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The articles [17], [11], [21], [1], [2], [20], [22], [8], [5], [9], [15], [18], [16], [10], [12], [13], [3],
[4], [6], [14], [7], and [19] provide the notation and terminology for this paper.

1. PRODUCT OFTWO ALGEBRAS

One can prove the following proposition

(1) For all non empty setsD1, D2 and for all natural numbersn, m such thatD1
n = D2

m holds
n = m.

For simplicity, we follow the rules:U1, U2 denote universal algebras,n, m denote natural num-
bers,x, y denote sets,A, B denote non empty sets, andh1 denotes a finite sequence of elements of
[:A, B:].

Let us considerA, B and let us considerh1. Then pr1(h1) is a finite sequence of elements ofA
and it can be characterized by the condition:

(Def. 1) lenpr1(h1) = lenh1 and for everyn such thatn∈ dompr1(h1) holds pr1(h1)(n) = h1(n)1.

Then pr2(h1) is a finite sequence of elements ofB and it can be characterized by the condition:

(Def. 2) lenpr2(h1) = lenh1 and for everyn such thatn∈ dompr2(h1) holds pr2(h1)(n) = h1(n)2.

Let us considerA, B, let f1 be a homogeneous quasi total non empty partial function fromA∗ to
A, and let f2 be a homogeneous quasi total non empty partial function fromB∗ to B. Let us assume
that arityf1 = arity f2. The functoree f1, f2dd yields a homogeneous quasi total non empty partial
function from[:A, B:]∗ to [:A, B:] and is defined by the conditions (Def. 3).

(Def. 3)(i) domee f1, f2dd= [:A, B:]arity f1, and

(ii) for every finite sequenceh of elements of[:A, B:] such thath ∈ domee f1, f2dd holds
ee f1, f2dd(h) = 〈〈 f1(pr1(h)), f2(pr2(h))〉〉.

In the sequelh1 denotes a homogeneous quasi total non empty partial function from (the carrier ofU1)∗

to the carrier ofU1 and h2 denotes a homogeneous quasi total non empty partial function from
(the carrier ofU2)∗ to the carrier ofU2.

Let us considerU1, U2. Let us assume thatU1 andU2 are similar. The functor Opers(U1,U2)
yields a finite sequence of operational functions of[: the carrier ofU1, the carrier ofU2 :] and is
defined by the conditions (Def. 4).
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(Def. 4)(i) lenOpers(U1,U2) = len(the characteristic ofU1), and

(ii) for every n such thatn∈ domOpers(U1,U2) and for allh1, h2 such thath1 = (the charac-
teristic ofU1)(n) andh2 = (the characteristic ofU2)(n) holds(Opers(U1,U2))(n) =eeh1,h2dd.

One can prove the following proposition

(2) If U1 andU2 are similar, then〈[: the carrier ofU1, the carrier ofU2 :],Opers(U1,U2)〉 is a
strict universal algebra.

Let us considerU1, U2. Let us assume thatU1 andU2 are similar. The functor[:U1, U2 :] yielding
a strict universal algebra is defined as follows:

(Def. 5) [:U1, U2 :] = 〈[: the carrier ofU1, the carrier ofU2 :],Opers(U1,U2)〉.

Let A, B be non empty sets. The functor Inv(A,B) yielding a function from[:A, B:] into [:B, A:]
is defined as follows:

(Def. 6) For every elementa of [:A, B:] holds(Inv(A,B))(a) = 〈〈a2, a1〉〉.

Next we state several propositions:

(3) For all non empty setsA, B holds rngInv(A,B) = [:B, A:].

(4) For all non empty setsA, B holds Inv(A,B) is one-to-one.

(5) SupposeU1 andU2 are similar. Then Inv(the carrier ofU1, the carrier ofU2) is a function
from the carrier of[:U1, U2 :] into the carrier of[:U2, U1 :].

(6) SupposeU1 andU2 are similar. Leto1 be an operation ofU1, o2 be an operation ofU2, o
be an operation of[:U1, U2 :], andn be a natural number. Suppose that

(i) o1 = (the characteristic ofU1)(n),

(ii) o2 = (the characteristic ofU2)(n),

(iii) o = (the characteristic of[:U1, U2 :])(n), and

(iv) n∈ dom(the characteristic ofU1).

Then arityo = arityo1 and arityo = arityo2 ando =eeo1,o2dd.

(7) If U1 andU2 are similar, then[:U1, U2 :] andU1 are similar.

(8) Let U1, U2, U3, U4 be universal algebras. SupposeU1 is a subalgebra ofU2 andU3 is a
subalgebra ofU4 andU2 andU4 are similar. Then[:U1, U3 :] is a subalgebra of[:U2, U4 :].

2. TRIVIAL ALGEBRA

Let k be a natural number. The functor TrivOp(k) yielding a partial function from{ /0}∗ to { /0} is
defined by:

(Def. 7) domTrivOp(k) = {k 7→ /0} and rngTrivOp(k) = { /0}.

Let k be a natural number. Note that TrivOp(k) is homogeneous, quasi total, and non empty.
The following proposition is true

(9) For every natural numberk holds arityTrivOp(k) = k.

Let f be a finite sequence of elements ofN. The functor TrivOps( f ) yields a finite sequence of
operational functions of{ /0} and is defined as follows:

(Def. 8) lenTrivOps( f ) = len f and for everyn such thatn∈ domTrivOps( f ) and for everymsuch
thatm= f (n) holds(TrivOps( f ))(n) = TrivOp(m).

One can prove the following two propositions:
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(10) For every finite sequencef of elements ofN holds TrivOps( f ) is homogeneous, quasi total,
and non-empty.

(11) For every finite sequencef of elements ofN such thatf 6= /0 holds〈{ /0},TrivOps( f )〉 is a
strict universal algebra.

Let D be a non empty set. Observe that there exists a finite sequence of elements ofD which is
non empty and there exists an element ofD∗ which is non empty.

Let f be a non empty finite sequence of elements ofN. The trivial algebra off yielding a strict
universal algebra is defined as follows:

(Def. 9) The trivial algebra off = 〈{ /0},TrivOps( f )〉.

3. PRODUCT OFUNIVERSAL ALGEBRAS

Let I1 be a function. We say thatI1 is universal algebra yielding if and only if:

(Def. 10) For everyx such thatx∈ domI1 holdsI1(x) is a universal algebra.

Let I1 be a function. We say thatI1 is 1-sorted yielding if and only if:

(Def. 11) For everyx such thatx∈ domI1 holdsI1(x) is a 1-sorted structure.

Let us mention that there exists a function which is universal algebra yielding.
Let us mention that every function which is universal algebra yielding is also 1-sorted yielding.
Let I be a set. Observe that there exists a many sorted set indexed byI which is 1-sorted yielding.
Let I1 be a function. We say thatI1 is equal signature if and only if:

(Def. 12) For allx, y such thatx∈ domI1 andy∈ domI1 and for allU1, U2 such thatU1 = I1(x) and
U2 = I1(y) holds signatureU1 = signatureU2.

Let J be a non empty set. One can verify that there exists a many sorted set indexed byJ which
is equal signature and universal algebra yielding.

Let J be a non empty set, letA be a 1-sorted yielding many sorted set indexed byJ, and let j be
an element ofJ. ThenA( j) is a 1-sorted structure.

Let J be a non empty set, letA be a universal algebra yielding many sorted set indexed byJ, and
let j be an element ofJ. ThenA( j) is a universal algebra.

Let J be a set and letA be a 1-sorted yielding many sorted set indexed byJ. The support ofA
yielding a many sorted set indexed byJ is defined by the condition (Def. 13).

(Def. 13) Let j be a set. Supposej ∈ J. Then there exists a 1-sorted structureR such thatR= A( j)
and (the support ofA)( j) = the carrier ofR.

Let J be a non empty set and letA be a universal algebra yielding many sorted set indexed byJ.
One can check that the support ofA is non-empty.

Let J be a non empty set and letA be an equal signature universal algebra yielding many sorted
set indexed byJ. The functor ComSign(A) yields a finite sequence of elements ofN and is defined
as follows:

(Def. 14) For every elementj of J holds ComSign(A) = signatureA( j).

Let I1 be a function. We say thatI1 is function yielding if and only if:

(Def. 15) For everyx such thatx∈ domI1 holdsI1(x) is a function.

Let us observe that there exists a function which is function yielding.
Let I be a set. One can check that there exists a many sorted set indexed byI which is function

yielding.
Let I be a set. A many sorted function indexed byI is a function yielding many sorted set

indexed byI .
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Let B be a function yielding function and letj be a set. One can verify thatB( j) is function-like
and relation-like.

Let J be a non empty set, letB be a non-empty many sorted set indexed byJ, and let j be an
element ofJ. Observe thatB( j) is non empty.

Let F be a function yielding function and letf be a function. Note thatF · f is function yielding.
Let J be a non empty set and letB be a non-empty many sorted set indexed byJ. Note that∏B

is non empty.
Let J be a non empty set and letB be a non-empty many sorted set indexed byJ. A many sorted

function indexed byJ is said to be a many sorted operation ofB if:

(Def. 16) For every elementj of J holds it( j) is a homogeneous quasi total non empty partial function
from B( j)∗ to B( j).

Let J be a non empty set, letB be a non-empty many sorted set indexed byJ, let O be a many
sorted operation ofB, and let j be an element ofJ. ThenO( j) is a homogeneous quasi total non
empty partial function fromB( j)∗ to B( j).

Let I1 be a function. We say thatI1 is equal arity if and only if the condition (Def. 17) is satisfied.

(Def. 17) Letx, y be sets. Supposex ∈ domI1 and y ∈ domI1. Let f , g be functions. Suppose
I1(x) = f andI1(y) = g. Let n, m be natural numbers andX, Y be non empty sets. Suppose
dom f = Xn and domg=Ym. Let o1 be a homogeneous quasi total non empty partial function
from X∗ to X ando2 be a homogeneous quasi total non empty partial function fromY∗ to Y.
If f = o1 andg = o2, then arityo1 = arityo2.

Let J be a non empty set and letB be a non-empty many sorted set indexed byJ. Note that there
exists a many sorted operation ofB which is equal arity.

The following proposition is true

(12) LetJ be a non empty set,B be a non-empty many sorted set indexed byJ, andO be a many
sorted operation ofB. ThenO is equal arity if and only if for all elementsi, j of J holds
arityO(i) = arityO( j).

Let F be a function yielding function and letf be a function. The functorF " f yields a
function and is defined as follows:

(Def. 18) dom(F " f ) = domF and for every setx such thatx ∈ domF holds (F " f )(x) =
F(x)( f (x)).

Let I be a set, letf be a many sorted function indexed byI , and letx be a many sorted set indexed
by I . Then f " x is a many sorted set indexed byI and it can be characterized by the condition:

(Def. 19) For every seti such thati ∈ I and for every functiong such thatg= f (i) holds( f " x)(i) =
g(x(i)).

Let J be a non empty set, letB be a non-empty many sorted set indexed byJ, and letp be a finite
sequence of elements of∏B. Then uncurryp is a many sorted set indexed by[:domp, J :].

Let I , J be sets and letX be a many sorted set indexed by[: I , J :]. ThenxX is a many sorted set
indexed by[:J, I :].

Let X be a set, letY be a non empty set, and letf be a many sorted set indexed by[:X, Y :]. Then
curry f is a many sorted set indexed byX.

Let J be a non empty set, letB be a non-empty many sorted set indexed byJ, and letO be
an equal arity many sorted operation ofB. The functor ComAr(O) yields a natural number and is
defined as follows:

(Def. 20) For every elementj of J holds ComAr(O) = arityO( j).

Let I be a set and letA be a many sorted set indexed byI . The functorεA yielding a many sorted
set indexed byI is defined as follows:

(Def. 21) For every seti such thati ∈ I holdsεA(i) = /0A(i).
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Let J be a non empty set, letB be a non-empty many sorted set indexed byJ, and letO be an
equal arity many sorted operation ofB. The functoreeOdd yields a homogeneous quasi total non
empty partial function from(∏B)∗ to ∏B and is defined by the conditions (Def. 22).

(Def. 22)(i) domeeOdd= (∏B)ComAr(O), and

(ii) for every elementp of (∏B)∗ such thatp∈ domeeOdd holds if domp= /0, theneeOdd(p) =
O " (εB) and if domp 6= /0, then for every non empty setZ and for every many sorted setw
indexed by[:J, Z :] such thatZ = domp andw = xuncurryp holdseeOdd(p) = O " curryw.

Let J be a non empty set, letA be an equal signature universal algebra yielding many sorted set
indexed byJ, and letn be a natural number. Let us assume thatn∈ domComSign(A). The functor
ProdOp(A,n) yielding an equal arity many sorted operation of the support ofA is defined by the
condition (Def. 23).

(Def. 23) Let j be an element ofJ ando be an operation ofA( j). If (the characteristic ofA( j))(n) = o,
then(ProdOp(A,n))( j) = o.

Let J be a non empty set and letA be an equal signature universal algebra yielding many sorted
set indexed byJ. The functor ProdOpSeq(A) yields a finite sequence of operational functions of
∏ (the support ofA) and is defined as follows:

(Def. 24) lenProdOpSeq(A) = lenComSign(A) and for everyn such thatn ∈ domProdOpSeq(A)
holds(ProdOpSeq(A))(n) =eeProdOp(A,n)dd.

Let J be a non empty set and letA be an equal signature universal algebra yielding many sorted
set indexed byJ. The functor ProdUnivAlg(A) yields a strict universal algebra and is defined by:

(Def. 25) ProdUnivAlg(A) = 〈∏ (the support ofA),ProdOpSeq(A)〉.
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[8] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.
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