σ-Fields and Probability

Andrzej Nędzusiak Warsaw University Białystok

Summary. This article contains definitions and theorems concerning basic properties of following objects: - a field of subsets of given nonempty set; - a sequence of subsets of given nonempty set; - a σ -field of subsets of given nonempty set and events from this σ -field; - a probability i.e. σ -additive normed measure defined on previously introduced σ -field; - a σ -field generated by family of subsets of given set; - family of Borel Sets.

MML Identifier: PROB_1.

WWW: http://mizar.org/JFM/Vol1/prob_1.html

The articles [8], [4], [11], [10], [12], [2], [3], [1], [9], [6], [5], and [7] provide the notation and terminology for this paper.

For simplicity, we use the following convention: O_1 denotes a non empty set, X, Y, Z, p, x, y, z denote sets, D denotes a subset of O_1 , f denotes a function, m, n denote natural numbers, r, r_2 denote real numbers, and s_1 denotes a sequence of real numbers.

The following two propositions are true:

- (2)¹ For all r, r_2 such that $0 \le r$ holds $r_2 r \le r_2$.
- (3) For all r, s_1 such that there exists n such that for every m such that $n \le m$ holds $s_1(m) = r$ holds s_1 is convergent and $\lim s_1 = r$.

Let X be a set and let I_1 be a family of subsets of X. We say that I_1 is closed for complement operator if and only if:

(Def. 1) For every subset *A* of *X* such that $A \in I_1$ holds $A^c \in I_1$.

Let X be a set. One can verify that there exists a family of subsets of X which is non empty, closed for complement operator, and \cap -closed.

Let X be a set. A field of subsets of X is a non empty closed for complement operator \cap -closed family of subsets of X.

In the sequel F is a field of subsets of X.

One can prove the following propositions:

- (4) For all subsets A, B of X holds $\{A, B\}$ is a family of subsets of X.
- (6)² There exists a subset A of X such that $A \in F$.
- (9)³ For all sets A, B such that $A \in F$ and $B \in F$ holds $A \cup B \in F$.

¹ The proposition (1) has been removed.

² The proposition (5) has been removed.

³ The propositions (7) and (8) have been removed.

- (10) $\emptyset \in F$.
- (11) $X \in F$.
- (12) For all subsets A, B of X such that $A \in F$ and $B \in F$ holds $A \setminus B \in F$.
- (13) For all sets A, B holds $A \setminus B$ misses B and if $A \in F$ and $B \in F$, then $(A \setminus B) \cup B \in F$.
- (14) $\{\emptyset, X\}$ is a field of subsets of X.
- (15) 2^X is a field of subsets of X.
- (16) $\{\emptyset, X\} \subseteq F \text{ and } F \subseteq 2^X$.
- (18)⁴ For every p such that $p \in [:\mathbb{N}, \{X\}:]$ there exist x, y such that $\langle x, y \rangle = p$ and for all x, y, z such that $\langle x, y \rangle \in [:\mathbb{N}, \{X\}:]$ and $\langle x, z \rangle \in [:\mathbb{N}, \{X\}:]$ holds y = z.
- (19) There exists f such that dom $f = \mathbb{N}$ and for every n holds f(n) = X.

Let *X* be a set. A sequence of subsets of *X* is a function from \mathbb{N} into 2^X .

In the sequel A_1 denotes a sequence of subsets of O_1 and A_2 denotes a sequence of subsets of X. The following two propositions are true:

- (21)⁵ There exists A_2 such that for every n holds $A_2(n) = X$.
- (22) For all subsets A, B of X there exists A_2 such that $A_2(0) = A$ and for every n such that $n \neq 0$ holds $A_2(n) = B$.

Let us consider X, A_2 , n. Then $A_2(n)$ is a subset of X.

The following proposition is true

(23) $\bigcup \operatorname{rng} A_2$ is a subset of X.

Let f be a function. The functor $\bigcup f$ yielding a set is defined as follows:

(Def. 3)⁶
$$\bigcup f = \bigcup \operatorname{rng} f$$
.

Let *X* be a set and let A_2 be a sequence of subsets of *X*. Then $\bigcup A_2$ is a subset of *X*. The following two propositions are true:

- $(25)^7$ $x \in \bigcup A_2$ iff there exists n such that $x \in A_2(n)$.
- (26) There exists a sequence B_1 of subsets of X such that for every n holds $B_1(n) = A_2(n)^c$.

Let X be a set and let A_2 be a sequence of subsets of X. The functor Complement A_2 yielding a sequence of subsets of X is defined by:

(Def. 4) For every *n* holds (Complement A_2) $(n) = A_2(n)^c$.

Let X be a set and let A_2 be a sequence of subsets of X. The functor Intersection A_2 yields a subset of X and is defined as follows:

(Def. 5) Intersection $A_2 = (\bigcup Complement A_2)^c$.

One can prove the following three propositions:

 $(29)^8$ $x \in \text{Intersection } A_2 \text{ iff for every } n \text{ holds } x \in A_2(n).$

⁴ The proposition (17) has been removed.

⁵ The proposition (20) has been removed.

⁶ The definition (Def. 2) has been removed.

⁷ The proposition (24) has been removed.

⁸ The propositions (27) and (28) have been removed.

- (30) For all subsets A, B of X such that $A_2(0) = A$ and for every n such that $n \neq 0$ holds $A_2(n) = B$ holds Intersection $A_2 = A \cap B$.
- (31) Complement Complement $A_2 = A_2$.

Let us consider X, A_2 . We say that A_2 is non-increasing if and only if:

(Def. 6) For all n, m such that $n \le m$ holds $A_2(m) \subseteq A_2(n)$.

We say that A_2 is non-decreasing if and only if:

(Def. 7) For all n, m such that $n \le m$ holds $A_2(n) \subseteq A_2(m)$.

Let X be a set. A non empty family of subsets of X is said to be a σ -field of subsets of X if it satisfies the conditions (Def. 8).

- (Def. 8)(i) For every sequence A_2 of subsets of X such that for every n holds $A_2(n) \in \text{it holds}$ Intersection $A_2 \in \text{it}$, and
 - (ii) for every subset *A* of *X* such that $A \in \text{it holds } A^c \in \text{it.}$

One can prove the following two propositions:

- (32) Let S be a non empty set. Then S is a σ -field of subsets of X if and only if the following conditions are satisfied:
 - (i) $S \subseteq 2^X$,
- (ii) for every sequence A_2 of subsets of X such that for every n holds $A_2(n) \in S$ holds Intersection $A_2 \in S$, and
- (iii) for every subset A of X such that $A \in S$ holds $A^c \in S$.
- (35)⁹ If Y is a σ -field of subsets of X, then Y is a field of subsets of X.

Let *X* be a set. Note that every σ -field of subsets of *X* is \cap -closed and closed for complement operator.

In the sequel S_1 is a σ -field of subsets of O_1 and S_2 is a σ -field of subsets of X.

We now state several propositions:

- $(38)^{10}$ There exists a subset A of X such that $A \in S_2$.
- $(41)^{11}$ For all subsets A, B of X such that $A \in S_2$ and $B \in S_2$ holds $A \cup B \in S_2$.
- (42) $\emptyset \in S_2$.
- (43) $X \in S_2$.
- (44) For all subsets A, B of X such that $A \in S_2$ and $B \in S_2$ holds $A \setminus B \in S_2$.

Let X be a set and let S_2 be a σ -field of subsets of X. A sequence of subsets of X is said to be a sequence of subsets of S_2 if:

(Def. 9) For every n holds it(n) $\in S_2$.

Next we state the proposition

(46)¹² For every sequence A_1 of subsets of S_2 holds $\bigcup A_1 \in S_2$.

Let X be a set and let F be a σ -field of subsets of X. A subset of X is called an event of F if:

(Def. 10) It $\in F$.

⁹ The propositions (33) and (34) have been removed.

¹⁰ The propositions (36) and (37) have been removed.

¹¹ The propositions (39) and (40) have been removed.

¹² The proposition (45) has been removed.

Next we state several propositions:

- $(48)^{13}$ If $x \in S_2$, then x is an event of S_2 .
- (49) For all events A, B of S_2 holds $A \cap B$ is an event of S_2 .
- (50) For every event A of S_2 holds A^c is an event of S_2 .
- (51) For all events A, B of S_2 holds $A \cup B$ is an event of S_2 .
- (52) \emptyset is an event of S_2 .
- (53) X is an event of S_2 .
- (54) For all events A, B of S_2 holds $A \setminus B$ is an event of S_2 .

Let us consider X, S_2 . One can verify that there exists an event of S_2 which is empty. Let us consider X, S_2 . The functor $\Omega_{(S_2)}$ yields an event of S_2 and is defined as follows:

(Def. 11)
$$\Omega_{(S_2)} = X$$
.

Let us consider X, S_2 and let A, B be events of S_2 . Then $A \cap B$ is an event of S_2 . Then $A \cup B$ is an event of S_2 . Then $A \setminus B$ is an event of S_2 .

The following two propositions are true:

- $(57)^{14}$ A_1 is a sequence of subsets of S_1 iff for every n holds $A_1(n)$ is an event of S_1 .
- (58) If A_1 is a sequence of subsets of S_1 , then $\bigcup A_1$ is an event of S_1 .

In the sequel A, B are events of S_1 and A_1 is a sequence of subsets of S_1 . Next we state the proposition

(59) There exists f such that dom $f = S_1$ and for every D such that $D \in S_1$ holds if $p \in D$, then f(D) = 1 and if $p \notin D$, then f(D) = 0.

In the sequel *P* denotes a function from S_1 into \mathbb{R} .

The following two propositions are true:

- (60) There exists P such that for every D such that $D \in S_1$ holds if $p \in D$, then P(D) = 1 and if $p \notin D$, then P(D) = 0.
- $(62)^{15}$ $P \cdot A_1$ is a sequence of real numbers.

Let us consider O_1 , S_1 , A_1 , P. Then $P \cdot A_1$ is a sequence of real numbers.

Let us consider O_1 , S_1 , P, A. Then P(A) is a real number.

Let us consider O_1 , S_1 . A function from S_1 into \mathbb{R} is said to be a probability on S_1 if it satisfies the conditions (Def. 13).

(Def. 13)¹⁶(i) For every A holds $0 \le it(A)$,

- (ii) $it(O_1) = 1$,
- (iii) for all A, B such that A misses B holds it $(A \cup B) = it(A) + it(B)$, and
- (iv) for every A_1 such that A_1 is non-increasing holds it A_1 is convergent and $\lim(it \cdot A_1) = it(Intersection A_1)$.

In the sequel P denotes a probability on S_1 .

Next we state a number of propositions:

¹³ The proposition (47) has been removed.

¹⁴ The propositions (55) and (56) have been removed.

¹⁵ The proposition (61) has been removed.

¹⁶ The definition (Def. 12) has been removed.

$$(64)^{17}$$
 $P(\emptyset) = 0.$

$$(66)^{18}$$
 $P(\Omega_{(S_1)}) = 1.$

(67)
$$P(\Omega_{(S_1)} \setminus A) + P(A) = 1.$$

(68)
$$P(\Omega_{(S_1)} \setminus A) = 1 - P(A)$$
.

(69) If
$$A \subseteq B$$
, then $P(B \setminus A) = P(B) - P(A)$.

(70) If
$$A \subseteq B$$
, then $P(A) \le P(B)$.

(71)
$$P(A) \le 1$$
.

(72)
$$P(A \cup B) = P(A) + P(B \setminus A)$$
.

(73)
$$P(A \cup B) = P(A) + P(B \setminus A \cap B)$$
.

(74)
$$P(A \cup B) = (P(A) + P(B)) - P(A \cap B).$$

(75)
$$P(A \cup B) \le P(A) + P(B)$$
.

In the sequel D denotes a subset of \mathbb{R} .

We now state the proposition

(76) 2^{O_1} is a σ-field of subsets of O_1 .

Let us consider O_1 and let X be a subset of 2^{O_1} . The functor $\sigma(X)$ yielding a σ -field of subsets of O_1 is defined by:

(Def. 14) $X \subseteq \sigma(X)$ and for every Z such that $X \subseteq Z$ and Z is a σ -field of subsets of O_1 holds $\sigma(X) \subseteq Z$.

Let us consider r. The functor HL(r) yielding a subset of \mathbb{R} is defined by:

(Def. 15) $HL(r) = \{r_1; r_1 \text{ ranges over elements of } \mathbb{R}: r_1 < r\}.$

The subset Halflines of $2^{\mathbb{R}}$ is defined as follows:

(Def. 16) Halflines = $\{D : \bigvee_r D = HL(r)\}$.

The σ -field the Borel sets of subsets of \mathbb{R} is defined by:

(Def. 17) The Borel sets = σ (Halflines).

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [4] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/zfmisc 1.html.
- [5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/seq_2.html.
- [6] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/seq_1.html.
- [7] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.

¹⁷ The proposition (63) has been removed.

¹⁸ The proposition (65) has been removed.

- [8] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [9] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [10] Andrzej Trybulec and Agata Darmochwał. Boolean domains. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/finsub_1.html.
- [11] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [12] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received October 16, 1989

Published January 2, 2004