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The articles|[1F7],[[11],[[21],[10],[12],[20],[[22],[[8],[[5],[[9], [15],[[18],[[16],[110] . [12] [[13],13],
[4], [6], [14], [7], and [19] provide the notation and terminology for this paper.

1. ProDUCT OFTWO ALGEBRAS

One can prove the following proposition

(1) For all non empty set®1, D, and for all natural numbers m such thaD;" = D,™ holds
n=m.

For simplicity, we follow the rulestJ1, U, denote universal algebras,m denote natural num-
bers,x, y denote setsh, B denote non empty sets, ahgddenotes a finite sequence of elements of
[A, B].

Let us consideA, B and let us considér;. Then prlh;) is a finite sequence of elementsAf
and it can be characterized by the condition:

(Def. 1) lenprihy) = lenh; and for everyn such than € dompri(h;) holds prXh;)(n) = hi(n)s.
Then prZh;) is a finite sequence of elements®énd it can be characterized by the condition:
(Def. 2) lenprZh;) = lenh; and for everyn such thah € domprZh;) holds prZh;)(n) = hi(n)s.

Let us consideA, B, let f; be a homogeneous quasi total non empty partial function fkbito
A, and letf, be a homogeneous quasi total non empty partial function Bbno B. Let us assume
that arityf; = arity f. The functor]] f1, f2[[ yields a homogeneous quasi total non empty partial
function from[: A, B]" to [: A, B and is defined by the conditions (Def. 3).

(Def. 3)()) doni]fy, fo[[= A, BJ*¥" and
(i)  for every finite sequencé of elements of: A, B] such thath € dom|] fy, f2[[ holds

1111, f2[[ (h) = (fa(pri(h)), fa(pr2(h))).

In the sequeth; denotes a homogeneous quasi total non empty partial function from (the catdigr of
to the carrier ofU; and h, denotes a homogeneous quasi total non empty partial function from
(the carrier olJ,)* to the carrier ofs.

Let us consideb);, U,. Let us assume that; andU, are similar. The functor Opefid;,U>)
yields a finite sequence of operational functiond: tife carrier ofU;, the carrier ofU, ] and is
defined by the conditions (Def. 4).
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(Def. 4)(i) lenOperéJ;,Uy) = len(the characteristic &), and

(i) for everyn such than € domOperéJ;,U;) and for allh;, hy such thah; = (the charac-
teristic ofU; ) (n) andh, = (the characteristic df) (n) holds(OpergU;,Uz))(n) =|]hg, ho[].

One can prove the following proposition

(2) If U andU; are similar, then: the carrier ofU1, the carrier ofUs ], OpergUs,Uy)) is a
strict universal algebra.

Let us considets, U;. Let us assume thily andU; are similar. The functorUs, U, ] yielding
a strict universal algebra is defined as follows:

(Def.5) [Uq, U] = ([:the carrier olJ1, the carrier olJz ], OpergUs,Us)).

Let A, B be non empty sets. The functor [#yB) yielding a function from: A, B into [ B, A]
is defined as follows:

(Def. 6) For every elemeratof [ A, B] holds(Inv(A,B))(a) = {(ap, a1).
Next we state several propositions:
(3) Forall non empty set&, B holds rngIngA,B) = [ B, AJ.
(4) For all non empty set4, B holds In(A, B) is one-to-one.

(5) Supposé); andU; are similar. Then Infthe carrier olU;, the carrier ol,) is a function
from the carrier of:Uq, Uz ] into the carrier of:Uy, Uy .

(6) SupposéJ; andU, are similar. Leto; be an operation dfl;, o, be an operation dfl,, o
be an operation dfU;, Uz, andn be a natural number. Suppose that

(i) o1 = (the characteristic dfl1)(n),
(i) o2 = (the characteristic dfi;)(n),
(i) o= (the characteristic dfU1, U, ])(n), and
(iv) nedom(the characteristic afy).
Then arityo = arityo; and arityo = arityo, ando =] 01, 02[].
(7) If Uy andU; are similar, therf Uy, U, ] andU; are similar.

(8) LetUq, Uy, Us, Us be universal algebras. Suppddeis a subalgebra dff, andUs is a
subalgebra 04, andU; andU, are similar. Thert Uy, Uz ] is a subalgebra dfUs, Uy .

2. TRIVIAL ALGEBRA

Let k be a natural number. The functor TrivQ@ yielding a partial function fronr{0}* to {0} is
defined by:

(Def. 7) domTrivOgk) = {k — 0} and rng TrivOgk) = {0}.

Let k be a natural number. Note that Triv@p is homogeneous, quasi total, and non empty.
The following proposition is true

(9) For every natural numbérholds arity TrivOgk) = k.

Let f be a finite sequence of elementsddfThe functor TrivOp§f) yields a finite sequence of
operational functions of0} and is defined as follows:

(Def. 8) lenTrivOpsf) =lenf and for everyn such than € dom TrivOpg f) and for everymsuch
thatm= f(n) holds(TrivOps(f))(n) = TrivOp(m).

One can prove the following two propositions:
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(10) For every finite sequendeof elements oN holds TrivOps$f) is homogeneous, quasi total,
and non-empty.

(11) For every finite sequendeof elements oN such thatf # 0 holds ({0}, TrivOps(f)) is a
strict universal algebra.

Let D be a non empty set. Observe that there exists a finite sequence of elementbich is
non empty and there exists an elemenDdfwhich is non empty.

Let f be a non empty finite sequence of element’& o he trivial algebra off yielding a strict
universal algebra is defined as follows:

(Def. 9) The trivial algebra of = ({0}, TrivOpg(f)).

3. ProDUCT OFUNIVERSAL ALGEBRAS

LetI1 be a function. We say th#f is universal algebra yielding if and only if;
(Def. 10) For everyx such thak € domls holdsly(x) is a universal algebra.
LetI1 be a function. We say th#f is 1-sorted yielding if and only if:
(Def. 11) For everx such thak € domls holdsly(x) is a 1-sorted structure.

Let us mention that there exists a function which is universal algebra yielding.

Let us mention that every function which is universal algebra yielding is also 1-sorted yielding.
Letl be a set. Observe that there exists a many sorted set indekeehish is 1-sorted yielding.
Letl; be a function. We say that is equal signature if and only if:

(Def. 12) For allx, y such tha € doml; andy € doml; and for allU, U, such that); = 11(x) and
U, = I1(y) holds signaturg; = signatureJ,.

LetJ be a non empty set. One can verify that there exists a many sorted set indekedhizi
is equal signature and universal algebra yielding.

LetJ be a non empty set, Iétbe a 1-sorted yielding many sorted set indexed gnd letj be
an element 08. ThenA(j) is a 1-sorted structure.

LetJ be a non empty set, Iétbe a universal algebra yielding many sorted set indexel] bpd
let j be an element of. ThenA(j) is a universal algebra.

Let J be a set and leA be a 1-sorted yielding many sorted set indexed byhe support oA
yielding a many sorted set indexed bys defined by the condition (Def. 13).

(Def. 13) Letj be a set. Suppose< J. Then there exists a 1-sorted struct&such thaR = A(j)
and (the support o&)(j) = the carrier oiR

LetJ be a non empty set and l&tbe a universal algebra yielding many sorted set indexedl by
One can check that the supportffs non-empty.

LetJ be a non empty set and latbe an equal signature universal algebra yielding many sorted
set indexed byl. The functor ComSigfA) yields a finite sequence of elementoand is defined
as follows:

(Def. 14) For every elemerjtof J holds ComSig(A) = signaturé(j).
Letl; be a function. We say thé&t is function yielding if and only if:
(Def. 15) For every such thak € doml; holdsly(x) is a function.

Let us observe that there exists a function which is function yielding.

Let| be a set. One can check that there exists a many sorted set indekadlmh is function
yielding.

Let | be a set. A many sorted function indexed Ibis a function yielding many sorted set
indexed byl.
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Let B be a function yielding function and Igtbe a set. One can verify thBt ) is function-like
and relation-like.

Let J be a non empty set, |& be a non-empty many sorted set indexedlbgnd letj be an
element of]. Observe thaB( ) is non empty.

LetF be a function yielding function and létbe a function. Note thdt - f is function yielding.

LetJ be a non empty set and IBtbe a non-empty many sorted set indexedlbiote that[] B
is non empty.

LetJ be a non empty set and IBtbe a non-empty many sorted set indexed by many sorted
function indexed byl is said to be a many sorted operatiorBaf:

(Def. 16) For every elementof J holds it( j) is a homogeneous quasi total non empty partial function
from B(j)* to B(j).

Let J be a non empty set, |& be a non-empty many sorted set indexedlblet O be a many
sorted operation 0B, and letj be an element ad. ThenO(j) is a homogeneous quasi total non
empty partial function fronB(j)* to B(j).

Letl; be a function. We say thét is equal arity if and only if the condition (Def. 17) is satisfied.

(Def. 17) Letx, y be sets. Supposec doml; andy € doml;. Let f, g be functions. Suppose
I1(x) = f andl1(y) = g. Let n, mbe natural numbers arX, Y be non empty sets. Suppose
domf = X" and dong=Y™. Leto; be a homogeneous quasi total non empty partial function
from X* to X ando; be a homogeneous quasi total non empty partial function ¥orto Y.

If f =01 andg= 0y, then arityo; = arityo,.

LetJ be a non empty set and IBtbe a non-empty many sorted set indexed biote that there
exists a many sorted operation®fvhich is equal arity.
The following proposition is true

(12) LetJd be anon empty seB be a non-empty many sorted set indexed pgndO be a many
sorted operation oB. ThenO is equal arity if and only if for all elements j of J holds
arityO(i) = arityO(}).

Let F be a function yielding function and Idt be a function. The functoF < f yields a
function and is defined as follows:

(Def. 18) donfF < f) = domF and for every sek such thatx € domF holds (F «p f)(x)
FOO(F(¥).

Letl be a set, lef be a many sorted function indexed lhyand letx be a many sorted set indexed
by l. Thenf < xis a many sorted set indexed bgnd it can be characterized by the condition:

(Def. 19) For every setsuch that € | and for every functioy such thag = f (i) holds(f <P x)(i) =
g(x(1))-

LetJ be a non empty set, IBtbe a non-empty many sorted set indexed bgnd letp be a finite
sequence of elements pfB. Then uncurnp is a many sorted set indexed pgomp, J 1.

Letl, J be sets and le&X be a many sorted set indexed bly J]. Then~X is a many sorted set
indexed by J, 1 ].

Let X be a set, lIeY be a non empty set, and lebe a many sorted setindexed by, Y . Then
curryf is a many sorted set indexed Ky

Let J be a non empty set, |& be a non-empty many sorted set indexedJbyand letO be
an equal arity many sorted operationBf The functor ComAfO) yields a natural number and is
defined as follows:

(Def. 20) For every elemerjtof J holds ComA(O) = arityO(j).

Letl be a set and lek be a many sorted set indexed byl he functore, yielding a many sorted
set indexed by is defined as follows:

(Def. 21)  For every sdtsuch that € | holdsea(i) = Oa)-
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Let J be a non empty set, I& be a non-empty many sorted set indexedlbgnd letO be an
equal arity many sorted operation Bf The functor|]O[[ yields a homogeneous quasi total non
empty partial function fron{[]B)* to [1B and is defined by the conditions (Def. 22).

(Def. 22)(i))  dom]O[[= ([]B)S°™A(© and

(ify for every elemenp of ([1B)* such thaip € dom||O[[ holds if domp = 0, then]]O[[(p) =
O «p (eg) and if domp # 0, then for every non empty s@tand for every many sorted set
indexed by{:J, Z7] such thaZ = domp andw = .~uncurryp holds]|O[[(p) = O «P curryw.

Let J be a non empty set, &t be an equal signature universal algebra yielding many sorted set
indexed byJ, and letn be a natural number. Let us assume thatdom ComSig(A). The functor
ProdOgdA, n) yielding an equal arity many sorted operation of the suppoA &f defined by the
condition (Def. 23).

(Def. 23) Letj be an element af ando be an operation d&(j). If (the characteristic oA(j))(n) = o,
then(ProdOgA,n))(j) =o.

LetJ be a non empty set and latbe an equal signature universal algebra yielding many sorted
set indexed byl. The functor ProdOpS€4) yields a finite sequence of operational functions of
[1(the support ofA) and is defined as follows:

(Def. 24) lenProdOpSé€d) = lenComSigtiA) and for everyn such thatn € domProdOpSed\)
holds(ProdOpSe(A))(n) =]] ProdOgA, n)|[.

LetJ be a non empty set and latbe an equal signature universal algebra yielding many sorted
set indexed by. The functor ProdUnivAl@¢A) yields a strict universal algebra and is defined by:

(Def. 25) ProdUnivAIdA) = ([ (the support ofA),ProdOpSeA)).
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