Homomorphisms of Order Sorted Algebras¹

Josef Urban Charles University Praha

MML Identifier: OSALG_3.

WWW: http://mizar.org/JFM/Vol14/osalg_3.html

The articles [8], [11], [13], [14], [4], [5], [2], [1], [10], [7], [9], [3], [12], and [6] provide the notation and terminology for this paper.

In this paper R denotes a non empty poset and S_1 denotes an order sorted signature.

Let us consider R and let F be a many sorted function indexed by the carrier of R. We say that F is order-sorted if and only if:

(Def. 1) For all elements s_1 , s_2 of R such that $s_1 \le s_2$ and for every set a_1 such that $a_1 \in \text{dom } F(s_1)$ holds $a_1 \in \text{dom } F(s_2)$ and $F(s_1)(a_1) = F(s_2)(a_1)$.

Next we state four propositions:

- (2)¹ Let F be a many sorted function indexed by the carrier of R. Suppose F is order-sorted. Let s_1, s_2 be elements of R. If $s_1 \le s_2$, then $\text{dom } F(s_1) \subseteq \text{dom } F(s_2)$ and $F(s_1) \subseteq F(s_2)$.
- (3) Let *A* be an order sorted set of *R*, *B* be a non-empty order sorted set of *R*, and *F* be a many sorted function from *A* into *B*. Then *F* is order-sorted if and only if for all elements s_1 , s_2 of *R* such that $s_1 \le s_2$ and for every set a_1 such that $a_1 \in A(s_1)$ holds $F(s_1)(a_1) = F(s_2)(a_1)$.
- (4) Let F be a many sorted function indexed by the carrier of R. Suppose F is order-sorted. Let w_1, w_2 be elements of (the carrier of R)*. If $w_1 \le w_2$, then $F^{\#}(w_1) \subseteq F^{\#}(w_2)$.
- (5) For every order sorted set A of R holds id_A is order-sorted.

Let us consider R and let A be an order sorted set of R. Observe that id_A is order-sorted. The following propositions are true:

- (6) Let A be an order sorted set of R, B, C be non-empty order sorted sets of R, F be a many sorted function from A into B, and G be a many sorted function from B into C. If F is order-sorted and G is order-sorted, then $G \circ F$ is order-sorted.
- (7) Let A, B be order sorted sets of R and F be a many sorted function from A into B. If F is "1-1", onto, and order-sorted, then F^{-1} is order-sorted.
- (8) Let A be an order sorted set of R and F be a many sorted function indexed by the carrier of R. If F is order-sorted, then $F \circ A$ is an order sorted set of R.

¹This work was done during author's research visit in Bialystok, funded by the CALCULEMUS grant HPRN-CT-2000-00102.

¹ The proposition (1) has been removed.

Let us consider S_1 and let U_1 , U_2 be order sorted algebras of S_1 . We say that U_1 and U_2 are os-isomorphic if and only if:

(Def. 2) There exists a many sorted function from U_1 into U_2 which is an isomorphism of U_1 and U_2 and order-sorted.

One can prove the following two propositions:

- (9) For every order sorted algebra U_1 of S_1 holds U_1 and U_1 are os-isomorphic.
- (10) Let U_1 , U_2 be non-empty order sorted algebras of S_1 . If U_1 and U_2 are os-isomorphic, then U_2 and U_1 are os-isomorphic.

Let us consider S_1 and let U_1 , U_2 be order sorted algebras of S_1 . Let us note that the predicate U_1 and U_2 are os-isomorphic is reflexive.

Let us consider S_1 and let U_1 , U_2 be non-empty order sorted algebras of S_1 . Let us note that the predicate U_1 and U_2 are os-isomorphic is symmetric.

One can prove the following propositions:

- (11) Let U_1 , U_2 , U_3 be non-empty order sorted algebras of S_1 . Suppose U_1 and U_2 are osisomorphic and U_2 and U_3 are osisomorphic. Then U_1 and U_3 are osisomorphic.
- (12) Let U_1 , U_2 be non-empty order sorted algebras of S_1 and F be a many sorted function from U_1 into U_2 . Suppose F is order-sorted and a homomorphism of U_1 into U_2 . Then Im F is order-sorted.
- (13) Let U_1 , U_2 be non-empty order sorted algebras of S_1 and F be a many sorted function from U_1 into U_2 . Suppose F is order-sorted. Let o_1 , o_2 be operation symbols of S_1 . Suppose $o_1 \le o_2$. Let x be an element of $Args(o_1, U_1)$ and x_1 be an element of $Args(o_2, U_1)$. If $x = x_1$, then $F \# x = F \# x_1$.
- (14) Let U_1 be a monotone non-empty order sorted algebra of S_1 , U_2 be a non-empty order sorted algebra of S_1 , and F be a many sorted function from U_1 into U_2 . Suppose F is order-sorted and a homomorphism of U_1 into U_2 . Then Im F is order-sorted and Im F is a monotone order sorted algebra of S_1 .
- (15) For every monotone order sorted algebra U_1 of S_1 holds every OSSubAlgebra of U_1 is monotone.

Let us consider S_1 and let U_1 be a monotone order sorted algebra of S_1 . Observe that there exists an OSSubAlgebra of U_1 which is monotone.

Let us consider S_1 and let U_1 be a monotone order sorted algebra of S_1 . Observe that every OSSubAlgebra of U_1 is monotone.

Next we state two propositions:

- (16) Let U_1 , U_2 be non-empty order sorted algebras of S_1 and F be a many sorted function from U_1 into U_2 . Suppose F is a homomorphism of U_1 into U_2 and order-sorted. Then there exists a many sorted function G from U_1 into $\operatorname{Im} F$ such that F = G and G is order-sorted and an epimorphism of U_1 onto $\operatorname{Im} F$.
- (17) Let U_1 , U_2 be non-empty order sorted algebras of S_1 and F be a many sorted function from U_1 into U_2 . Suppose F is a homomorphism of U_1 into U_2 and order-sorted. Then there exists a many sorted function F_1 from U_1 into Im F and there exists a many sorted function F_2 from Im F into U_2 such that
 - (i) F_1 is an epimorphism of U_1 onto Im F,
- (ii) F_2 is a monomorphism of Im F into U_2 ,
- (iii) $F = F_2 \circ F_1$,
- (iv) F_1 is order-sorted, and
- (v) F_2 is order-sorted.

Let us consider S_1 and let U_1 be an order sorted algebra of S_1 . One can verify that \langle the sorts of U_1 , the characteristics of $U_1\rangle$ is order-sorted.

We now state two propositions:

- (18) Let U_1 be an order sorted algebra of S_1 . Then U_1 is monotone if and only if \langle the sorts of U_1 , the characteristics of $U_1\rangle$ is monotone.
- (19) Let U_1 , U_2 be strict non-empty order sorted algebras of S_1 . Suppose U_1 and U_2 are osisomorphic. Then U_1 is monotone if and only if U_2 is monotone.

ACKNOWLEDGMENTS

Thanks to Joseph Goguen, for providing me with his articles on osas, and Andrzej Trybulec, for suggesting and funding this work in Bialystok.

REFERENCES

- [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [3] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_2.html.
- [4] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [6] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_3.html.
- [7] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/pralg_1.html.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [9] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1.html.
- [10] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- $[11] \begin{tabular}{ll} {\bf Zinaida\ Trybulec.\ Properties\ of\ subsets.} \begin{tabular}{ll} {\it Journal\ of\ Formalized\ Mathematics}, 1, 1989. \\ {\it http://mizar.org/JFM/Voll/subset_l.html.} \end{tabular}$
- $[12] \begin{tabular}{ll} Josef Urban. Order sorted algebras. {\it Journal of Formalized Mathematics}, 14,2002. http://mizar.org/JFM/Vol14/osalg_1.html. algebras. {\it Journal of Formalized Mathematics}, 14,2002. https://mizar.org/JFM/Vol14/osalg_1.html. algebras. {\it Journal of Formalized Mathematics}, 14,2002. html. algebras. {\it Journal of Formalized Mathematics}, 14,2002. htm$
- [13] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.
- [14] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.

Received September 19, 2002

Published January 2, 2004