Homomorphisms of Order Sorted Algebras¹ ## Josef Urban Charles University Praha MML Identifier: OSALG_3. WWW: http://mizar.org/JFM/Vol14/osalg_3.html The articles [8], [11], [13], [14], [4], [5], [2], [1], [10], [7], [9], [3], [12], and [6] provide the notation and terminology for this paper. In this paper R denotes a non empty poset and S_1 denotes an order sorted signature. Let us consider R and let F be a many sorted function indexed by the carrier of R. We say that F is order-sorted if and only if: (Def. 1) For all elements s_1 , s_2 of R such that $s_1 \le s_2$ and for every set a_1 such that $a_1 \in \text{dom } F(s_1)$ holds $a_1 \in \text{dom } F(s_2)$ and $F(s_1)(a_1) = F(s_2)(a_1)$. Next we state four propositions: - (2)¹ Let F be a many sorted function indexed by the carrier of R. Suppose F is order-sorted. Let s_1, s_2 be elements of R. If $s_1 \le s_2$, then $\text{dom } F(s_1) \subseteq \text{dom } F(s_2)$ and $F(s_1) \subseteq F(s_2)$. - (3) Let *A* be an order sorted set of *R*, *B* be a non-empty order sorted set of *R*, and *F* be a many sorted function from *A* into *B*. Then *F* is order-sorted if and only if for all elements s_1 , s_2 of *R* such that $s_1 \le s_2$ and for every set a_1 such that $a_1 \in A(s_1)$ holds $F(s_1)(a_1) = F(s_2)(a_1)$. - (4) Let F be a many sorted function indexed by the carrier of R. Suppose F is order-sorted. Let w_1, w_2 be elements of (the carrier of R)*. If $w_1 \le w_2$, then $F^{\#}(w_1) \subseteq F^{\#}(w_2)$. - (5) For every order sorted set A of R holds id_A is order-sorted. Let us consider R and let A be an order sorted set of R. Observe that id_A is order-sorted. The following propositions are true: - (6) Let A be an order sorted set of R, B, C be non-empty order sorted sets of R, F be a many sorted function from A into B, and G be a many sorted function from B into C. If F is order-sorted and G is order-sorted, then $G \circ F$ is order-sorted. - (7) Let A, B be order sorted sets of R and F be a many sorted function from A into B. If F is "1-1", onto, and order-sorted, then F^{-1} is order-sorted. - (8) Let A be an order sorted set of R and F be a many sorted function indexed by the carrier of R. If F is order-sorted, then $F \circ A$ is an order sorted set of R. ¹This work was done during author's research visit in Bialystok, funded by the CALCULEMUS grant HPRN-CT-2000-00102. ¹ The proposition (1) has been removed. Let us consider S_1 and let U_1 , U_2 be order sorted algebras of S_1 . We say that U_1 and U_2 are os-isomorphic if and only if: (Def. 2) There exists a many sorted function from U_1 into U_2 which is an isomorphism of U_1 and U_2 and order-sorted. One can prove the following two propositions: - (9) For every order sorted algebra U_1 of S_1 holds U_1 and U_1 are os-isomorphic. - (10) Let U_1 , U_2 be non-empty order sorted algebras of S_1 . If U_1 and U_2 are os-isomorphic, then U_2 and U_1 are os-isomorphic. Let us consider S_1 and let U_1 , U_2 be order sorted algebras of S_1 . Let us note that the predicate U_1 and U_2 are os-isomorphic is reflexive. Let us consider S_1 and let U_1 , U_2 be non-empty order sorted algebras of S_1 . Let us note that the predicate U_1 and U_2 are os-isomorphic is symmetric. One can prove the following propositions: - (11) Let U_1 , U_2 , U_3 be non-empty order sorted algebras of S_1 . Suppose U_1 and U_2 are osisomorphic and U_2 and U_3 are osisomorphic. Then U_1 and U_3 are osisomorphic. - (12) Let U_1 , U_2 be non-empty order sorted algebras of S_1 and F be a many sorted function from U_1 into U_2 . Suppose F is order-sorted and a homomorphism of U_1 into U_2 . Then Im F is order-sorted. - (13) Let U_1 , U_2 be non-empty order sorted algebras of S_1 and F be a many sorted function from U_1 into U_2 . Suppose F is order-sorted. Let o_1 , o_2 be operation symbols of S_1 . Suppose $o_1 \le o_2$. Let x be an element of $Args(o_1, U_1)$ and x_1 be an element of $Args(o_2, U_1)$. If $x = x_1$, then $F \# x = F \# x_1$. - (14) Let U_1 be a monotone non-empty order sorted algebra of S_1 , U_2 be a non-empty order sorted algebra of S_1 , and F be a many sorted function from U_1 into U_2 . Suppose F is order-sorted and a homomorphism of U_1 into U_2 . Then Im F is order-sorted and Im F is a monotone order sorted algebra of S_1 . - (15) For every monotone order sorted algebra U_1 of S_1 holds every OSSubAlgebra of U_1 is monotone. Let us consider S_1 and let U_1 be a monotone order sorted algebra of S_1 . Observe that there exists an OSSubAlgebra of U_1 which is monotone. Let us consider S_1 and let U_1 be a monotone order sorted algebra of S_1 . Observe that every OSSubAlgebra of U_1 is monotone. Next we state two propositions: - (16) Let U_1 , U_2 be non-empty order sorted algebras of S_1 and F be a many sorted function from U_1 into U_2 . Suppose F is a homomorphism of U_1 into U_2 and order-sorted. Then there exists a many sorted function G from U_1 into $\operatorname{Im} F$ such that F = G and G is order-sorted and an epimorphism of U_1 onto $\operatorname{Im} F$. - (17) Let U_1 , U_2 be non-empty order sorted algebras of S_1 and F be a many sorted function from U_1 into U_2 . Suppose F is a homomorphism of U_1 into U_2 and order-sorted. Then there exists a many sorted function F_1 from U_1 into Im F and there exists a many sorted function F_2 from Im F into U_2 such that - (i) F_1 is an epimorphism of U_1 onto Im F, - (ii) F_2 is a monomorphism of Im F into U_2 , - (iii) $F = F_2 \circ F_1$, - (iv) F_1 is order-sorted, and - (v) F_2 is order-sorted. Let us consider S_1 and let U_1 be an order sorted algebra of S_1 . One can verify that \langle the sorts of U_1 , the characteristics of $U_1\rangle$ is order-sorted. We now state two propositions: - (18) Let U_1 be an order sorted algebra of S_1 . Then U_1 is monotone if and only if \langle the sorts of U_1 , the characteristics of $U_1\rangle$ is monotone. - (19) Let U_1 , U_2 be strict non-empty order sorted algebras of S_1 . Suppose U_1 and U_2 are osisomorphic. Then U_1 is monotone if and only if U_2 is monotone. ## ACKNOWLEDGMENTS Thanks to Joseph Goguen, for providing me with his articles on osas, and Andrzej Trybulec, for suggesting and funding this work in Bialystok. ## REFERENCES - [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html. - [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html. - [3] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_2.html. - [4] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html. - [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html. - [6] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_3.html. - [7] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/pralg_1.html. - [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html. - [9] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1.html. - [10] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html. - $[11] \begin{tabular}{ll} {\bf Zinaida\ Trybulec.\ Properties\ of\ subsets.} \begin{tabular}{ll} {\it Journal\ of\ Formalized\ Mathematics}, 1, 1989. \\ {\it http://mizar.org/JFM/Voll/subset_l.html.} \end{tabular}$ - $[12] \begin{tabular}{ll} Josef Urban. Order sorted algebras. {\it Journal of Formalized Mathematics}, 14,2002. http://mizar.org/JFM/Vol14/osalg_1.html. https://mizar.org/JFM/Vol14/osalg_1.html. algebras. {\it Journal of Formalized Mathematics}, 14,2002. html. htm$ - [13] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html. - [14] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html. Received September 19, 2002 Published January 2, 2004