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Summary. In the paper the construction of a category of partially ordered sets is
shown: in the second section according to [6] and in the third section according to the defi-
nition given in [17]. Some of useful notions such as monotone map and the set of monotone
maps between relational structures are given.
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The articles [13], [8], [19], [20], [22], [4], [2], [14], [1], [7], [3], [11], [21], [12], [18], [6], [9], [15],
[16], [5], [10], and [17] provide the notation and terminology for this paper.

1. PRELIMINARIES

Let I1 be a relational structure. We say thatI1 is discrete if and only if:

(Def. 1) The internal relation ofI1 = idthe carrier ofI1.

Let us note that there exists a poset which is strict, discrete, and non empty and there exists a
poset which is strict, discrete, and empty.

Observe that〈 /0, id /0〉 is empty. LetP be an empty relational structure. Note that the internal
relation ofP is empty.

Let us note that every relational structure which is empty is also discrete.
Let P be a relational structure and letI1 be a subset ofP. We say thatI1 is disconnected if and

only if the condition (Def. 2) is satisfied.

(Def. 2) There exist subsetsA, B of P such that

(i) A 6= /0,

(ii) B 6= /0,

(iii) I1 = A∪B,

(iv) A missesB, and

(v) the internal relation ofP= (the internal relation ofP) |2 A∪ (the internal relation ofP) |2 B.

We introduceI1 is connected as an antonym ofI1 is disconnected.
Let I1 be a relational structure. We say thatI1 is disconnected if and only if:

(Def. 3) Ω(I1) is disconnected.

We introduceI1 is connected as an antonym ofI1 is disconnected.
In the sequelT is a non empty relational structure anda is an element ofT.
One can prove the following propositions:
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(1) For every discrete non empty relational structureD1 and for all elementsx, y of D1 holds
x≤ y iff x = y.

(2) For every binary relationRand for every seta such thatR is an order in{a} holdsR= id{a}.

(3) If T is reflexive andΩT = {a}, thenT is discrete.

In the sequela is a set.
Next we state two propositions:

(4) If ΩT = {a}, thenT is connected.

(5) For every discrete non empty posetD1 such that there exist elementsa, b of D1 such that
a 6= b holdsD1 is disconnected.

Let us observe that there exists a non empty poset which is strict and connected and there exists
a non empty poset which is strict, disconnected, and discrete.

2. ON THE CATEGORY OFPOSETS

Let I1 be a set. We say thatI1 is poset-membered if and only if:

(Def. 4) For every seta such thata∈ I1 holdsa is a non empty poset.

Let us observe that there exists a set which is non empty and poset-membered.
A set of posets is a poset-membered set.
Let P be a non empty set of posets. We see that the element ofP is a non empty poset.
Let L1, L2 be relational structures and letf be a map fromL1 into L2. We say thatf is monotone

if and only if:

(Def. 5) For all elementsx, y of L1 such thatx≤ y and for all elementsa, b of L2 such thata = f (x)
andb = f (y) holdsa≤ b.

In the sequelP denotes a non empty set of posets andA, B denote elements ofP.
Let A, B be relational structures. The functorBA

≤ is defined by the condition (Def. 6).

(Def. 6) a∈BA
≤ if and only if there exists a mapf from A into B such thata= f and f ∈ (the carrier

of B)the carrier ofA and f is monotone.

We now state two propositions:

(6) For all non empty relational structuresA, B, C and for all functionsf , g such thatf ∈ BA
≤

andg∈CB
≤ holdsg· f ∈CA

≤.

(7) idthe carrier ofT ∈ TT
≤ .

Let us considerT. Observe thatTT
≤ is non empty.

Let X be a set. The functor Carr(X) yielding a set is defined by:

(Def. 7) a∈ Carr(X) iff there exists a 1-sorted structures such thats∈ X anda = the carrier ofs.

Let us considerP. Observe that Carr(P) is non empty.
Next we state four propositions:

(8) For every 1-sorted structuref holds Carr({ f}) = {the carrier off}.

(9) For all 1-sorted structuresf , g holds Carr({ f ,g}) = {the carrier off , the carrier ofg}.

(10) BA
≤ ⊆ FuncsCarr(P).

(11) For all relational structuresA, B holdsBA
≤ ⊆ (the carrier ofB)the carrier ofA.
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Let A, B be non empty posets. Note thatBA
≤ is functional.

Let P be a non empty set of posets. The functor POSCat(P) yields a strict category with triple-
like morphisms and is defined by the conditions (Def. 8).

(Def. 8)(i) The objects of POSCat(P) = P,

(ii) for all elementsa, b of P and for every elementf of FuncsCarr(P) such thatf ∈ ba
≤ holds

〈〈〈〈a, b〉〉, f 〉〉 is a morphism of POSCat(P),

(iii) for every morphismm of POSCat(P) there exist elementsa, b of P and there exists an
elementf of FuncsCarr(P) such thatm= 〈〈〈〈a, b〉〉, f 〉〉 and f ∈ ba

≤, and

(iv) for all morphismsm1, m2 of POSCat(P) and for all elementsa1, a2, a3 of P and for all
elementsf1, f2 of FuncsCarr(P) such thatm1 = 〈〈〈〈a1, a2〉〉, f1〉〉 andm2 = 〈〈〈〈a2, a3〉〉, f2〉〉 holds
m2 ·m1 = 〈〈〈〈a1, a3〉〉, f2 · f1〉〉.

3. ON THE ALTERNATIVE CATEGORY OFPOSETS

In this article we present several logical schemes. The schemeAltCatExdeals with a non empty set
A and a binary functorF yielding a functional set, and states that:

There exists a strict category structureC such that
(i) the carrier ofC = A , and

(ii) for all elementsi, j of A holds (the arrows ofC)(i, j) = F (i, j) and for all ele-
mentsi, j, k of A holds (the composition ofC)(i, j, k) = FuncComp(F (i, j),F ( j,k))

provided the parameters meet the following requirement:
• For all elementsi, j, k of A and for all functionsf , g such thatf ∈ F (i, j) and

g∈ F ( j,k) holdsg· f ∈ F (i,k).
The schemeAltCatUniqdeals with a non empty setA and a binary functorF yielding a func-

tional set, and states that:
Let C1, C2 be strict category structures. Suppose that

(i) the carrier ofC1 = A ,
(ii) for all elementsi, j of A holds (the arrows ofC1)(i, j) = F (i, j) and for all ele-

mentsi, j, k of A holds (the composition ofC1)(i, j, k)= FuncComp(F (i, j),F ( j,k)),
(iii) the carrier ofC2 = A , and
(iv) for all elementsi, j of A holds (the arrows ofC2)(i, j) = F (i, j) and for all ele-
mentsi, j, k of A holds (the composition ofC2)(i, j, k)= FuncComp(F (i, j),F ( j,k)).

ThenC1 = C2

for all values of the parameters.
Let P be a non empty set of posets. The functor POSAltCat(P) yielding a strict category struc-

ture is defined by the conditions (Def. 9).

(Def. 9)(i) The carrier of POSAltCat(P) = P, and

(ii) for all elementsi, j of Pholds (the arrows of POSAltCat(P))(i, j) = j i≤ and for all elements

i, j, k of P holds (the composition of POSAltCat(P))(i, j, k) = FuncComp( j i≤,k j
≤).

Let P be a non empty set of posets. Observe that POSAltCat(P) is transitive and non empty.
Let P be a non empty set of posets. Note that POSAltCat(P) is associative and has units.
We now state the proposition

(12) Leto1, o2 be objects of POSAltCat(P) andA, B be elements ofP. If o1 = A ando2 = B,
then〈o1,o2〉 ⊆ (the carrier ofB)the carrier ofA.
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[5] Czesław Bylínski. Functions from a set to a set.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/funct_
2.html.
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