A Theory of Partitions. Part I

Shunichi Kobayashi Shinshu University Nagano Kui Jia Shinshu University Nagano

Summary. In this paper, we define join and meet operations between partitions. The properties of these operations are proved. Then we introduce the correspondence between partitions and equivalence relations which preserve join and meet operations. The properties of these relationships are proved.

MML Identifier: PARTIT1.

WWW: http://mizar.org/JFM/Vol10/partit1.html

The articles [10], [6], [11], [1], [12], [4], [5], [7], [2], [3], [8], and [9] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: Y is a non empty set, P_1 , P_2 are partitions of Y, A, B are subsets of Y, i is a natural number, and x, y, x_1 , x_2 , z_0 , X, V, d, t, S_1 , S_2 are sets.

Next we state the proposition

(1) If $X \in P_1$ and $V \in P_1$ and $X \subseteq V$, then X = V.

Let us consider S_1 , S_2 . We introduce $S_1 \subseteq S_2$ and $S_2 \supseteq S_1$ as synonyms of S_1 is finer than S_2 . The following four propositions are true:

- $(3)^1 \quad \bigcup (S_1 \setminus \{\emptyset\}) = \bigcup S_1.$
- (4) For all partitions P_1 , P_2 of Y such that $P_1 \supseteq P_2$ and $P_2 \supseteq P_1$ holds $P_2 \subseteq P_1$.
- (5) For all partitions P_1 , P_2 of Y such that $P_1 \ni P_2$ and $P_2 \ni P_1$ holds $P_1 = P_2$.
- (7)² For all partitions P_1 , P_2 of Y such that $P_1 \ni P_2$ holds P_1 is coarser than P_2 .

Let us consider Y, let P_1 be a partition of Y, and let b be a set. We say that b is a dependent set of P_1 if and only if:

(Def. 1) There exists a set B such that $B \subseteq P_1$ and $B \neq \emptyset$ and $b = \bigcup B$.

Let us consider Y, let P_1 , P_2 be partitions of Y, and let b be a set. We say that b is a minimal dependent set of P_1 and P_2 if and only if the conditions (Def. 2) are satisfied.

¹ The proposition (2) has been removed.

² The proposition (6) has been removed.

- (Def. 2)(i) b is a dependent set of P_1 and a dependent set of P_2 , and
 - (ii) for every set d such that $d \subseteq b$ and d is a dependent set of P_1 and a dependent set of P_2 holds d = b.

Next we state several propositions:

- (8) For all partitions P_1 , P_2 of Y such that $P_1 \supseteq P_2$ and for every set b such that $b \in P_1$ holds b is a dependent set of P_2 .
- (9) For every partition P_1 of Y holds Y is a dependent set of P_1 .
- (10) Let F be a family of subsets of Y. Suppose $Intersect(F) \neq \emptyset$ and for every X such that $X \in F$ holds X is a dependent set of P_1 . Then Intersect(F) is a dependent set of P_1 .
- (11) Let X_0 , X_1 be subsets of Y. Suppose X_0 is a dependent set of P_1 and X_1 is a dependent set of P_1 and X_0 meets X_1 . Then $X_0 \cap X_1$ is a dependent set of P_1 .
- (12) For every subset X of Y such that X is a dependent set of P_1 and $X \neq Y$ holds X^c is a dependent set of P_1 .
- (13) For every element y of Y there exists a subset X of Y such that $y \in X$ and X is a minimal dependent set of P_1 and P_2 .
- (14) For every partition P of Y and for every element y of Y there exists a subset A of Y such that $y \in A$ and $A \in P$.

Let Y be a non empty set. One can check that every partition of Y is non empty.

Let Y be a set. The functor PARTITIONS(Y) is defined by:

(Def. 3) For every set x holds $x \in PARTITIONS(Y)$ iff x is a partition of Y.

Let Y be a set. Observe that PARTITIONS(Y) is non empty.

2. JOIN AND MEET OPERATION BETWEEN PARTITIONS

Let us consider Y and let P_1 , P_2 be partitions of Y. The functor $P_1 \wedge P_2$ yielding a partition of Y is defined as follows:

(Def. 4) $P_1 \wedge P_2 = P_1 \cap P_2 \setminus \{\emptyset\}.$

Let us notice that the functor $P_1 \wedge P_2$ is commutative.

We now state three propositions:

- (15) For every partition P_1 of Y holds $P_1 \wedge P_1 = P_1$.
- (16) For all partitions P_1 , P_2 , P_3 of Y holds $P_1 \wedge P_2 \wedge P_3 = P_1 \wedge P_2 \wedge P_3$.
- (17) For all partitions P_1 , P_2 of Y holds $P_1 \supseteq P_1 \land P_2$.

Let us consider Y and let P_1 , P_2 be partitions of Y. The functor $P_1 \vee P_2$ yielding a partition of Y is defined as follows:

(Def. 5) For every d holds $d \in P_1 \vee P_2$ iff d is a minimal dependent set of P_1 and P_2 .

Let us note that the functor $P_1 \vee P_2$ is commutative.

We now state four propositions:

- (19)³ For all partitions P_1 , P_2 of Y holds $P_1 \subseteq P_1 \vee P_2$.
- (20) For every partition P_1 of Y holds $P_1 \vee P_1 = P_1$.
- (21) For all partitions P_1 , P_3 of Y such that $P_1 \subseteq P_3$ and $x \in P_3$ and $z_0 \in P_1$ and $t \in x$ and $t \in z_0$ holds $z_0 \subseteq x$.
- (22) For all partitions P_1 , P_2 of Y such that $x \in P_1 \lor P_2$ and $z_0 \in P_1$ and $t \in x$ and $t \in z_0$ holds $z_0 \subseteq x$.

³ The proposition (18) has been removed.

3. PARTITIONS AND EQUIVALENCE RELATIONS

The following proposition is true

(23) Let P_1 be a partition of Y. Then there exists an equivalence relation R_1 of Y such that for all x, y holds $\langle x, y \rangle \in R_1$ if and only if there exists A such that $A \in P_1$ and $x \in A$ and $y \in A$.

Let us consider Y and let P_1 be a partition of Y. The functor $\equiv_{(P_1)}$ yields an equivalence relation of Y and is defined by:

(Def. 6) For all sets x_1 , x_2 holds $\langle x_1, x_2 \rangle \in \equiv_{(P_1)}$ iff there exists A such that $A \in P_1$ and $x_1 \in A$ and $x_2 \in A$.

Let us consider Y. The functor Rel(Y) yielding a function is defined by:

(Def. 7) $\operatorname{dom} \operatorname{Rel}(Y) = \operatorname{PARTITIONS}(Y)$ and for every x such that $x \in \operatorname{PARTITIONS}(Y)$ there exists P_1 such that $P_1 = x$ and $(\operatorname{Rel}(Y))(x) = \equiv_{(P_1)}$.

We now state a number of propositions:

- (24) For all partitions P_1 , P_2 of Y holds $P_1 \subseteq P_2$ iff $\equiv_{(P_1)} \subseteq \equiv_{(P_2)}$.
- (25) Let P_1 , P_2 be partitions of Y, p_0 , x, y be sets, and f be a finite sequence of elements of Y. Suppose that $p_0 \subseteq Y$ and $x \in p_0$ and f(1) = x and $f(\operatorname{len} f) = y$ and $1 \le \operatorname{len} f$ and for every i such that $1 \le i$ and $i < \operatorname{len} f$ there exist sets p_2 , p_3 , u such that $p_2 \in P_1$ and $p_3 \in P_2$ and $f(i) \in p_2$ and $g_1 \in p_2$ and $g_2 \in p_3$ and $g_3 \in p_3$ and $g_4 \in p_3$ and $g_4 \in p_3$ and $g_4 \in p_3$ and $g_5 \in p_3$ and $g_6 \in p_3$ and g_6
- (26) Let R_2 , R_3 be equivalence relations of Y, f be a finite sequence of elements of Y, and x, y be sets. Suppose that
 - (i) $x \in Y$,
- (ii) $y \in Y$,
- (iii) f(1) = x,
- (iv) $f(\operatorname{len} f) = y$,
- (v) $1 \le \text{len } f$, and
- (vi) for every i such that $1 \le i$ and i < len f there exists a set u such that $u \in Y$ and $\langle f(i), u \rangle \in R_2 \cup R_3$ and $\langle u, f(i+1) \rangle \in R_2 \cup R_3$.

Then $\langle x, y \rangle \in R_2 \sqcup R_3$.

- (27) For all partitions P_1 , P_2 of Y holds $\equiv_{P_1 \vee P_2} = \equiv_{(P_1)} \sqcup \equiv_{(P_2)}$.
- (28) For all partitions P_1 , P_2 of Y holds $\equiv_{P_1 \land P_2} = \equiv_{(P_1)} \cap \equiv_{(P_2)}$.
- (29) For all partitions P_1 , P_2 of Y such that $\equiv_{(P_1)} = \equiv_{(P_2)}$ holds $P_1 = P_2$.
- (30) For all partitions P_1 , P_2 , P_3 of Y holds $P_1 \lor P_2 \lor P_3 = P_1 \lor P_2 \lor P_3$.
- (31) For all partitions P_1 , P_2 of Y holds $P_1 \land P_1 \lor P_2 = P_1$.
- (32) For all partitions P_1 , P_2 of Y holds $P_1 \vee P_1 \wedge P_2 = P_1$.
- (33) For all partitions P_1 , P_2 , P_3 of Y such that $P_1 \in P_3$ and $P_2 \in P_3$ holds $P_1 \vee P_2 \in P_3$.
- (34) For all partitions P_1 , P_2 , P_3 of Y such that $P_1 \supseteq P_3$ and $P_2 \supseteq P_3$ holds $P_1 \land P_2 \supseteq P_3$.

Let us consider Y. We introduce I(Y) as a synonym of SmallestPartition(Y). Let us consider Y. The functor O(Y) yields a partition of Y and is defined as follows:

 $(Def. 9)^4 \quad \mathcal{O}(Y) = \{Y\}.$

⁴ The definition (Def. 8) has been removed.

Next we state several propositions:

- (35) $I(Y) = \{B : \bigvee_{x : \text{set}} (B = \{x\} \land x \in Y)\}.$
- (36) For every partition P_1 of Y holds $O(Y) \supseteq P_1$ and $P_1 \supseteq I(Y)$.
- (37) $\equiv_{\mathcal{O}(Y)} = \nabla_Y$.
- $(38) \quad \equiv_{I(Y)} = \mathrm{id}_Y.$
- (39) $I(Y) \subseteq \mathcal{O}(Y)$.
- (40) For every partition P_1 of Y holds $O(Y) \vee P_1 = O(Y)$ and $O(Y) \wedge P_1 = P_1$.
- (41) For every partition P_1 of Y holds $I(Y) \vee P_1 = P_1$ and $I(Y) \wedge P_1 = I(Y)$.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat 1.html.
- [2] Grzegorz Bancerek. Minimal signature for partial algebra. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/ Vol7/pua2mss1.html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [4] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [7] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [8] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/eqrel_1.html.
- [9] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/cantor_1.html.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- $[11] \begin{tabular}{ll} {\it Zinaida Trybulec. Properties of subsets. \it Journal of Formalized Mathematics, 1, 1989. $http://mizar.org/JFM/Vol1/subset_1.html. \\ \end{tabular}$
- [12] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received October 5, 1998

Published January 2, 2004