Subalgebras of an Order Sorted Algebra. Lattice of Subalgebras¹

Josef Urban Charles University Praha

MML Identifier: OSALG_2.

WWW: http://mizar.org/JFM/Vol14/osalg_2.html

The articles [8], [5], [12], [14], [4], [7], [15], [3], [1], [6], [9], [10], [11], [2], and [13] provide the notation and terminology for this paper.

1. AUXILIARY FACTS ABOUT ORDER SORTED SETS

In this paper *x* is a set and *R* is a non empty poset.

One can prove the following two propositions:

- (1) For all order sorted sets X, Y of R holds $X \cap Y$ is an order sorted set of R.
- (2) For all order sorted sets X, Y of R holds $X \cup Y$ is an order sorted set of R.

Let *R* be a non empty poset and let *M* be an order sorted set of *R*. A many sorted subset indexed by *M* is said to be an Order sorted subset of *M* if:

(Def. 1) It is an order sorted set of R.

Let *R* be a non-empty poset and let *M* be a non-empty order sorted set of *R*. One can verify that there exists an Order sorted subset of *M* which is non-empty.

2. Constants of an Order Sorted Algebra

Let S be an order sorted signature and let U_0 be an order sorted algebra of S. A many sorted subset indexed by the sorts of U_0 is said to be an OSSubset of U_0 if:

(Def. 2) It is an order sorted set of S.

Let *S* be an order sorted signature. One can verify that there exists an order sorted algebra of *S* which is monotone, strict, and non-empty.

Let S be an order sorted signature and let U_0 be a non-empty order sorted algebra of S. Note that there exists an OSSubset of U_0 which is non-empty.

One can prove the following proposition

¹This work was done during author's research visit in Bialystok, funded by the CALCULEMUS grant HPRN-CT-2000-00102.

(3) For every non void strict non empty many sorted signature S_0 with constant operations holds OSSign S_0 has constant operations.

One can check that there exists an order sorted signature which is strict and has constant operations.

3. SUBALGEBRAS OF AN ORDER SORTED ALGEBRA

The following proposition is true

(4) Let S be an order sorted signature and U_0 be an order sorted algebra of S. Then \langle the sorts of U_0 , the characteristics of $U_0 \rangle$ is order-sorted.

Let S be an order sorted signature and let U_0 be an order sorted algebra of S. Note that there exists a subalgebra of U_0 which is order-sorted.

Let S be an order sorted signature and let U_0 be an order sorted algebra of S. An OSSubAlgebra of U_0 is an order-sorted subalgebra of U_0 .

Let S be an order sorted signature and let U_0 be an order sorted algebra of S. One can verify that there exists an OSSubAlgebra of U_0 which is strict.

Let S be an order sorted signature and let U_0 be a non-empty order sorted algebra of S. One can check that there exists an OSSubAlgebra of U_0 which is non-empty and strict.

Next we state the proposition

- (5) Let S be an order sorted signature, U_0 be an order sorted algebra of S, and U_1 be an algebra over S. Then U_1 is an OSSubAlgebra of U_0 if and only if the following conditions are satisfied:
- (i) the sorts of U_1 are an OSSubset of U_0 , and
- (ii) for every OSSubset B of U_0 such that B = the sorts of U_1 holds B is operations closed and the characteristics of U_1 = Opers (U_0, B) .

We adopt the following rules: S_1 is an order sorted signature, O_0 is an order sorted algebra of S_1 , and s, s_1 , s_2 are sort symbols of S_1 .

Let us consider S_1 , O_0 , s. The functor OSConstants (O_0, s) yielding a subset of (the sorts of O_0)(s) is defined by:

(Def. 3) OSConstants(O_0 , s) = \bigcup {Constants(O_0 , s_2) : $s_2 \le s$ }.

One can prove the following proposition

 $(11)^1$ Constants $(O_0, s) \subseteq OSConstants(O_0, s)$.

Let us consider S_1 and let M be a many sorted set indexed by the carrier of S_1 . The functor OSClM yielding an order sorted set of S_1 is defined by:

(Def. 4) For every sort symbol s of S_1 holds $(OSClM)(s) = \bigcup \{M(s_1) : s_1 \le s\}$.

The following propositions are true:

- (12) For every many sorted set M indexed by the carrier of S_1 holds $M \subseteq OSClM$.
- (13) Let M be a many sorted set indexed by the carrier of S_1 and A be an order sorted set of S_1 . If $M \subseteq A$, then OSCl $M \subseteq A$.
- (14) For every order sorted signature S and for every order sorted set X of S holds OSClX = X.

Let us consider S_1 , O_0 . The functor OSConstants O_0 yielding an OSSubset of O_0 is defined by:

(Def. 5) For every sort symbol s of S_1 holds (OSConstants O_0)(s) = OSConstants(O_0 , s).

¹ The propositions (6)–(10) have been removed.

We now state several propositions:

- (15) Constants $(O_0) \subseteq OSConstants O_0$.
- (16) For every OSSubset A of O_0 such that Constants $(O_0) \subseteq A$ holds OSConstants $O_0 \subseteq A$.
- (17) For every OSSubset A of O_0 holds OSConstants $O_0 = OSClConstants(O_0)$.
- (18) For every OSSubAlgebra O_1 of O_0 holds OSConstants O_0 is an OSSubset of O_1 .
- (19) Let S be an order sorted signature with constant operations, O_0 be a non-empty order sorted algebra of S, and O_1 be a non-empty OSSubAlgebra of O_0 . Then OSConstants O_0 is a non-empty OSSubset of O_1 .

4. ORDER SORTED SUBSETS OF AN ORDER SORTED ALGEBRA

The following proposition is true

(20) Let *I* be a set, *M* be a many sorted set indexed by *I*, and *x* be a set. Then *x* is a many sorted subset indexed by *M* if and only if $x \in \Pi(2^M)$.

Let *R* be a non empty poset and let *M* be an order sorted set of *R*. The functor OSbool *M* yielding a set is defined by:

(Def. 6) For every set x holds $x \in OSboolM$ iff x is an Order sorted subset of M.

Let S be an order sorted signature, let U_0 be an order sorted algebra of S, and let A be an OSSubset of U_0 . The functor OSSubSortA yielding a set is defined by:

(Def. 7) OSSubSort $A = \{x; x \text{ ranges over elements of SubSorts}(A): x \text{ is an order sorted set of } S\}.$

One can prove the following propositions:

- (21) For every OSSubset *A* of O_0 holds OSSubSort $A \subseteq SubSorts(A)$.
- (22) For every OSSubset A of O_0 holds the sorts of $O_0 \in OSSubSort A$.

Let us consider S_1 , O_0 and let A be an OSSubset of O_0 . One can verify that OSSubSort A is non empty.

Let us consider S_1 , O_0 . The functor OSSubSort O_0 yielding a set is defined by:

(Def. 8) OSSubSort $O_0 = \{x; x \text{ ranges over elements of SubSorts}(O_0): x \text{ is an order sorted set of } S_1\}.$

Next we state the proposition

(23) For every OSSubset A of O_0 holds OSSubSort $A \subseteq OSSubSort O_0$.

Let us consider S_1 , O_0 . Observe that OSSubSort O_0 is non empty.

Let us consider S_1 , O_0 and let e be an element of OSSubSort O_0 . The functor e yielding an OSSubset of O_0 is defined as follows:

(Def. 9) $^{@}e = e$.

We now state two propositions:

- (24) For all OSSubsets A, B of O_0 holds $B \in OSSubSortA$ iff B is operations closed and OSConstants $O_0 \subseteq B$ and $A \subseteq B$.
- (25) For every OSSubset *B* of O_0 holds $B \in OSSubSort O_0$ iff *B* is operations closed.

Let us consider S_1 , O_0 , let A be an OSSubset of O_0 , and let s be an element of S_1 . The functor OSSubSort(A, s) yielding a set is defined by:

(Def. 10) For every set x holds $x \in OSSubSort(A, s)$ iff there exists an OSSubset B of O_0 such that $B \in OSSubSortA$ and x = B(s).

We now state three propositions:

- (26) For every OSSubset A of O_0 and for all sort symbols s_1 , s_2 of S_1 such that $s_1 \le s_2$ holds OSSubSort (A, s_2) is coarser than OSSubSort (A, s_1) .
- (27) For every OSSubset A of O_0 and for every sort symbol s of S_1 holds OSSubSort $(A, s) \subseteq \text{SubSort}(A, s)$.
- (28) For every OSSubset A of O_0 and for every sort symbol s of S_1 holds (the sorts of O_0)(s) \in OSSubSort(A, s).

Let us consider S_1 , O_0 , let A be an OSSubset of O_0 , and let s be a sort symbol of S_1 . One can verify that OSSubSort(A, s) is non empty.

Let us consider S_1 , O_0 and let A be an OSSubset of O_0 . The functor OSMSubSort A yielding an OSSubset of O_0 is defined by:

(Def. 11) For every sort symbol s of S_1 holds (OSMSubSortA)(s) = \bigcap OSSubSort(A, s).

Let us consider S_1 , O_0 . Note that there exists an OSSubset of O_0 which is operations closed. We now state several propositions:

- (29) For every OSSubset *A* of O_0 holds OSConstants $O_0 \cup A \subseteq OSMSubSort A$.
- (30) For every OSSubset A of O_0 such that OSConstants $O_0 \cup A$ is non-empty holds OSMSubSortA is non-empty.
- (31) Let o be an operation symbol of S_1 , A be an OSSubset of O_0 , and B be an OSSubset of O_0 . If $B \in OSSubSortA$, then $((OSMSubSortA)^{\#} \cdot \text{the arity of } S_1)(o) \subseteq (B^{\#} \cdot \text{the arity of } S_1)(o)$.
- (32) Let o be an operation symbol of S_1 , A be an OSSubset of O_0 , and B be an OSSubset of O_0 . Suppose $B \in OSSubSortA$. Then $rng(Den(o, O_0) \upharpoonright ((OSMSubSortA)^{\#} \cdot the arity of <math>S_1)(o)) \subseteq (B \cdot the result sort of <math>S_1)(o)$.
- (33) Let o be an operation symbol of S_1 and A be an OSSubset of O_0 . Then $rng(Den(o, O_0)) \cap (OSMSubSortA)^{\#} \cdot the$ arity of $S_1)(o) \cap (OSMSubSortA) \cap (OSMSubSortA)$
- (34) For every OSSubset A of O_0 holds OSMSubSortA is operations closed and $A \subseteq OSMSubSortA$.

Let us consider S_1 , O_0 and let A be an OSSubset of O_0 . One can verify that OSMSubSortA is operations closed.

5. OPERATIONS ON SUBALGEBRAS OF AN ORDER SORTED ALGEBRA

Let us consider S_1 , O_0 and let A be an operations closed OSSubset of O_0 . One can verify that $O_0 \mid A$ is order-sorted.

Let us consider S_1 , O_0 and let O_1 , O_2 be OSSubAlgebras of O_0 . One can check that $O_1 \cap O_2$ is order-sorted.

Let us consider S_1 , O_0 and let A be an OSSubset of O_0 . The functor OSGenA yields a strict OSSubAlgebra of O_0 and is defined by the conditions (Def. 13).

(Def. 13)²(i) A is an OSSubset of OSGenA, and

(ii) for every OSSubAlgebra O_1 of O_0 such that A is an OSSubset of O_1 holds OSGenA is an OSSubAlgebra of O_1 .

One can prove the following propositions:

² The definition (Def. 12) has been removed.

- (35) For every OSSubset A of O_0 holds OSGen $A = O_0 \upharpoonright$ OSMSubSortA and the sorts of OSGenA = OSMSubSortA.
- (36) Let *S* be a non void non empty many sorted signature, U_0 be an algebra over *S*, and *A* be a subset of U_0 . Then $Gen(A) = U_0 \upharpoonright MSSubSort(A)$ and the sorts of Gen(A) = MSSubSort(A).
- (37) For every OSSubset A of O_0 holds the sorts of $Gen(A) \subseteq the sorts of OSGen A$.
- (38) For every OSSubset A of O_0 holds Gen(A) is a subalgebra of OSGen A.
- (39) Let O_0 be a strict order sorted algebra of S_1 and B be an OSSubset of O_0 . If B = the sorts of O_0 , then OSGen $B = O_0$.
- (40) For every strict OSSubAlgebra O_1 of O_0 and for every OSSubset B of O_0 such that B = the sorts of O_1 holds OSGen $B = O_1$.
- (41) For every non-empty order sorted algebra U_0 of S_1 and for every OSSubAlgebra U_1 of U_0 holds OSGen OSConstants $U_0 \cap U_1 = \text{OSGen OSC}$ onstants U_0 .

Let us consider S_1 , let U_0 be a non-empty order sorted algebra of S_1 , and let U_1 , U_2 be OSSub-Algebras of U_0 . The functor $U_1 \sqcup_{os} U_2$ yielding a strict OSSubAlgebra of U_0 is defined as follows:

(Def. 14) For every OSSubset A of U_0 such that A =(the sorts of U_1) \cup (the sorts of U_2) holds $U_1 \sqcup_{os} U_2 = \text{OSGen} A$.

One can prove the following propositions:

- (42) Let U_0 be a non-empty order sorted algebra of S_1 , U_1 be an OSSubAlgebra of U_0 , and A, B be OSSubsets of U_0 . If $B = A \cup$ the sorts of U_1 , then OSGen $A \sqcup_{os} U_1 = OSGen B$.
- (43) Let U_0 be a non-empty order sorted algebra of S_1 , U_1 be an OSSubAlgebra of U_0 , and B be an OSSubset of U_0 . If B = the sorts of U_0 , then OSGen $B \sqcup_{os} U_1 = \text{OSGen } B$.
- (44) For every non-empty order sorted algebra U_0 of S_1 and for all OSSubAlgebras U_1 , U_2 of U_0 holds $U_1 \sqcup_{os} U_2 = U_2 \sqcup_{os} U_1$.
- (45) For every non-empty order sorted algebra U_0 of S_1 and for all strict OSSubAlgebras U_1 , U_2 of U_0 holds $U_1 \cap (U_1 \sqcup_{os} U_2) = U_1$.
- (46) For every non-empty order sorted algebra U_0 of S_1 and for all strict OSSubAlgebras U_1 , U_2 of U_0 holds $U_1 \cap U_2 \sqcup_{os} U_2 = U_2$.
 - 6. THE LATTICE OF SUBALGEBRAS OF AN ORDER SORTED ALGEBRA

Let us consider S_1 , O_0 . The functor OSSub O_0 yields a set and is defined as follows:

(Def. 15) For every x holds $x \in OSSub O_0$ iff x is a strict OSSubAlgebra of O_0 .

One can prove the following proposition

(47) OSSub $O_0 \subseteq \text{Subalgebras}(O_0)$.

Let S be an order sorted signature and let U_0 be an order sorted algebra of S. Observe that $OSSub U_0$ is non empty.

Let us consider S_1 , O_0 . Then OSSub O_0 is a subset of Subalgebras (O_0) .

Let us consider S_1 and let U_0 be a non-empty order sorted algebra of S_1 . The functor OSAlgJoin U_0 yielding a binary operation on OSSub U_0 is defined by:

(Def. 16) For all elements x, y of OSSub U_0 and for all strict OSSubAlgebras U_1 , U_2 of U_0 such that $x = U_1$ and $y = U_2$ holds (OSAlgJoin U_0) $(x, y) = U_1 \sqcup_{os} U_2$.

Let us consider S_1 and let U_0 be a non-empty order sorted algebra of S_1 . The functor OSAlgMeet U_0 yields a binary operation on OSSub U_0 and is defined as follows:

(Def. 17) For all elements x, y of OSSub U_0 and for all strict OSSubAlgebras U_1 , U_2 of U_0 such that $x = U_1$ and $y = U_2$ holds (OSAlgMeet U_0) $(x, y) = U_1 \cap U_2$.

Next we state the proposition

(48) For every non-empty order sorted algebra U_0 of S_1 and for all elements x, y of OSSub U_0 holds (OSAlgMeet U_0) $(x, y) = (MSAlgMeet(U_0))(x, y)$.

In the sequel U_0 is a non-empty order sorted algebra of S_1 . Next we state four propositions:

- (49) OSAlgJoin U_0 is commutative.
- (50) OSAlgJoin U_0 is associative.
- (51) OSAlgMeet U_0 is commutative.
- (52) OSAlgMeet U_0 is associative.

Let us consider S_1 and let U_0 be a non-empty order sorted algebra of S_1 . The functor OSSubAlLattice U_0 yields a strict lattice and is defined as follows:

(Def. 18) OSSubAlLattice $U_0 = \langle OSSub U_0, OSAlgJoin U_0, OSAlgMeet U_0 \rangle$.

Next we state the proposition

(53) For every non-empty order sorted algebra U_0 of S_1 holds OSSubAlLattice U_0 is bounded.

Let us consider S_1 and let U_0 be a non-empty order sorted algebra of S_1 . Observe that OSSubAlLattice U_0 is bounded.

We now state three propositions:

- (54) For every non-empty order sorted algebra U_0 of S_1 holds $\perp_{OSSubAlLattice} U_0 = OSGen OSConstants <math>U_0$.
- (55) Let U_0 be a non-empty order sorted algebra of S_1 and B be an OSSubset of U_0 . If B = the sorts of U_0 , then $\top_{\text{OSSubAlLattice }U_0} = \text{OSGen }B$.
- (56) For every strict non-empty order sorted algebra U_0 of S_1 holds $\top_{\text{OSSubAlLattice }U_0} = U_0$.

ACKNOWLEDGMENTS

Thanks to Joseph Goguen, for providing me with his articles on osas, and Andrzej Trybulec, for suggesting and funding this work in Bialystok.

REFERENCES

- [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [2] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_2.html.
- [3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [6] Artur Kornitowicz. Definitions and basic properties of boolean and union of many sorted sets. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/mboolean.html.
- [7] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.

- [9] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [10] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1. html.
- [11] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [12] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- $[13] \ \ Josef \ Urban. \ \ Order \ sorted \ algebras. \ \ \ \ Journal \ of Formalized \ \ Mathematics, 14, 2002. \ \ http://mizar.org/JFM/Voll4/osalg_1.html.$
- [14] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat 1.html.
- [15] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/lattices.html.

Received September 19, 2002

Published January 2, 2004