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The articles[[8],[[11],[[13],[[14],14],15].l[2],M1],[10],[1¥],19],[8],[12], and [6] provide the notation
and terminology for this paper.

In this papelR denotes a non empty poset aiddenotes an order sorted signature.

Let us consideR and letF be a many sorted function indexed by the carrieRof\e say that
F is order-sorted if and only if:

(Def. 1) For all elements,, s, of Rsuch that; < s, and for every se# such that € domF(s;)
holdsa; € domF (sz) andF(s1)(a1) = F(s2)(a1).

Next we state four propositions:

(ZH Let F be a many sorted function indexed by the carrieRofSupposéd- is order-sorted.
Lets;, s, be elements oR. If 51 <'sp, then donF (s1) C domF(s;) andF(s;1) C F(s).

(3) LetAbe an order sorted set Bf B be a non-empty order sorted setyfandF be a many
sorted function fromA into B. ThenF is order-sorted if and only if for all elemengs, s, of
Rsuch thas; < s, and for every sedy such thaty € A(s;) holdsF(s1)(a1) = F(s)(a1).

(4) LetF be a many sorted function indexed by the carrieRofSupposé- is order-sorted.
Letws, w, be elements of (the carrier 8*. If wy < ws, thenF#(wy) C F#(wz).

(5) For every order sorted satof R holds idx is order-sorted.

Let us consideR and letA be an order sorted set Bf Observe that ifl is order-sorted.
The following propositions are true:

(6) LetAbe an order sorted set & B, C be non-empty order sorted setsRfF be a many
sorted function fromA into B, andG be a many sorted function froBiinto C. If F is order-
sorted ands is order-sorted, the@ o F is order-sorted.

(7) LetA, B be order sorted sets &fandF be a many sorted function frodinto B. If F is
“1-1”, onto, and order-sorted, théfi 1 is order-sorted.

(8) LetAbe an order sorted set BfandF be a many sorted function indexed by the carrier of
R. If F is order-sorted, theR ° Ais an order sorted set &

1This work was done during author's research visit in Bialystok, funded by the CALCULEMUS grant
HPRN-CT-2000-00102.
1 The proposition (1) has been removed.
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Let us considef5; and letU;, U, be order sorted algebras 8f. We say thatJ; andU, are
os-isomorphic if and only if:

(Def. 2) There exists a many sorted function frominto U, which is an isomorphism dfi; and
U, and order-sorted.

One can prove the following two propositions:
(9) For every order sorted algehda of S; holdsU; andU; are os-isomorphic.

(10) LetU;, U, be non-empty order sorted algebrassef If U; andU; are os-isomorphic, then
U, andU; are os-isomorphic.

Let us considef; and letU, U, be order sorted algebras 8f. Let us note that the predicate
Ui andU, are os-isomorphic is reflexive.

Let us considef; and letU, U, be non-empty order sorted algebrasspf Let us note that the
predicatdJ; andU, are os-isomorphic is symmetric.

One can prove the following propositions:

(11) LetU1, Uy, U3 be non-empty order sorted algebrasSf SupposdJ; andU, are os-
isomorphic andJ, andUs are os-isomorphic. Thady andUz are os-isomorphic.

(12) LetUq, U, be non-empty order sorted algebrasspaindF be a many sorted function from
U; into Up. Suppose- is order-sorted and a homomorphismlf into U,. Then ImF is
order-sorted.

(13) LetUq, U, be non-empty order sorted algebrasspaindF be a many sorted function from
U; into U,. SupposeF is order-sorted. Lebs, 0, be operation symbols df. Suppose
01 < 0p. Letx be an element of Ardgs;,U;) andx; be an element of Ardsy,U1). If X=Xy,
thenF#x = F#x;.

(14) LetU; be a monotone non-empty order sorted algebr&otJ, be a non-empty order
sorted algebra of;, andF be a many sorted function froly into U,. Supposé- is order-
sorted and a homomorphismf into U,. Then ImF is order-sorted and I is a monotone
order sorted algebra & .

(15) For every monotone order sorted algebraof S; holds every OSSubAlgebra &f; is
monotone.

Let us conside®; and letU; be a monotone order sorted algebr&pfObserve that there exists
an OSSubAlgebra df; which is monotone.

Let us considef5; and letU; be a monotone order sorted algebraSpf Observe that every
OSSubAlgebra ofJ; is monotone.

Next we state two propositions:

(16) LetUq, U, be non-empty order sorted algebrasspaindF be a many sorted function from
Us into U,. Supposéd- is a homomorphism dfl; into U, and order-sorted. Then there exists
a many sorted functio® from Uy into ImF such thatF = G andG is order-sorted and an
epimorphism ofJ; onto ImF.

(17) LetU1, Uz be non-empty order sorted algebrasspiindF be a many sorted function from
U; into U,. Supposd- is a homomorphism dfl; into U, and order-sorted. Then there exists
a many sorted functioR; from Uy into ImF and there exists a many sorted functierfrom
ImF into Us such that

(i) F1is an epimorphism df); onto ImF,
(i) R is amonomorphism of IR into Us,
(iiy F=FRoFy,

(iv) Fyisorder-sorted, and

(v) Fis order-sorted.
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Let us considef; and letU; be an order sorted algebra®f. One can verify tha{the sorts of
U4, the characteristics &1) is order-sorted.
We now state two propositions:

(18) LetU; be an order sorted algebra &f. ThenU; is monotone if and only ifthe sorts of
U4, the characteristics d&f;) is monotone.

(19) LetUq, Uy be strict non-empty order sorted algebrasSopf SupposdJ; andU, are os-
isomorphic. ThetJ; is monotone if and only i, is monotone.
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