Product of Family of Universal Algebras

Beata Madras Warsaw University Białystok

Summary. The product of two algebras, trivial algebra determined by an empty set and product of a family of algebras are defined. Some basic properties are shown.

MML Identifier: PRALG_1.

WWW: http://mizar.org/JFM/Vol5/pralg_1.html

The articles [17], [11], [21], [1], [2], [20], [22], [8], [5], [9], [15], [18], [16], [10], [12], [13], [3], [4], [6], [14], [7], and [19] provide the notation and terminology for this paper.

1. PRODUCT OF TWO ALGEBRAS

One can prove the following proposition

(1) For all non empty sets D_1 , D_2 and for all natural numbers n, m such that $D_1^n = D_2^m$ holds n = m.

For simplicity, we follow the rules: U_1 , U_2 denote universal algebras, n, m denote natural numbers, x, y denote sets, A, B denote non empty sets, and h_1 denotes a finite sequence of elements of [A, B].

Let us consider A, B and let us consider h_1 . Then $pr1(h_1)$ is a finite sequence of elements of A and it can be characterized by the condition:

- (Def. 1) $\operatorname{len}\operatorname{pr1}(h_1) = \operatorname{len}h_1$ and for every n such that $n \in \operatorname{dom}\operatorname{pr1}(h_1)$ holds $\operatorname{pr1}(h_1)(n) = h_1(n)_1$. Then $\operatorname{pr2}(h_1)$ is a finite sequence of elements of B and it can be characterized by the condition:
- (Def. 2) $\operatorname{len}\operatorname{pr2}(h_1) = \operatorname{len} h_1$ and for every n such that $n \in \operatorname{dom}\operatorname{pr2}(h_1)$ holds $\operatorname{pr2}(h_1)(n) = h_1(n)_2$.

Let us consider A, B, let f_1 be a homogeneous quasi total non empty partial function from A^* to A, and let f_2 be a homogeneous quasi total non empty partial function from B^* to B. Let us assume that arity $f_1 = \text{arity } f_2$. The functor $||f_1, f_2||$ yields a homogeneous quasi total non empty partial function from $[A, B]^*$ to [A, B] and is defined by the conditions (Def. 3).

- (Def. 3)(i) dom] $f_1, f_2[[=:A, B:]^{arity} f_1, and$
 - (ii) for every finite sequence h of elements of [:A, B:] such that $h \in \text{dom} \cap f_1, f_2 \cap f_2 \cap f_1$ holds $f_1, f_2 \cap f_2 \cap f_1$ for $f_2, f_2 \cap f_2$ for $f_1, f_2 \cap f_2$ for $f_2, f_2 \cap f_2$ for $f_1, f_2 \cap f_2$ for $f_2, f_2 \cap f_2$ for $f_2 \cap f_2$ for $f_2 \cap f_2$ for f_2

In the sequel h_1 denotes a homogeneous quasi total non empty partial function from (the carrier of U_1)* to the carrier of U_1 and h_2 denotes a homogeneous quasi total non empty partial function from (the carrier of U_2)* to the carrier of U_2 .

Let us consider U_1 , U_2 . Let us assume that U_1 and U_2 are similar. The functor Opers (U_1, U_2) yields a finite sequence of operational functions of [: the carrier of U_1 , the carrier of U_2 :] and is defined by the conditions (Def. 4).

- (Def. 4)(i) len Opers (U_1, U_2) = len (the characteristic of U_1), and
 - (ii) for every n such that $n \in \text{dom Opers}(U_1, U_2)$ and for all h_1 , h_2 such that $h_1 = \text{(the characteristic of } U_1)(n)$ and $h_2 = \text{(the characteristic of } U_2)(n)$ holds $(\text{Opers}(U_1, U_2))(n) =]h_1, h_2[[$.

One can prove the following proposition

(2) If U_1 and U_2 are similar, then $\langle [$: the carrier of U_1 , the carrier of U_2 :], Opers $(U_1, U_2) \rangle$ is a strict universal algebra.

Let us consider U_1 , U_2 . Let us assume that U_1 and U_2 are similar. The functor $[:U_1, U_2:]$ yielding a strict universal algebra is defined as follows:

(Def. 5) $[:U_1, U_2:] = \langle [: \text{the carrier of } U_1, \text{ the carrier of } U_2:], \text{Opers}(U_1, U_2) \rangle$.

Let A, B be non empty sets. The functor Inv(A,B) yielding a function from [:A,B:] into [:B,A:] is defined as follows:

(Def. 6) For every element a of [:A, B:] holds $(Inv(A, B))(a) = \langle a_2, a_1 \rangle$.

Next we state several propositions:

- (3) For all non empty sets A, B holds rng Inv(A, B) = [:B, A:].
- (4) For all non empty sets A, B holds Inv(A, B) is one-to-one.
- (5) Suppose U_1 and U_2 are similar. Then Inv(the carrier of U_1 , the carrier of U_2) is a function from the carrier of $[:U_1, U_2:]$ into the carrier of $[:U_2, U_1:]$.
- (6) Suppose U_1 and U_2 are similar. Let o_1 be an operation of U_1 , o_2 be an operation of $[U_1, U_2]$, and u_1 be a natural number. Suppose that
- (i) $o_1 =$ (the characteristic of U_1)(n),
- (ii) $o_2 =$ (the characteristic of U_2)(n),
- (iii) o =(the characteristic of $[:U_1, U_2:]$)(n), and
- (iv) $n \in \text{dom}$ (the characteristic of U_1).

Then arity $o = \text{arity } o_1$ and arity $o = \text{arity } o_2$ and $o =]]o_1, o_2[[$.

- (7) If U_1 and U_2 are similar, then $[:U_1, U_2:]$ and U_1 are similar.
- (8) Let U_1 , U_2 , U_3 , U_4 be universal algebras. Suppose U_1 is a subalgebra of U_2 and U_3 is a subalgebra of U_4 and U_4 are similar. Then $[:U_1, U_3:]$ is a subalgebra of $[:U_2, U_4:]$.

2. TRIVIAL ALGEBRA

Let k be a natural number. The functor TrivOp(k) yielding a partial function from $\{\emptyset\}^*$ to $\{\emptyset\}$ is defined by:

(Def. 7) $\operatorname{dom}\operatorname{TrivOp}(k) = \{k \mapsto \emptyset\} \text{ and } \operatorname{rng}\operatorname{TrivOp}(k) = \{\emptyset\}.$

Let k be a natural number. Note that TrivOp(k) is homogeneous, quasi total, and non empty. The following proposition is true

(9) For every natural number k holds arity TrivOp(k) = k.

Let f be a finite sequence of elements of \mathbb{N} . The functor TrivOps(f) yields a finite sequence of operational functions of $\{\emptyset\}$ and is defined as follows:

(Def. 8) $\operatorname{len}\operatorname{Triv}\operatorname{Ops}(f) = \operatorname{len} f$ and for every n such that $n \in \operatorname{dom}\operatorname{Triv}\operatorname{Ops}(f)$ and for every m such that m = f(n) holds $(\operatorname{Triv}\operatorname{Ops}(f))(n) = \operatorname{Triv}\operatorname{Op}(m)$.

One can prove the following two propositions:

- (10) For every finite sequence f of elements of \mathbb{N} holds $\mathsf{TrivOps}(f)$ is homogeneous, quasi total, and non-empty.
- (11) For every finite sequence f of elements of $\mathbb N$ such that $f \neq \emptyset$ holds $\langle \{\emptyset\}, \operatorname{TrivOps}(f) \rangle$ is a strict universal algebra.

Let D be a non empty set. Observe that there exists a finite sequence of elements of D which is non empty and there exists an element of D^* which is non empty.

Let f be a non empty finite sequence of elements of \mathbb{N} . The trivial algebra of f yielding a strict universal algebra is defined as follows:

(Def. 9) The trivial algebra of $f = \langle \{\emptyset\}, \text{TrivOps}(f) \rangle$.

3. PRODUCT OF UNIVERSAL ALGEBRAS

Let I_1 be a function. We say that I_1 is universal algebra yielding if and only if:

(Def. 10) For every x such that $x \in \text{dom } I_1$ holds $I_1(x)$ is a universal algebra.

Let I_1 be a function. We say that I_1 is 1-sorted yielding if and only if:

(Def. 11) For every x such that $x \in \text{dom } I_1$ holds $I_1(x)$ is a 1-sorted structure.

Let us mention that there exists a function which is universal algebra yielding.

Let us mention that every function which is universal algebra yielding is also 1-sorted yielding. Let I be a set. Observe that there exists a many sorted set indexed by I which is 1-sorted yielding. Let I_1 be a function. We say that I_1 is equal signature if and only if:

(Def. 12) For all x, y such that $x \in \text{dom } I_1$ and $y \in \text{dom } I_1$ and for all U_1 , U_2 such that $U_1 = I_1(x)$ and $U_2 = I_1(y)$ holds signature $U_1 = \text{signature } U_2$.

Let J be a non empty set. One can verify that there exists a many sorted set indexed by J which is equal signature and universal algebra yielding.

Let J be a non empty set, let A be a 1-sorted yielding many sorted set indexed by J, and let j be an element of J. Then A(j) is a 1-sorted structure.

Let J be a non empty set, let A be a universal algebra yielding many sorted set indexed by J, and let j be an element of J. Then A(j) is a universal algebra.

Let J be a set and let A be a 1-sorted yielding many sorted set indexed by J. The support of A yielding a many sorted set indexed by J is defined by the condition (Def. 13).

(Def. 13) Let j be a set. Suppose $j \in J$. Then there exists a 1-sorted structure R such that R = A(j) and (the support of A)(j) = the carrier of R.

Let J be a non empty set and let A be a universal algebra yielding many sorted set indexed by J. One can check that the support of A is non-empty.

Let J be a non empty set and let A be an equal signature universal algebra yielding many sorted set indexed by J. The functor ComSign(A) yields a finite sequence of elements of \mathbb{N} and is defined as follows:

(Def. 14) For every element j of J holds ComSign(A) = signature <math>A(j).

Let I_1 be a function. We say that I_1 is function yielding if and only if:

(Def. 15) For every x such that $x \in \text{dom } I_1$ holds $I_1(x)$ is a function.

Let us observe that there exists a function which is function yielding.

Let *I* be a set. One can check that there exists a many sorted set indexed by *I* which is function yielding.

Let I be a set. A many sorted function indexed by I is a function yielding many sorted set indexed by I.

Let B be a function yielding function and let j be a set. One can verify that B(j) is function-like and relation-like.

Let J be a non-empty set, let B be a non-empty many sorted set indexed by J, and let j be an element of J. Observe that B(j) is non-empty.

Let F be a function yielding function and let f be a function. Note that $F \cdot f$ is function yielding. Let J be a non-empty set and let B be a non-empty many sorted set indexed by J. Note that $\prod B$ is non-empty.

Let J be a non-empty set and let B be a non-empty many sorted set indexed by J. A many sorted function indexed by J is said to be a many sorted operation of B if:

(Def. 16) For every element j of J holds it(j) is a homogeneous quasi total non empty partial function from $B(j)^*$ to B(j).

Let J be a non empty set, let B be a non-empty many sorted set indexed by J, let O be a many sorted operation of B, and let j be an element of J. Then O(j) is a homogeneous quasi total non empty partial function from $B(j)^*$ to B(j).

Let I_1 be a function. We say that I_1 is equal arity if and only if the condition (Def. 17) is satisfied.

(Def. 17) Let x, y be sets. Suppose $x \in \text{dom } I_1$ and $y \in \text{dom } I_1$. Let f, g be functions. Suppose $I_1(x) = f$ and $I_1(y) = g$. Let n, m be natural numbers and X, Y be non empty sets. Suppose $\text{dom } f = X^n$ and $\text{dom } g = Y^m$. Let o_1 be a homogeneous quasi total non empty partial function from X^* to X and o_2 be a homogeneous quasi total non empty partial function from Y^* to Y. If $f = o_1$ and $g = o_2$, then arity $o_1 = \text{arity } o_2$.

Let J be a non-empty set and let B be a non-empty many sorted set indexed by J. Note that there exists a many sorted operation of B which is equal arity.

The following proposition is true

(12) Let J be a non-empty set, B be a non-empty many sorted set indexed by J, and O be a many sorted operation of B. Then O is equal arity if and only if for all elements i, j of J holds arity O(i) = arity O(j).

Let F be a function yielding function and let f be a function. The functor $F \leftrightarrow f$ yields a function and is defined as follows:

(Def. 18) $\operatorname{dom}(F \leftrightarrow f) = \operatorname{dom} F$ and for every set x such that $x \in \operatorname{dom} F$ holds $(F \leftrightarrow f)(x) = F(x)(f(x))$.

Let *I* be a set, let *f* be a many sorted function indexed by *I*, and let *x* be a many sorted set indexed by *I*. Then $f \hookrightarrow x$ is a many sorted set indexed by *I* and it can be characterized by the condition:

(Def. 19) For every set i such that $i \in I$ and for every function g such that g = f(i) holds $(f \leftrightarrow x)(i) = g(x(i))$.

Let *J* be a non-empty set, let *B* be a non-empty many sorted set indexed by *J*, and let *p* be a finite sequence of elements of $\prod B$. Then uncurry *p* is a many sorted set indexed by [: dom p, J:].

Let I, J be sets and let X be a many sorted set indexed by [:I, J:]. Then $\final X$ is a many sorted set indexed by [:J, I:].

Let X be a set, let Y be a non empty set, and let f be a many sorted set indexed by [:X,Y:]. Then curry f is a many sorted set indexed by X.

Let J be a non empty set, let B be a non-empty many sorted set indexed by J, and let O be an equal arity many sorted operation of B. The functor ComAr(O) yields a natural number and is defined as follows:

(Def. 20) For every element j of J holds ComAr(O) = arity <math>O(j).

Let *I* be a set and let *A* be a many sorted set indexed by *I*. The functor ε_A yielding a many sorted set indexed by *I* is defined as follows:

(Def. 21) For every set *i* such that $i \in I$ holds $\varepsilon_A(i) = \emptyset_{A(i)}$.

Let J be a non empty set, let B be a non-empty many sorted set indexed by J, and let O be an equal arity many sorted operation of B. The functor $\bigcap O \bigcap$ yields a homogeneous quasi total non empty partial function from $(\bigcap B)^*$ to $\bigcap B$ and is defined by the conditions (Def. 22).

- (Def. 22)(i) $\operatorname{dom} \bigcap O \bigcap = (\prod B)^{\operatorname{ComAr}(O)}$, and
 - (ii) for every element p of $(\prod B)^*$ such that $p \in \text{dom} \cap O[[holds]]$ for $p = \emptyset$, then $n \in O[[holds]]$ and if $n \in O[[holds]]$ such that $n \in O[[holds]]$ and if $n \in O[[holds]]$ such that $n \in O[[holds]]$ such that $n \in O[[holds]]$ such that $n \in O[[holds]]$ and $n \in O[[holds]]$ such that $n \in O[[holds]]$ su

Let J be a non empty set, let A be an equal signature universal algebra yielding many sorted set indexed by J, and let n be a natural number. Let us assume that $n \in \text{domComSign}(A)$. The functor ProdOp(A, n) yielding an equal arity many sorted operation of the support of A is defined by the condition (Def. 23).

(Def. 23) Let j be an element of J and o be an operation of A(j). If (the characteristic of A(j))(n) = o, then $(\operatorname{ProdOp}(A, n))(j) = o$.

Let J be a non empty set and let A be an equal signature universal algebra yielding many sorted set indexed by J. The functor ProdOpSeq(A) yields a finite sequence of operational functions of \prod (the support of A) and is defined as follows:

(Def. 24) len ProdOpSeq(A) = len ComSign(A) and for every n such that $n \in \text{domProdOpSeq}(A)$ holds (ProdOpSeq(A))(n) = ProdOp(A, n) [.

Let J be a non empty set and let A be an equal signature universal algebra yielding many sorted set indexed by J. The functor ProdUnivAlg(A) yields a strict universal algebra and is defined by:

(Def. 25) ProdUnivAlg(A) = $\langle \prod$ (the support of A),ProdOpSeq(A) \rangle .

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html.
- [2] Grzegorz Bancerek. Sequences of ordinal numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/ordinal?html
- [3] Grzegorz Bancerek. Curried and uncurried functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_5.html.
- [4] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [6] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/dtconstr.html.
- [7] Ewa Burakowska. Subalgebras of the universal algebra. Lattices of subalgebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/unialg_2.html.
- [8] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [9] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [11] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [12] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [13] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [14] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of universal algebra. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/unialq_1.html.

- [15] Andrzej Trybulec. Binary operations applied to functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funcop_1.html.
- [16] Andrzej Trybulec. Domains and their Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/domain_1.html.
- [17] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [18] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/moart_1.html.
- [19] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [20] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- $[21] \ \ \textbf{Zinaida Trybulec. Properties of subsets. } \textbf{\textit{Journal of Formalized Mathematics}}, 1, 1989. \ \texttt{http://mizar.org/JFM/Vol1/subset_l.html}.$
- [22] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received October 12, 1993

Published January 2, 2004