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The articles [8], [11], [13], [14], [4], [5], [2], [1], [10], [7], [9], [3], [12], and [6] provide the notation
and terminology for this paper.

In this paperRdenotes a non empty poset andS1 denotes an order sorted signature.
Let us considerR and letF be a many sorted function indexed by the carrier ofR. We say that

F is order-sorted if and only if:

(Def. 1) For all elementss1, s2 of R such thats1 ≤ s2 and for every seta1 such thata1 ∈ domF(s1)
holdsa1 ∈ domF(s2) andF(s1)(a1) = F(s2)(a1).

Next we state four propositions:

(2)1 Let F be a many sorted function indexed by the carrier ofR. SupposeF is order-sorted.
Let s1, s2 be elements ofR. If s1 ≤ s2, then domF(s1)⊆ domF(s2) andF(s1)⊆ F(s2).

(3) LetA be an order sorted set ofR, B be a non-empty order sorted set ofR, andF be a many
sorted function fromA into B. ThenF is order-sorted if and only if for all elementss1, s2 of
Rsuch thats1 ≤ s2 and for every seta1 such thata1 ∈ A(s1) holdsF(s1)(a1) = F(s2)(a1).

(4) Let F be a many sorted function indexed by the carrier ofR. SupposeF is order-sorted.
Let w1, w2 be elements of (the carrier ofR)∗. If w1 ≤ w2, thenF#(w1)⊆ F#(w2).

(5) For every order sorted setA of Rholds idA is order-sorted.

Let us considerRand letA be an order sorted set ofR. Observe that idA is order-sorted.
The following propositions are true:

(6) Let A be an order sorted set ofR, B, C be non-empty order sorted sets ofR, F be a many
sorted function fromA into B, andG be a many sorted function fromB into C. If F is order-
sorted andG is order-sorted, thenG◦F is order-sorted.

(7) Let A, B be order sorted sets ofR andF be a many sorted function fromA into B. If F is
“1-1”, onto, and order-sorted, thenF−1 is order-sorted.

(8) LetA be an order sorted set ofRandF be a many sorted function indexed by the carrier of
R. If F is order-sorted, thenF ◦ A is an order sorted set ofR.

1This work was done during author’s research visit in Bialystok, funded by the CALCULEMUS grant
HPRN-CT-2000-00102.

1 The proposition (1) has been removed.
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Let us considerS1 and letU1, U2 be order sorted algebras ofS1. We say thatU1 andU2 are
os-isomorphic if and only if:

(Def. 2) There exists a many sorted function fromU1 into U2 which is an isomorphism ofU1 and
U2 and order-sorted.

One can prove the following two propositions:

(9) For every order sorted algebraU1 of S1 holdsU1 andU1 are os-isomorphic.

(10) LetU1, U2 be non-empty order sorted algebras ofS1. If U1 andU2 are os-isomorphic, then
U2 andU1 are os-isomorphic.

Let us considerS1 and letU1, U2 be order sorted algebras ofS1. Let us note that the predicate
U1 andU2 are os-isomorphic is reflexive.

Let us considerS1 and letU1, U2 be non-empty order sorted algebras ofS1. Let us note that the
predicateU1 andU2 are os-isomorphic is symmetric.

One can prove the following propositions:

(11) Let U1, U2, U3 be non-empty order sorted algebras ofS1. SupposeU1 andU2 are os-
isomorphic andU2 andU3 are os-isomorphic. ThenU1 andU3 are os-isomorphic.

(12) LetU1, U2 be non-empty order sorted algebras ofS1 andF be a many sorted function from
U1 into U2. SupposeF is order-sorted and a homomorphism ofU1 into U2. Then ImF is
order-sorted.

(13) LetU1, U2 be non-empty order sorted algebras ofS1 andF be a many sorted function from
U1 into U2. SupposeF is order-sorted. Leto1, o2 be operation symbols ofS1. Suppose
o1 ≤ o2. Let x be an element of Args(o1,U1) andx1 be an element of Args(o2,U1). If x = x1,
thenF#x = F#x1.

(14) Let U1 be a monotone non-empty order sorted algebra ofS1, U2 be a non-empty order
sorted algebra ofS1, andF be a many sorted function fromU1 into U2. SupposeF is order-
sorted and a homomorphism ofU1 intoU2. Then ImF is order-sorted and ImF is a monotone
order sorted algebra ofS1.

(15) For every monotone order sorted algebraU1 of S1 holds every OSSubAlgebra ofU1 is
monotone.

Let us considerS1 and letU1 be a monotone order sorted algebra ofS1. Observe that there exists
an OSSubAlgebra ofU1 which is monotone.

Let us considerS1 and letU1 be a monotone order sorted algebra ofS1. Observe that every
OSSubAlgebra ofU1 is monotone.

Next we state two propositions:

(16) LetU1, U2 be non-empty order sorted algebras ofS1 andF be a many sorted function from
U1 into U2. SupposeF is a homomorphism ofU1 into U2 and order-sorted. Then there exists
a many sorted functionG from U1 into ImF such thatF = G andG is order-sorted and an
epimorphism ofU1 onto ImF.

(17) LetU1, U2 be non-empty order sorted algebras ofS1 andF be a many sorted function from
U1 into U2. SupposeF is a homomorphism ofU1 into U2 and order-sorted. Then there exists
a many sorted functionF1 from U1 into ImF and there exists a many sorted functionF2 from
ImF into U2 such that

(i) F1 is an epimorphism ofU1 onto ImF,

(ii) F2 is a monomorphism of ImF into U2,

(iii) F = F2◦F1,

(iv) F1 is order-sorted, and

(v) F2 is order-sorted.
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Let us considerS1 and letU1 be an order sorted algebra ofS1. One can verify that〈the sorts of
U1, the characteristics ofU1〉 is order-sorted.

We now state two propositions:

(18) LetU1 be an order sorted algebra ofS1. ThenU1 is monotone if and only if〈the sorts of
U1, the characteristics ofU1〉 is monotone.

(19) LetU1, U2 be strict non-empty order sorted algebras ofS1. SupposeU1 andU2 are os-
isomorphic. ThenU1 is monotone if and only ifU2 is monotone.
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