four propositions:

(25) For every familyb of binary operations ofa such that for everyi holdsb(i) is commutative
holds∏◦b is commutative.

(26) For every familyb of binary operations ofa such that for everyi holdsb(i) is associative
holds∏◦b is associative.

(27) Letb be a family of binary operations ofa and f be an element of∏a. If for every i holds
f (i) is a unity w.r.t.b(i), then f is a unity w.r.t.∏◦b.

(28) Let b be a family of binary operations ofa andu be a family of unary operations ofa.
Suppose that for everyi holdsu(i) is an inverse operation w.r.t.b(i) andb(i) has a unity.
Then Frege(u) is an inverse operation w.r.t.∏◦b.

6. THE PRODUCT OFFAMILIES OF GROUPS

Let F be a function. We say thatF is Abelian group yielding if and only if:

(Def. 11) If x∈ rngF, thenx is an Abelian group.

Let us note that there exists a finite sequence which is non empty and Abelian group yielding.
A sequence of groups is a non empty Abelian group yielding finite sequence.
Let g be a sequence of groups and leti be an element of domg. Theng(i) is an Abelian group.
Let g be a sequence of groups. The functorg yields a sequence of non empty sets and is defined

by:

(Def. 12) leng = leng and for every elementj of domg holdsg( j) = the carrier ofg( j).

In the sequelg is a sequence of groups andi is an element of domg.
Let us considerg, i. Theng(i) is an Abelian group.
Let us considerg. The functor〈+gi 〉i yielding a family of binary operations ofg is defined by:

(Def. 13) len(〈+gi 〉i) = leng and for everyi holds〈+gi 〉i(i) = the addition ofg(i).

The functor〈−gi 〉i yielding a family of unary operations ofg is defined as follows:

(Def. 14) len(〈−gi 〉i) = leng and for everyi holds〈−gi 〉i(i) = compg(i).

The functor〈0gi 〉i yields an element of∏g and is defined as follows:

(Def. 15) For everyi holds〈0gi 〉i(i) = the zero ofg(i).

Let G be a sequence of groups. The functor∏G yielding a strict Abelian group is defined as
follows:

(Def. 16) ∏G = 〈∏G,∏◦(〈+Gi 〉i),〈0Gi 〉i〉.



PRODUCT OF FAMILIES OF GROUPS AND VECTOR. . . 5

REFERENCES

[1] Grzegorz Bancerek. K̈onig’s theorem.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/card_3.html.

[2] Grzegorz Bancerek. Cartesian product of functions.Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/
funct_6.html.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.Journal of Formalized Mathematics,
1, 1989.http://mizar.org/JFM/Vol1/finseq_1.html.
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