Subalgebras of an Order Sorted Algebra. Lattice of Subalgebras¹ Josef Urban Charles University Praha MML Identifier: OSALG_2. WWW: http://mizar.org/JFM/Vol14/osalg_2.html The articles [8], [5], [12], [14], [4], [7], [15], [3], [1], [6], [9], [10], [11], [2], and [13] provide the notation and terminology for this paper. ## 1. AUXILIARY FACTS ABOUT ORDER SORTED SETS In this paper *x* is a set and *R* is a non empty poset. One can prove the following two propositions: - (1) For all order sorted sets X, Y of R holds $X \cap Y$ is an order sorted set of R. - (2) For all order sorted sets X, Y of R holds $X \cup Y$ is an order sorted set of R. Let *R* be a non empty poset and let *M* be an order sorted set of *R*. A many sorted subset indexed by *M* is said to be an Order sorted subset of *M* if: #### (Def. 1) It is an order sorted set of R. Let *R* be a non-empty poset and let *M* be a non-empty order sorted set of *R*. One can verify that there exists an Order sorted subset of *M* which is non-empty. ## 2. Constants of an Order Sorted Algebra Let S be an order sorted signature and let U_0 be an order sorted algebra of S. A many sorted subset indexed by the sorts of U_0 is said to be an OSSubset of U_0 if: # (Def. 2) It is an order sorted set of S. Let *S* be an order sorted signature. One can verify that there exists an order sorted algebra of *S* which is monotone, strict, and non-empty. Let S be an order sorted signature and let U_0 be a non-empty order sorted algebra of S. Note that there exists an OSSubset of U_0 which is non-empty. One can prove the following proposition ¹This work was done during author's research visit in Bialystok, funded by the CALCULEMUS grant HPRN-CT-2000-00102. (3) For every non void strict non empty many sorted signature S_0 with constant operations holds OSSign S_0 has constant operations. One can check that there exists an order sorted signature which is strict and has constant operations. ## 3. SUBALGEBRAS OF AN ORDER SORTED ALGEBRA The following proposition is true (4) Let S be an order sorted signature and U_0 be an order sorted algebra of S. Then \langle the sorts of U_0 , the characteristics of $U_0 \rangle$ is order-sorted. Let S be an order sorted signature and let U_0 be an order sorted algebra of S. Note that there exists a subalgebra of U_0 which is order-sorted. Let S be an order sorted signature and let U_0 be an order sorted algebra of S. An OSSubAlgebra of U_0 is an order-sorted subalgebra of U_0 . Let S be an order sorted signature and let U_0 be an order sorted algebra of S. One can verify that there exists an OSSubAlgebra of U_0 which is strict. Let S be an order sorted signature and let U_0 be a non-empty order sorted algebra of S. One can check that there exists an OSSubAlgebra of U_0 which is non-empty and strict. Next we state the proposition - (5) Let S be an order sorted signature, U_0 be an order sorted algebra of S, and U_1 be an algebra over S. Then U_1 is an OSSubAlgebra of U_0 if and only if the following conditions are satisfied: - (i) the sorts of U_1 are an OSSubset of U_0 , and - (ii) for every OSSubset B of U_0 such that B = the sorts of U_1 holds B is operations closed and the characteristics of U_1 = Opers (U_0, B) . We adopt the following rules: S_1 is an order sorted signature, O_0 is an order sorted algebra of S_1 , and s, s_1 , s_2 are sort symbols of S_1 . Let us consider S_1 , O_0 , s. The functor OSConstants (O_0, s) yielding a subset of (the sorts of O_0)(s) is defined by: (Def. 3) OSConstants(O_0 , s) = \bigcup {Constants(O_0 , s_2) : $s_2 \le s$ }. One can prove the following proposition $(11)^1$ Constants $(O_0, s) \subseteq OSConstants(O_0, s)$. Let us consider S_1 and let M be a many sorted set indexed by the carrier of S_1 . The functor OSClM yielding an order sorted set of S_1 is defined by: (Def. 4) For every sort symbol s of S_1 holds $(OSClM)(s) = \bigcup \{M(s_1) : s_1 \le s\}$. The following propositions are true: - (12) For every many sorted set M indexed by the carrier of S_1 holds $M \subseteq OSClM$. - (13) Let M be a many sorted set indexed by the carrier of S_1 and A be an order sorted set of S_1 . If $M \subseteq A$, then OSCl $M \subseteq A$. - (14) For every order sorted signature S and for every order sorted set X of S holds OSClX = X. Let us consider S_1 , O_0 . The functor OSConstants O_0 yielding an OSSubset of O_0 is defined by: (Def. 5) For every sort symbol s of S_1 holds (OSConstants O_0)(s) = OSConstants(O_0 , s). ¹ The propositions (6)–(10) have been removed. We now state several propositions: - (15) Constants $(O_0) \subseteq OSConstants O_0$. - (16) For every OSSubset A of O_0 such that Constants $(O_0) \subseteq A$ holds OSConstants $O_0 \subseteq A$. - (17) For every OSSubset A of O_0 holds OSConstants $O_0 = OSClConstants(O_0)$. - (18) For every OSSubAlgebra O_1 of O_0 holds OSConstants O_0 is an OSSubset of O_1 . - (19) Let S be an order sorted signature with constant operations, O_0 be a non-empty order sorted algebra of S, and O_1 be a non-empty OSSubAlgebra of O_0 . Then OSConstants O_0 is a non-empty OSSubset of O_1 . ## 4. ORDER SORTED SUBSETS OF AN ORDER SORTED ALGEBRA The following proposition is true (20) Let *I* be a set, *M* be a many sorted set indexed by *I*, and *x* be a set. Then *x* is a many sorted subset indexed by *M* if and only if $x \in \Pi(2^M)$. Let *R* be a non empty poset and let *M* be an order sorted set of *R*. The functor OSbool *M* yielding a set is defined by: (Def. 6) For every set x holds $x \in OSboolM$ iff x is an Order sorted subset of M. Let S be an order sorted signature, let U_0 be an order sorted algebra of S, and let A be an OSSubset of U_0 . The functor OSSubSortA yielding a set is defined by: (Def. 7) OSSubSort $A = \{x; x \text{ ranges over elements of SubSorts}(A): x \text{ is an order sorted set of } S\}.$ One can prove the following propositions: - (21) For every OSSubset *A* of O_0 holds OSSubSort $A \subseteq SubSorts(A)$. - (22) For every OSSubset A of O_0 holds the sorts of $O_0 \in OSSubSort A$. Let us consider S_1 , O_0 and let A be an OSSubset of O_0 . One can verify that OSSubSort A is non empty. Let us consider S_1 , O_0 . The functor OSSubSort O_0 yielding a set is defined by: (Def. 8) OSSubSort $O_0 = \{x; x \text{ ranges over elements of SubSorts}(O_0): x \text{ is an order sorted set of } S_1\}.$ Next we state the proposition (23) For every OSSubset A of O_0 holds OSSubSort $A \subseteq OSSubSort O_0$. Let us consider S_1 , O_0 . Observe that OSSubSort O_0 is non empty. Let us consider S_1 , O_0 and let e be an element of OSSubSort O_0 . The functor e yielding an OSSubset of O_0 is defined as follows: (Def. 9) $^{@}e = e$. We now state two propositions: - (24) For all OSSubsets A, B of O_0 holds $B \in OSSubSortA$ iff B is operations closed and OSConstants $O_0 \subseteq B$ and $A \subseteq B$. - (25) For every OSSubset *B* of O_0 holds $B \in OSSubSort O_0$ iff *B* is operations closed. Let us consider S_1 , O_0 , let A be an OSSubset of O_0 , and let s be an element of S_1 . The functor OSSubSort(A, s) yielding a set is defined by: (Def. 10) For every set x holds $x \in OSSubSort(A, s)$ iff there exists an OSSubset B of O_0 such that $B \in OSSubSortA$ and x = B(s). We now state three propositions: - (26) For every OSSubset A of O_0 and for all sort symbols s_1 , s_2 of S_1 such that $s_1 \le s_2$ holds OSSubSort (A, s_2) is coarser than OSSubSort (A, s_1) . - (27) For every OSSubset A of O_0 and for every sort symbol s of S_1 holds OSSubSort $(A, s) \subseteq \text{SubSort}(A, s)$. - (28) For every OSSubset A of O_0 and for every sort symbol s of S_1 holds (the sorts of O_0)(s) \in OSSubSort(A, s). Let us consider S_1 , O_0 , let A be an OSSubset of O_0 , and let s be a sort symbol of S_1 . One can verify that OSSubSort(A, s) is non empty. Let us consider S_1 , O_0 and let A be an OSSubset of O_0 . The functor OSMSubSort A yielding an OSSubset of O_0 is defined by: (Def. 11) For every sort symbol s of S_1 holds (OSMSubSortA)(s) = \bigcap OSSubSort(A, s). Let us consider S_1 , O_0 . Note that there exists an OSSubset of O_0 which is operations closed. We now state several propositions: - (29) For every OSSubset *A* of O_0 holds OSConstants $O_0 \cup A \subseteq OSMSubSort A$. - (30) For every OSSubset A of O_0 such that OSConstants $O_0 \cup A$ is non-empty holds OSMSubSortA is non-empty. - (31) Let o be an operation symbol of S_1 , A be an OSSubset of O_0 , and B be an OSSubset of O_0 . If $B \in OSSubSortA$, then $((OSMSubSortA)^{\#} \cdot \text{the arity of } S_1)(o) \subseteq (B^{\#} \cdot \text{the arity of } S_1)(o)$. - (32) Let o be an operation symbol of S_1 , A be an OSSubset of O_0 , and B be an OSSubset of O_0 . Suppose $B \in OSSubSortA$. Then $rng(Den(o, O_0) \upharpoonright ((OSMSubSortA)^{\#} \cdot the arity of <math>S_1)(o)) \subseteq (B \cdot the result sort of <math>S_1)(o)$. - (33) Let o be an operation symbol of S_1 and A be an OSSubset of O_0 . Then $rng(Den(o, O_0)) \cap (OSMSubSortA)^{\#} \cdot the$ arity of $S_1)(o) \cap (OSMSubSortA) \cap (OSMSubSortA)$ - (34) For every OSSubset A of O_0 holds OSMSubSortA is operations closed and $A \subseteq OSMSubSortA$. Let us consider S_1 , O_0 and let A be an OSSubset of O_0 . One can verify that OSMSubSortA is operations closed. #### 5. OPERATIONS ON SUBALGEBRAS OF AN ORDER SORTED ALGEBRA Let us consider S_1 , O_0 and let A be an operations closed OSSubset of O_0 . One can verify that $O_0 \mid A$ is order-sorted. Let us consider S_1 , O_0 and let O_1 , O_2 be OSSubAlgebras of O_0 . One can check that $O_1 \cap O_2$ is order-sorted. Let us consider S_1 , O_0 and let A be an OSSubset of O_0 . The functor OSGenA yields a strict OSSubAlgebra of O_0 and is defined by the conditions (Def. 13). # (Def. 13)²(i) A is an OSSubset of OSGenA, and (ii) for every OSSubAlgebra O_1 of O_0 such that A is an OSSubset of O_1 holds OSGenA is an OSSubAlgebra of O_1 . One can prove the following propositions: ² The definition (Def. 12) has been removed. - (35) For every OSSubset A of O_0 holds OSGen $A = O_0 \upharpoonright$ OSMSubSortA and the sorts of OSGenA = OSMSubSortA. - (36) Let *S* be a non void non empty many sorted signature, U_0 be an algebra over *S*, and *A* be a subset of U_0 . Then $Gen(A) = U_0 \upharpoonright MSSubSort(A)$ and the sorts of Gen(A) = MSSubSort(A). - (37) For every OSSubset A of O_0 holds the sorts of $Gen(A) \subseteq the sorts of OSGen A$. - (38) For every OSSubset A of O_0 holds Gen(A) is a subalgebra of OSGen A. - (39) Let O_0 be a strict order sorted algebra of S_1 and B be an OSSubset of O_0 . If B = the sorts of O_0 , then OSGen $B = O_0$. - (40) For every strict OSSubAlgebra O_1 of O_0 and for every OSSubset B of O_0 such that B = the sorts of O_1 holds OSGen $B = O_1$. - (41) For every non-empty order sorted algebra U_0 of S_1 and for every OSSubAlgebra U_1 of U_0 holds OSGen OSConstants $U_0 \cap U_1 = \text{OSGen OSC}$ onstants U_0 . Let us consider S_1 , let U_0 be a non-empty order sorted algebra of S_1 , and let U_1 , U_2 be OSSub-Algebras of U_0 . The functor $U_1 \sqcup_{os} U_2$ yielding a strict OSSubAlgebra of U_0 is defined as follows: (Def. 14) For every OSSubset A of U_0 such that A =(the sorts of U_1) \cup (the sorts of U_2) holds $U_1 \sqcup_{os} U_2 = \text{OSGen} A$. One can prove the following propositions: - (42) Let U_0 be a non-empty order sorted algebra of S_1 , U_1 be an OSSubAlgebra of U_0 , and A, B be OSSubsets of U_0 . If $B = A \cup$ the sorts of U_1 , then OSGen $A \sqcup_{os} U_1 = OSGen B$. - (43) Let U_0 be a non-empty order sorted algebra of S_1 , U_1 be an OSSubAlgebra of U_0 , and B be an OSSubset of U_0 . If B = the sorts of U_0 , then OSGen $B \sqcup_{os} U_1 = \text{OSGen } B$. - (44) For every non-empty order sorted algebra U_0 of S_1 and for all OSSubAlgebras U_1 , U_2 of U_0 holds $U_1 \sqcup_{os} U_2 = U_2 \sqcup_{os} U_1$. - (45) For every non-empty order sorted algebra U_0 of S_1 and for all strict OSSubAlgebras U_1 , U_2 of U_0 holds $U_1 \cap (U_1 \sqcup_{os} U_2) = U_1$. - (46) For every non-empty order sorted algebra U_0 of S_1 and for all strict OSSubAlgebras U_1 , U_2 of U_0 holds $U_1 \cap U_2 \sqcup_{os} U_2 = U_2$. - 6. THE LATTICE OF SUBALGEBRAS OF AN ORDER SORTED ALGEBRA Let us consider S_1 , O_0 . The functor OSSub O_0 yields a set and is defined as follows: (Def. 15) For every x holds $x \in OSSub O_0$ iff x is a strict OSSubAlgebra of O_0 . One can prove the following proposition (47) OSSub $O_0 \subseteq \text{Subalgebras}(O_0)$. Let S be an order sorted signature and let U_0 be an order sorted algebra of S. Observe that $OSSub U_0$ is non empty. Let us consider S_1 , O_0 . Then OSSub O_0 is a subset of Subalgebras (O_0) . Let us consider S_1 and let U_0 be a non-empty order sorted algebra of S_1 . The functor OSAlgJoin U_0 yielding a binary operation on OSSub U_0 is defined by: (Def. 16) For all elements x, y of OSSub U_0 and for all strict OSSubAlgebras U_1 , U_2 of U_0 such that $x = U_1$ and $y = U_2$ holds (OSAlgJoin U_0) $(x, y) = U_1 \sqcup_{os} U_2$. Let us consider S_1 and let U_0 be a non-empty order sorted algebra of S_1 . The functor OSAlgMeet U_0 yields a binary operation on OSSub U_0 and is defined as follows: (Def. 17) For all elements x, y of OSSub U_0 and for all strict OSSubAlgebras U_1 , U_2 of U_0 such that $x = U_1$ and $y = U_2$ holds (OSAlgMeet U_0) $(x, y) = U_1 \cap U_2$. Next we state the proposition (48) For every non-empty order sorted algebra U_0 of S_1 and for all elements x, y of OSSub U_0 holds (OSAlgMeet U_0) $(x, y) = (MSAlgMeet(U_0))(x, y)$. In the sequel U_0 is a non-empty order sorted algebra of S_1 . Next we state four propositions: - (49) OSAlgJoin U_0 is commutative. - (50) OSAlgJoin U_0 is associative. - (51) OSAlgMeet U_0 is commutative. - (52) OSAlgMeet U_0 is associative. Let us consider S_1 and let U_0 be a non-empty order sorted algebra of S_1 . The functor OSSubAlLattice U_0 yields a strict lattice and is defined as follows: (Def. 18) OSSubAlLattice $U_0 = \langle OSSub U_0, OSAlgJoin U_0, OSAlgMeet U_0 \rangle$. Next we state the proposition (53) For every non-empty order sorted algebra U_0 of S_1 holds OSSubAlLattice U_0 is bounded. Let us consider S_1 and let U_0 be a non-empty order sorted algebra of S_1 . Observe that OSSubAlLattice U_0 is bounded. We now state three propositions: - (54) For every non-empty order sorted algebra U_0 of S_1 holds $\perp_{OSSubAlLattice} U_0 = OSGen OSConstants <math>U_0$. - (55) Let U_0 be a non-empty order sorted algebra of S_1 and B be an OSSubset of U_0 . If B = the sorts of U_0 , then $\top_{\text{OSSubAlLattice }U_0} = \text{OSGen }B$. - (56) For every strict non-empty order sorted algebra U_0 of S_1 holds $\top_{\text{OSSubAlLattice }U_0} = U_0$. #### ACKNOWLEDGMENTS Thanks to Joseph Goguen, for providing me with his articles on osas, and Andrzej Trybulec, for suggesting and funding this work in Bialystok. #### REFERENCES - [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html. - [2] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_2.html. - [3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html. - [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html. - [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html. - [6] Artur Kornitowicz. Definitions and basic properties of boolean and union of many sorted sets. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/mboolean.html. - [7] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html. - [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html. - [9] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html. - [10] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1. html. - [11] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html. - [12] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. - $[13] \ \ Josef \ Urban. \ \ Order \ sorted \ algebras. \ \ \ \ Journal \ of Formalized \ \ Mathematics, 14, 2002. \ \ http://mizar.org/JFM/Voll4/osalg_1.html.$ - [14] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat 1.html. - [15] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/lattices.html. Received September 19, 2002 Published January 2, 2004