Many-sorted Sets

Andrzej Trybulec Warsaw University Białystok

Summary. The article deals with parameterized families of sets. When treated in a similar way as sets (due to systematic overloading notation used for sets) they are called many sorted sets. For instance, if x and X are two many-sorted sets (with the same set of indices I) then relation $x \in X$ is defined as $\forall_{i \in I} x_i \in X_i$.

I was prompted by a remark in a paper by Tarlecki and Wirsing: "Throughout the paper we deal with many-sorted sets, functions, relations etc. ... We feel free to use any standard set-theoretic notation without explicit use of indices" [6, p. 97]. The aim of this work was to check the feasibility of such approach in Mizar. It works.

Let us observe some peculiarities:

- empty set (i.e. the many sorted set with empty set of indices) belongs to itself (theorem 133),
- we get two different inclusions $X \subseteq Y$ iff $\forall_{i \in I} X_i \subseteq Y_i$ and $X \subseteq Y$ iff $\forall_x x \in X \Rightarrow x \in Y$ equivalent only for sets that yield non empty values.

Therefore the care is advised.

MML Identifier: PBOOLE.

WWW: http://mizar.org/JFM/Vol5/pboole.html

The articles [8], [9], [10], [2], [7], [3], [1], [5], and [4] provide the notation and terminology for this paper.

1. Preliminaries

In this paper i, e are sets.

Let f be a function. Let us observe that f is empty yielding if and only if:

(Def. 1) For every i such that $i \in \text{dom } f$ holds f(i) is empty.

Let us note that there exists a function which is empty yielding. We now state two propositions:

- (1) For every function f such that f is non-empty holds $\operatorname{rng} f$ has non empty elements.
- (2) For every function f holds f is empty yielding iff $f = \emptyset$ or rng $f = \{\emptyset\}$.

In the sequel *I* denotes a set.

Let us consider *I*. A function is called a many sorted set indexed by *I* if:

 $(Def. 3)^1$ dom it = I.

1

¹ The definition (Def. 2) has been removed.

In the sequel x, X, Y, Z, V are many sorted sets indexed by I.

The scheme *Kuratowski Function* deals with a set $\mathcal A$ and a unary functor $\mathcal F$ yielding a set, and states that:

There exists a many sorted set f indexed by $\mathcal A$ such that for every e such that $e \in \mathcal A$ holds $f(e) \in \mathcal F(e)$

provided the parameters satisfy the following condition:

• For every e such that $e \in \mathcal{A}$ holds $\mathcal{F}(e) \neq \emptyset$.

Let us consider I, X, Y. The predicate $X \in Y$ is defined by:

(Def. 4) For every i such that $i \in I$ holds $X(i) \in Y(i)$.

The predicate $X \subseteq Y$ is defined by:

(Def. 5) For every *i* such that $i \in I$ holds $X(i) \subseteq Y(i)$.

Let us note that the predicate $X \subseteq Y$ is reflexive.

Let *I* be a non empty set and let *X*, *Y* be many sorted sets indexed by *I*. Let us note that the predicate $X \in Y$ is antisymmetric.

The scheme *PSeparation* deals with a set \mathcal{A} , a many sorted set \mathcal{B} indexed by \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

There exists a many sorted set X indexed by \mathcal{A} such that for every set i if $i \in \mathcal{A}$, then for every e holds $e \in X(i)$ iff $e \in \mathcal{B}(i)$ and $\mathcal{P}[i,e]$

for all values of the parameters.

The following proposition is true

(3) If for every i such that $i \in I$ holds X(i) = Y(i), then X = Y.

Let us consider I. The functor $\mathbf{0}_I$ yields a many sorted set indexed by I and is defined by:

(Def. 6)
$$\mathbf{0}_I = I \longmapsto \emptyset$$
.

Let us consider X, Y. The functor $X \cup Y$ yields a many sorted set indexed by I and is defined as follows:

(Def. 7) For every i such that $i \in I$ holds $(X \cup Y)(i) = X(i) \cup Y(i)$.

Let us observe that the functor $X \cup Y$ is commutative and idempotent. The functor $X \cap Y$ yielding a many sorted set indexed by I is defined by:

(Def. 8) For every i such that $i \in I$ holds $(X \cap Y)(i) = X(i) \cap Y(i)$.

Let us observe that the functor $X \cap Y$ is commutative and idempotent. The functor $X \setminus Y$ yielding a many sorted set indexed by I is defined by:

(Def. 9) For every i such that $i \in I$ holds $(X \setminus Y)(i) = X(i) \setminus Y(i)$.

We say that X overlaps Y if and only if:

(Def. 10) For every i such that $i \in I$ holds X(i) meets Y(i).

Let us note that the predicate X overlaps Y is symmetric. We say that X misses Y if and only if:

(Def. 11) For every i such that $i \in I$ holds X(i) misses Y(i).

Let us note that the predicate X misses Y is symmetric. We introduce X meets Y as an antonym of X misses Y.

Let us consider I, X, Y. The functor X - Y yielding a many sorted set indexed by I is defined as follows:

(Def. 12)
$$X \dot{-} Y = (X \setminus Y) \cup (Y \setminus X)$$
.

Let us observe that the functor $X \dot{-} Y$ is commutative.

The following propositions are true:

- (4) For every *i* such that $i \in I$ holds (X Y)(i) = X(i) Y(i).
- (5) For every *i* such that $i \in I$ holds $\mathbf{0}_I(i) = \emptyset$.
- (6) If for every *i* such that $i \in I$ holds $X(i) = \emptyset$, then $X = \mathbf{0}_I$.
- (7) If $x \in X$ or $x \in Y$, then $x \in X \cup Y$.
- (8) $x \in X \cap Y \text{ iff } x \in X \text{ and } x \in Y.$
- (9) If $x \in X$ and $X \subseteq Y$, then $x \in Y$.
- (10) If $x \in X$ and $x \in Y$, then X overlaps Y.
- (11) If *X* overlaps *Y*, then there exists *x* such that $x \in X$ and $x \in Y$.
- (12) If $x \in X \setminus Y$, then $x \in X$.

2. Lattice Properties of Many Sorted Sets

We now state the proposition

(13) $X \subseteq X$.

Let us consider I, X, Y. Let us observe that X = Y if and only if:

(Def. 13) $X \subseteq Y$ and $Y \subseteq X$.

We now state a number of propositions:

- $(15)^2$ If $X \subseteq Y$ and $Y \subseteq Z$, then $X \subseteq Z$.
- (16) $X \subseteq X \cup Y$ and $Y \subseteq X \cup Y$.
- (17) $X \cap Y \subseteq X$ and $X \cap Y \subseteq Y$.
- (18) If $X \subseteq Z$ and $Y \subseteq Z$, then $X \cup Y \subseteq Z$.
- (19) If $Z \subseteq X$ and $Z \subseteq Y$, then $Z \subseteq X \cap Y$.
- (20) If $X \subseteq Y$, then $X \cup Z \subseteq Y \cup Z$ and $Z \cup X \subseteq Z \cup Y$.
- (21) If $X \subseteq Y$, then $X \cap Z \subseteq Y \cap Z$ and $Z \cap X \subseteq Z \cap Y$.
- (22) If $X \subseteq Y$ and $Z \subseteq V$, then $X \cup Z \subseteq Y \cup V$.
- (23) If $X \subseteq Y$ and $Z \subseteq V$, then $X \cap Z \subseteq Y \cap V$.
- (24) If $X \subseteq Y$, then $X \cup Y = Y$ and $Y \cup X = Y$.
- (25) If $X \subseteq Y$, then $X \cap Y = X$ and $Y \cap X = X$.
- (26) $X \cap Y \subseteq X \cup Z$.
- (27) If $X \subseteq Z$, then $X \cup Y \cap Z = (X \cup Y) \cap Z$.
- (28) $X = Y \cup Z$ iff $Y \subseteq X$ and $Z \subseteq X$ and for every V such that $Y \subseteq V$ and $Z \subseteq V$ holds $X \subseteq V$.
- (29) $X = Y \cap Z$ iff $X \subseteq Y$ and $X \subseteq Z$ and for every V such that $V \subseteq Y$ and $V \subseteq Z$ holds $V \subseteq X$.
- $(34)^3 \quad (X \cup Y) \cup Z = X \cup (Y \cup Z).$
- $(35) \quad (X \cap Y) \cap Z = X \cap (Y \cap Z).$

² The proposition (14) has been removed.

³ The propositions (30)–(33) have been removed.

(36)
$$X \cap (X \cup Y) = X$$
 and $(X \cup Y) \cap X = X$ and $X \cap (Y \cup X) = X$ and $(Y \cup X) \cap X = X$.

(37)
$$X \cup X \cap Y = X$$
 and $X \cap Y \cup X = X$ and $X \cup Y \cap X = X$ and $Y \cap X \cup X = X$.

$$(38) \quad X \cap (Y \cup Z) = X \cap Y \cup X \cap Z.$$

(39)
$$X \cup Y \cap Z = (X \cup Y) \cap (X \cup Z)$$
 and $Y \cap Z \cup X = (Y \cup X) \cap (Z \cup X)$.

(40) If
$$X \cap Y \cup X \cap Z = X$$
, then $X \subseteq Y \cup Z$.

(41) If
$$(X \cup Y) \cap (X \cup Z) = X$$
, then $Y \cap Z \subseteq X$.

$$(42) \quad X \cap Y \cup Y \cap Z \cup Z \cap X = (X \cup Y) \cap (Y \cup Z) \cap (Z \cup X).$$

(43) If
$$X \cup Y \subseteq Z$$
, then $X \subseteq Z$ and $Y \subseteq Z$.

(44) If
$$X \subseteq Y \cap Z$$
, then $X \subseteq Y$ and $X \subseteq Z$.

$$(45) \quad (X \cup Y) \cup Z = X \cup Z \cup (Y \cup Z) \text{ and } X \cup (Y \cup Z) = (X \cup Y) \cup (X \cup Z).$$

(46)
$$(X \cap Y) \cap Z = X \cap Z \cap (Y \cap Z)$$
 and $X \cap (Y \cap Z) = (X \cap Y) \cap (X \cap Z)$.

(47)
$$X \cup (X \cup Y) = X \cup Y \text{ and } X \cup Y \cup Y = X \cup Y.$$

(48)
$$X \cap (X \cap Y) = X \cap Y$$
 and $X \cap Y \cap Y = X \cap Y$.

3. THE EMPTY MANY SORTED SET

Next we state several propositions:

(49)
$$\mathbf{0}_I \subseteq X$$
.

(50) If
$$X \subseteq \mathbf{0}_I$$
, then $X = \mathbf{0}_I$.

(51) If
$$X \subseteq Y$$
 and $X \subseteq Z$ and $Y \cap Z = \mathbf{0}_I$, then $X = \mathbf{0}_I$.

(52) If
$$X \subseteq Y$$
 and $Y \cap Z = \mathbf{0}_I$, then $X \cap Z = \mathbf{0}_I$.

(53)
$$X \cup \mathbf{0}_I = X$$
 and $\mathbf{0}_I \cup X = X$.

(54) If
$$X \cup Y = \mathbf{0}_I$$
, then $X = \mathbf{0}_I$ and $Y = \mathbf{0}_I$.

(55)
$$X \cap \mathbf{0}_I = \mathbf{0}_I$$
 and $\mathbf{0}_I \cap X = \mathbf{0}_I$.

(56) If
$$X \subseteq Y \cup Z$$
 and $X \cap Z = \mathbf{0}_I$, then $X \subseteq Y$.

(57) If
$$Y \subseteq X$$
 and $X \cap Y = \mathbf{0}_I$, then $Y = \mathbf{0}_I$.

4. THE DIFFERENCE AND THE SYMMETRIC DIFFERENCE

One can prove the following propositions:

(58)
$$X \setminus Y = \mathbf{0}_I \text{ iff } X \subseteq Y.$$

(59) If
$$X \subseteq Y$$
, then $X \setminus Z \subseteq Y \setminus Z$.

(60) If
$$X \subseteq Y$$
, then $Z \setminus Y \subseteq Z \setminus X$.

(61) If
$$X \subseteq Y$$
 and $Z \subseteq V$, then $X \setminus V \subseteq Y \setminus Z$.

(62)
$$X \setminus Y \subseteq X$$
.

(63) If
$$X \subseteq Y \setminus X$$
, then $X = \mathbf{0}_I$.

(64)
$$X \setminus X = \mathbf{0}_I$$
.

(65)
$$X \setminus \mathbf{0}_I = X$$
.

(66)
$$\mathbf{0}_{I} \setminus X = \mathbf{0}_{I}$$
.

(67)
$$X \setminus (X \cup Y) = \mathbf{0}_I$$
 and $X \setminus (Y \cup X) = \mathbf{0}_I$.

(68)
$$X \cap (Y \setminus Z) = X \cap Y \setminus Z$$
.

(69)
$$(X \setminus Y) \cap Y = \mathbf{0}_I$$
 and $Y \cap (X \setminus Y) = \mathbf{0}_I$.

(70)
$$X \setminus (Y \setminus Z) = (X \setminus Y) \cup X \cap Z$$
.

(71)
$$(X \setminus Y) \cup X \cap Y = X$$
 and $X \cap Y \cup (X \setminus Y) = X$.

(72) If
$$X \subseteq Y$$
, then $Y = X \cup (Y \setminus X)$ and $Y = (Y \setminus X) \cup X$.

(73)
$$X \cup (Y \setminus X) = X \cup Y$$
 and $(Y \setminus X) \cup X = Y \cup X$.

$$(74) \quad X \setminus (X \setminus Y) = X \cap Y.$$

(75)
$$X \setminus Y \cap Z = (X \setminus Y) \cup (X \setminus Z)$$
.

(76)
$$X \setminus X \cap Y = X \setminus Y \text{ and } X \setminus Y \cap X = X \setminus Y.$$

(77)
$$X \cap Y = \mathbf{0}_I \text{ iff } X \setminus Y = X.$$

(78)
$$(X \cup Y) \setminus Z = (X \setminus Z) \cup (Y \setminus Z)$$
.

$$(79) \quad X \setminus Y \setminus Z = X \setminus (Y \cup Z).$$

(80)
$$X \cap Y \setminus Z = (X \setminus Z) \cap (Y \setminus Z)$$
.

$$(81) \quad (X \cup Y) \setminus Y = X \setminus Y.$$

(82) If
$$X \subseteq Y \cup Z$$
, then $X \setminus Y \subseteq Z$ and $X \setminus Z \subseteq Y$.

(83)
$$(X \cup Y) \setminus X \cap Y = (X \setminus Y) \cup (Y \setminus X).$$

$$(84) \quad X \setminus Y \setminus Y = X \setminus Y.$$

$$(85) \quad X \setminus (Y \cup Z) = (X \setminus Y) \cap (X \setminus Z).$$

(86) If
$$X \setminus Y = Y \setminus X$$
, then $X = Y$.

$$(87) \quad X \cap (Y \setminus Z) = X \cap Y \setminus X \cap Z.$$

(88) If
$$X \setminus Y \subseteq Z$$
, then $X \subseteq Y \cup Z$.

(89)
$$X \setminus Y \subseteq X \dot{-} Y$$
.

$$(91)^4$$
 $X \div \mathbf{0}_I = X$ and $\mathbf{0}_I \div X = X$.

$$(92) \quad X \dot{-} X = \mathbf{0}_I.$$

$$(94)^5 \quad X \cup Y = (X \dot{-} Y) \cup X \cap Y.$$

$$(95) \quad X \dot{-} Y = (X \cup Y) \setminus X \cap Y.$$

(96)
$$(X \dot{-} Y) \setminus Z = (X \setminus (Y \cup Z)) \cup (Y \setminus (X \cup Z)).$$

(97)
$$X \setminus (Y - Z) = (X \setminus (Y \cup Z)) \cup X \cap Y \cap Z$$
.

(98)
$$(X \dot{-} Y) \dot{-} Z = X \dot{-} (Y \dot{-} Z).$$

(99) If
$$X \setminus Y \subseteq Z$$
 and $Y \setminus X \subseteq Z$, then $X - Y \subseteq Z$.

⁴ The proposition (90) has been removed.

⁵ The proposition (93) has been removed.

- $(100) \quad X \cup Y = X \dot{-} (Y \setminus X).$
- $(101) \quad X \cap Y = X \dot{-} (X \setminus Y).$
- (102) $X \setminus Y = X \dot{-} X \cap Y$.
- $(103) \quad Y \setminus X = X \dot{-} (X \cup Y).$
- $(104) \quad X \cup Y = X \dot{-} Y \dot{-} X \cap Y.$
- (105) $X \cap Y = X \dot{-} Y \dot{-} (X \cup Y)$.

5. MEETING AND OVERLAPPING

Next we state a number of propositions:

- (106) If *X* overlaps *Y* or *X* overlaps *Z*, then *X* overlaps $Y \cup Z$.
- $(108)^6$ If *X* overlaps *Y* and $Y \subseteq Z$, then *X* overlaps *Z*.
- (109) If *X* overlaps *Y* and $X \subseteq Z$, then *Z* overlaps *Y*.
- (110) If $X \subseteq Y$ and $Z \subseteq V$ and X overlaps Z, then Y overlaps V.
- (111) If *X* overlaps $Y \cap Z$, then *X* overlaps *Y* and *X* overlaps *Z*.
- (112) If *X* overlaps *Z* and $X \subseteq V$, then *X* overlaps $Z \cap V$.
- (113) If *X* overlaps $Y \setminus Z$, then *X* overlaps *Y*.
- (114) If *Y* does not overlap *Z*, then $X \cap Y$ does not overlap $X \cap Z$.
- (115) If *X* overlaps $Y \setminus Z$, then *Y* overlaps $X \setminus Z$.
- (116) If *X* meets *Y* and $Y \subseteq Z$, then *X* meets *Z*.
- $(118)^7$ Y misses $X \setminus Y$.
- (119) $X \cap Y$ misses $X \setminus Y$.
- (120) $X \cap Y$ misses X = Y.
- (121) If *X* misses *Y*, then $X \cap Y = \mathbf{0}_I$.
- (122) If $X \neq \mathbf{0}_I$, then X meets X.
- (123) If $X \subseteq Y$ and $X \subseteq Z$ and Y misses Z, then $X = \mathbf{0}_I$.
- (124) If $Z \cup V = X \cup Y$ and X misses Z and Y misses V, then X = V and Y = Z.
- $(126)^8$ If *X* misses *Y*, then $X \setminus Y = X$.
- (127) If *X* misses *Y*, then $(X \cup Y) \setminus Y = X$.
- (128) If $X \setminus Y = X$, then X misses Y.
- (129) $X \setminus Y$ misses $Y \setminus X$.

⁶ The proposition (107) has been removed.

⁷ The proposition (117) has been removed.

⁸ The proposition (125) has been removed.

6. THE SECOND INCLUSION

Let us consider I, X, Y. The predicate $X \sqsubseteq Y$ is defined by:

(Def. 14) For every x such that $x \in X$ holds $x \in Y$.

Let us note that the predicate $X \sqsubseteq Y$ is reflexive.

The following propositions are true:

- (130) If $X \subseteq Y$, then $X \sqsubseteq Y$.
- (131) $X \sqsubseteq X$.
- (132) If $X \subseteq Y$ and $Y \subseteq Z$, then $X \subseteq Z$.

7. Non empty set of sorts

We now state two propositions:

- (133) $\mathbf{0}_0 \in \mathbf{0}_0$.
- (134) For every many sorted set *X* indexed by \emptyset holds $X = \emptyset$.

In the sequel I denotes a non empty set and x, X, Y denote many sorted sets indexed by I. We now state several propositions:

- (135) If X overlaps Y, then X meets Y.
- (136) It is not true that there exists x such that $x \in \mathbf{0}_I$.
- (137) If $x \in X$ and $x \in Y$, then $X \cap Y \neq \mathbf{0}_I$.
- (138) X does not overlap $\mathbf{0}_I$ and $\mathbf{0}_I$ does not overlap X.
- (139) If $X \cap Y = \mathbf{0}_I$, then X does not overlap Y.
- (140) If *X* overlaps *X*, then $X \neq \mathbf{0}_I$.

8. NON EMPTY AND NON-EMPTY MANY SORTED SETS

We adopt the following rules: I is a set and x, X, Y, Z are many sorted sets indexed by I.

Let I be a set and let X be a many sorted set indexed by I. Let us observe that X is empty yielding if and only if:

(Def. 15) For every *i* such that $i \in I$ holds X(i) is empty.

Let us observe that *X* is non-empty if and only if:

(Def. 16) For every i such that $i \in I$ holds X(i) is non empty.

Let *I* be a set. Note that there exists a many sorted set indexed by *I* which is empty yielding and there exists a many sorted set indexed by *I* which is non-empty.

Let *I* be a non empty set. Observe that every many sorted set indexed by *I* which is non-empty is also non empty yielding and every many sorted set indexed by *I* which is empty yielding is also non non-empty.

The following propositions are true:

- (141) *X* is empty yielding iff $X = \mathbf{0}_I$.
- (142) If *Y* is empty yielding and $X \subseteq Y$, then *X* is empty yielding.
- (143) If *X* is non-empty and $X \subseteq Y$, then *Y* is non-empty.

- (144) If *X* is non-empty and $X \sqsubseteq Y$, then $X \subseteq Y$.
- (145) If *X* is non-empty and $X \sqsubseteq Y$, then *Y* is non-empty.

In the sequel *X* denotes a non-empty many sorted set indexed by *I*. Next we state three propositions:

- (146) There exists x such that $x \in X$.
- (147) If for every x holds $x \in X$ iff $x \in Y$, then X = Y.
- (148) If for every x holds $x \in X$ iff $x \in Y$ and $x \in Z$, then $X = Y \cap Z$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/card_1.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [3] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.
- [4] Katarzyna Jankowska. Matrices. Abelian group of matrices. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/ Vol3/matrix_1.html.
- [5] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_1.html.
- [6] Andrzej Tarlecki and Martin Wirsing. Continuous abstract data types. Fundamenta Informaticae, 9(1):95-125, 1986.
- [7] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/funcop_1.html.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- $[9] \begin{tabular}{ll} In the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html|. \\ \begin{tabular}{ll} In the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html|. \\ \begin{tabular}{ll} In the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html|. \\ \begin{tabular}{ll} In the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html|. \\ \begin{tabular}{ll} In the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html|. \\ \begin{tabular}{ll} In the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html|. \\ \begin{tabular}{ll} In the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html|. \\ \begin{tabular}{ll} In the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html|. \\ \begin{tabular}{ll} In the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html|. \\ \begin{tabular}{ll} In the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html|. \\ \begin{tabular}{ll} In the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html|. \\ \begin{tabular}{ll} In the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html|. \\ \begin{tabular}{ll} In the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html|. \\ \begin{tabular}{ll} In the properties of subsets. {\it Journal of Formalized Mathematics}, 1, 1989. \verb| http://mizar.org/JFM/Vol1/subset_1.html|. \\ \begin{tab$
- [10] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received July 7, 1993

Published January 2, 2004