On the Category of Posets

Adam Grabowski Warsaw University Białystok

Summary. In the paper the construction of a category of partially ordered sets is shown: in the second section according to [6] and in the third section according to the definition given in [17]. Some of useful notions such as monotone map and the set of monotone maps between relational structures are given.

MML Identifier: ORDERS_3.

WWW: http://mizar.org/JFM/Vol8/orders_3.html

The articles [13], [8], [19], [20], [22], [4], [2], [14], [1], [7], [3], [11], [21], [12], [18], [6], [9], [15], [16], [5], [10], and [17] provide the notation and terminology for this paper.

1. Preliminaries

Let I_1 be a relational structure. We say that I_1 is discrete if and only if:

(Def. 1) The internal relation of $I_1 = id_{the carrier of I_1}$.

Let us note that there exists a poset which is strict, discrete, and non empty and there exists a poset which is strict, discrete, and empty.

Observe that $\langle \emptyset, id_{\emptyset} \rangle$ is empty. Let *P* be an empty relational structure. Note that the internal relation of *P* is empty.

Let us note that every relational structure which is empty is also discrete.

Let P be a relational structure and let I_1 be a subset of P. We say that I_1 is disconnected if and only if the condition (Def. 2) is satisfied.

- (Def. 2) There exist subsets A, B of P such that
 - (i) $A \neq \emptyset$,
 - (ii) $B \neq \emptyset$,
 - (iii) $I_1 = A \cup B$,
 - (iv) A misses B, and
 - (v) the internal relation of $P = \text{(the internal relation of } P) |^2 A \cup \text{(the internal relation of } P) |^2 B$.

We introduce I_1 is connected as an antonym of I_1 is disconnected.

Let I_1 be a relational structure. We say that I_1 is disconnected if and only if:

(Def. 3) $\Omega_{(I_1)}$ is disconnected.

We introduce I_1 is connected as an antonym of I_1 is disconnected.

In the sequel T is a non empty relational structure and a is an element of T.

One can prove the following propositions:

- (1) For every discrete non empty relational structure D_1 and for all elements x, y of D_1 holds $x \le y$ iff x = y.
- (2) For every binary relation *R* and for every set *a* such that *R* is an order in $\{a\}$ holds $R = id_{\{a\}}$.
- (3) If *T* is reflexive and $\Omega_T = \{a\}$, then *T* is discrete.

In the sequel *a* is a set.

Next we state two propositions:

- (4) If $\Omega_T = \{a\}$, then *T* is connected.
- (5) For every discrete non empty poset D_1 such that there exist elements a, b of D_1 such that $a \neq b$ holds D_1 is disconnected.

Let us observe that there exists a non empty poset which is strict and connected and there exists a non empty poset which is strict, disconnected, and discrete.

2. On the Category of Posets

Let I_1 be a set. We say that I_1 is poset-membered if and only if:

(Def. 4) For every set a such that $a \in I_1$ holds a is a non empty poset.

Let us observe that there exists a set which is non empty and poset-membered.

A set of posets is a poset-membered set.

Let *P* be a non empty set of posets. We see that the element of *P* is a non empty poset.

Let L_1 , L_2 be relational structures and let f be a map from L_1 into L_2 . We say that f is monotone if and only if:

(Def. 5) For all elements x, y of L_1 such that $x \le y$ and for all elements a, b of L_2 such that a = f(x) and b = f(y) holds $a \le b$.

In the sequel P denotes a non empty set of posets and A, B denote elements of P. Let A, B be relational structures. The functor B_{\leq}^A is defined by the condition (Def. 6).

(Def. 6) $a \in B_{\leq}^A$ if and only if there exists a map f from A into B such that a = f and $f \in$ (the carrier of B) the carrier of A and f is monotone.

We now state two propositions:

- (6) For all non empty relational structures A, B, C and for all functions f, g such that $f \in B_{\leq}^A$ and $g \in C_{<}^B$ holds $g \cdot f \in C_{<}^A$.
- (7) $id_{the \ carrier \ of \ T} \in T_{<}^{T}$.

Let us consider T. Observe that $T_{<}^{T}$ is non empty.

Let *X* be a set. The functor $Carr(\bar{X})$ yielding a set is defined by:

(Def. 7) $a \in Carr(X)$ iff there exists a 1-sorted structure s such that $s \in X$ and a = the carrier of s.

Let us consider P. Observe that Carr(P) is non empty.

Next we state four propositions:

- (8) For every 1-sorted structure f holds $Carr(\{f\}) = \{\text{the carrier of } f\}$.
- (9) For all 1-sorted structures f, g holds $Carr(\{f,g\}) = \{\text{the carrier of } f, \text{ the carrier of } g\}$.
- (10) $B_{<}^{A} \subseteq \operatorname{Funcs}\operatorname{Carr}(P)$.
- (11) For all relational structures A, B holds $B_{\leq}^A \subseteq (\text{the carrier of } B)^{\text{the carrier of } A}$.

Let A, B be non empty posets. Note that $B_{<}^{A}$ is functional.

Let P be a non empty set of posets. The functor POSCat(P) yields a strict category with triple-like morphisms and is defined by the conditions (Def. 8).

- (Def. 8)(i) The objects of POSCat(P) = P,
 - (ii) for all elements a, b of P and for every element f of Funcs Carr(P) such that $f \in b^a_{\leq}$ holds $\langle \langle a, b \rangle, f \rangle$ is a morphism of POSCat(P),
 - (iii) for every morphism m of POSCat(P) there exist elements a, b of P and there exists an element f of Funcs Carr(P) such that $m = \langle \langle a, b \rangle, f \rangle$ and $f \in b^a_{<}$, and
 - (iv) for all morphisms m_1 , m_2 of POSCat(P) and for all elements a_1 , a_2 , a_3 of P and for all elements f_1 , f_2 of Funcs Carr(P) such that $m_1 = \langle \langle a_1, a_2 \rangle, f_1 \rangle$ and $m_2 = \langle \langle a_2, a_3 \rangle, f_2 \rangle$ holds $m_2 \cdot m_1 = \langle \langle a_1, a_3 \rangle, f_2 \cdot f_1 \rangle$.

3. On the Alternative Category of Posets

In this article we present several logical schemes. The scheme AltCatEx deals with a non empty set \mathcal{A} and a binary functor \mathcal{F} yielding a functional set, and states that:

There exists a strict category structure C such that

- (i) the carrier of $C = \mathcal{A}$, and
- (ii) for all elements i, j of $\mathcal A$ holds (the arrows of $C)(i, j) = \mathcal F(i, j)$ and for all elements i, j, k of $\mathcal A$ holds (the composition of $C)(i, j, k) = \operatorname{FuncComp}(\mathcal F(i, j), \mathcal F(j, k))$ provided the parameters meet the following requirement:
 - For all elements i, j, k of \mathcal{A} and for all functions f, g such that $f \in \mathcal{F}(i,j)$ and $g \in \mathcal{F}(j,k)$ holds $g \cdot f \in \mathcal{F}(i,k)$.

The scheme AltCatUniq deals with a non empty set $\mathcal A$ and a binary functor $\mathcal F$ yielding a functional set, and states that:

Let C_1 , C_2 be strict category structures. Suppose that

- (i) the carrier of $C_1 = \mathcal{A}$,
- (ii) for all elements i, j of \mathcal{A} holds (the arrows of C_1) $(i, j) = \mathcal{F}(i, j)$ and for all elements i, j, k of \mathcal{A} holds (the composition of C_1) $(i, j, k) = \text{FuncComp}(\mathcal{F}(i, j), \mathcal{F}(j, k))$,
- (iii) the carrier of $C_2 = \mathcal{A}$, and
- (iv) for all elements i, j of \mathcal{A} holds (the arrows of C_2) $(i, j) = \mathcal{F}(i, j)$ and for all elements i, j, k of \mathcal{A} holds (the composition of C_2) $(i, j, k) = \operatorname{FuncComp}(\mathcal{F}(i, j), \mathcal{F}(j, k))$. Then $C_1 = C_2$

for all values of the parameters.

Let P be a non empty set of posets. The functor POSAltCat(P) yielding a strict category structure is defined by the conditions (Def. 9).

- (Def. 9)(i) The carrier of POSAltCat(P) = P, and
 - (ii) for all elements i, j of P holds (the arrows of POSAltCat(P)) $(i, j) = j_{\leq}^i$ and for all elements i, j, k of P holds (the composition of POSAltCat(P)) $(i, j, k) = \text{FuncComp}(j_{\leq}^i, k_{\leq}^j)$.

Let P be a non empty set of posets. Observe that POSAltCat(P) is transitive and non empty. Let P be a non empty set of posets. Note that POSAltCat(P) is associative and has units. We now state the proposition

(12) Let o_1 , o_2 be objects of POSAltCat(P) and A, B be elements of P. If $o_1 = A$ and $o_2 = B$, then $\langle o_1, o_2 \rangle \subseteq$ (the carrier of B)^{the carrier of A}.

REFERENCES

- Grzegorz Bancerek. The well ordering relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/wellordl.html.
- [2] Grzegorz Bancerek. Categorial categories and slice categories. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/cat_5.html.
- [3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.

- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [6] Czesław Byliński. Introduction to categories and functors. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/cat_1.html.
- [7] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [8] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [9] Czesław Byliński. Category Ens. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/ens_1.html.
- [10] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/pralg 1.html.
- [11] Michał Muzalewski and Wojciech Skaba. Three-argument operations and four-argument operations. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/multop_1.html.
- [12] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [14] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/mcart_1.html.
- [15] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fraenkel.html.
- [16] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [17] Andrzej Trybulec. Categories without uniqueness of cod and dom. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/altcat_1.html.
- [18] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [19] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [20] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [21] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset 1.html.
- [22] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/relat_2.html.

Received January 22, 1996

Published January 2, 2004