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Summary. This article introduces the construction of a many sorted quotient algebra.
A few preliminary notions such as a many sorted relation, a many sorted equivalence relation, a
many sorted congruence and the set of all classes of a many sorted relation are also formulated.
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The articles [10], [14], [15], [3], [16], [5], [9], [4], [2], [1], [13], [11], [7], [12], [6], and [8] provide
the notation and terminology for this paper.

1. MANY SORTED RELATION

In this paperSdenotes a non void non empty many sorted signature,U1 denotes an algebra overS,
o denotes an operation symbol ofS, ands denotes a sort symbol ofS.

Let I1 be a function. We say thatI1 is binary relation yielding if and only if:

(Def. 1) For every setx such thatx∈ domI1 holdsI1(x) is a binary relation.

Let I be a set. Observe that there exists a many sorted set indexed byI which is binary relation
yielding.

Let I be a set. A many sorted relation indexed byI is a binary relation yielding many sorted set
indexed byI .

Let I be a set and letA, B be many sorted sets indexed byI . A many sorted set indexed byI is
said to be a many sorted relation betweenA andB if:

(Def. 2) For every seti such thati ∈ I holds it(i) is a relation betweenA(i) andB(i).

Let I be a set and letA, B be many sorted sets indexed byI . Observe that every many sorted
relation betweenA andB is binary relation yielding.

Let I be a set and letA be a many sorted set indexed byI . A many sorted relation indexed byA
is a many sorted relation betweenA andA.

Let I be a set, letA be a many sorted set indexed byI , and letI1 be a many sorted relation
indexed byA. We say thatI1 is equivalence if and only if the condition (Def. 3) is satisfied.

(Def. 3) Let i be a set andR be a binary relation onA(i). If i ∈ I and I1(i) = R, then R is an
equivalence relation ofA(i).

Let I be a non empty set, letA, B be many sorted sets indexed byI , let F be a many sorted
relation betweenA andB, and leti be an element ofI . ThenF(i) is a relation betweenA(i) andB(i).

Let S be a non empty many sorted signature and letU1 be an algebra overS. A many sorted
relation indexed byU1 is a many sorted relation indexed by the sorts ofU1.

Let Sbe a non empty many sorted signature, letU1 be an algebra overS, and letI1 be a many
sorted relation indexed byU1. We say thatI1 is equivalence if and only if:
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(Def. 5)1 I1 is equivalence.

Let Sbe a non void non empty many sorted signature and letU1 be an algebra overS. One can
check that there exists a many sorted relation indexed byU1 which is equivalence.

The following proposition is true

(1) Let R be an equivalence many sorted relation indexed byU1. ThenR(s) is an equivalence
relation of (the sorts ofU1)(s).

Let Sbe a non void non empty many sorted signature, letU1 be a non-empty algebra overS, and
let Rbe an equivalence many sorted relation indexed byU1. We say thatR is MSCongruence-like if
and only if the condition (Def. 6) is satisfied.

(Def. 6) Leto be an operation symbol ofS andx, y be elements of Args(o,U1). Suppose that for
every natural numbern such thatn∈ domx holds〈〈x(n), y(n)〉〉 ∈R(Arity(o)n). Then〈〈(Den(o,
U1))(x), (Den(o,U1))(y)〉〉 ∈ R(the result sort ofo).

Let S be a non void non empty many sorted signature and letU1 be a non-empty algebra over
S. One can check that there exists an equivalence many sorted relation indexed byU1 which is
MSCongruence-like.

Let Sbe a non void non empty many sorted signature and letU1 be a non-empty algebra overS.
A congruence ofU1 is a MSCongruence-like equivalence many sorted relation indexed byU1.

Let S be a non void non empty many sorted signature, letU1 be an algebra overS, let R be
an equivalence many sorted relation indexed byU1, and leti be an element ofS. ThenR(i) is an
equivalence relation of (the sorts ofU1)(i).

Let Sbe a non void non empty many sorted signature, letU1 be an algebra overS, let R be an
equivalence many sorted relation indexed byU1, let i be an element ofS, and letx be an element of
(the sorts ofU1)(i). The functor[x]R yielding a subset of (the sorts ofU1)(i) is defined as follows:

(Def. 7) [x]R = [x]R(i).

Let us considerS, let U1 be a non-empty algebra overS, and letR be a congruence ofU1. The
functor ClassesRyielding a non-empty many sorted set indexed by the carrier ofS is defined by:

(Def. 8) For every elements of Sholds(ClassesR)(s) = ClassesR(s).

2. MANY SORTED QUOTIENT ALGEBRA

Let us considerS, let M1, M2 be many sorted sets indexed by the operation symbols ofS, let F be
a many sorted function fromM1 into M2, and leto be an operation symbol ofS. ThenF(o) is a
function fromM1(o) into M2(o).

Let I be a non empty set, letp be a finite sequence of elements ofI , and letX be a non-empty
many sorted set indexed byI . ThenX · p is a non-empty many sorted set indexed by domp.

Let us considerS, o, let A be a non-empty algebra overS, let R be a congruence ofA, and let
x be an element of Args(o,A). The functorR#x yields an element of∏(ClassesR·Arity(o)) and is
defined by:

(Def. 9) For every natural numbern such thatn∈ domArity(o) holds(R#x)(n) = [x(n)]R(Arity(o)n).

Let us considerS, o, let A be a non-empty algebra overS, and letR be a congruence ofA.
The functor QuotRes(R,o) yielding a function from((the sorts ofA) · (the result sort ofS))(o) into
(ClassesR· the result sort ofS)(o) is defined by:

(Def. 10) For every elementx of (the sorts ofA)(the result sort ofo) holds(QuotRes(R,o))(x) = [x]R.

The functor QuotArgs(R,o) yields a function from((the sorts ofA)# · the arity of S)(o) into
((ClassesR)# · the arity ofS)(o) and is defined as follows:

(Def. 11) For every elementx of Args(o,A) holds(QuotArgs(R,o))(x) = R#x.

1 The definition (Def. 4) has been removed.
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Let us considerS, let A be a non-empty algebra overS, and letR be a congruence ofA. The
functor QuotRes(R) yielding a many sorted function from (the sorts ofA) · (the result sort ofS) into
ClassesR· the result sort ofS is defined as follows:

(Def. 12) For every operation symbolo of Sholds(QuotRes(R))(o) = QuotRes(R,o).

The functor QuotArgs(R) yields a many sorted function from (the sorts ofA)# · the arity ofS into
(ClassesR)# · the arity ofSand is defined by:

(Def. 13) For every operation symbolo of Sholds(QuotArgs(R))(o) = QuotArgs(R,o).

Next we state the proposition

(2) Let A be a non-empty algebra overS, R be a congruence ofA, andx be a set. Suppose
x∈ ((ClassesR)# · the arity ofS)(o). Then there exists an elementa of Args(o,A) such that
x = R#a.

Let us considerS, o, let A be a non-empty algebra overS, and letR be a congruence ofA. The
functor QuotCharact(R,o) yields a function from((ClassesR)# · the arity ofS)(o) into (ClassesR·
the result sort ofS)(o) and is defined by:

(Def. 14) For every elementa of Args(o,A) such thatR#a∈ ((ClassesR)# · the arity ofS)(o) holds
(QuotCharact(R,o))(R#a) = (QuotRes(R,o) ·Den(o,A))(a).

Let us considerS, letA be a non-empty algebra overS, and letRbe a congruence ofA. The func-
tor QuotCharact(R) yields a many sorted function from(ClassesR)# · the arity ofSinto ClassesR· the
result sort ofSand is defined as follows:

(Def. 15) For every operation symbolo of Sholds(QuotCharact(R))(o) = QuotCharact(R,o).

Let us considerS, let U1 be a non-empty algebra overS, and letR be a congruence ofU1. The
functorU1/Ryields an algebra overSand is defined as follows:

(Def. 16) U1/R= 〈ClassesR,QuotCharact(R)〉.

Let us considerS, let U1 be a non-empty algebra overS, and letR be a congruence ofU1. One
can verify thatU1/R is strict and non-empty.

Let us considerS, letU1 be a non-empty algebra overS, let Rbe a congruence ofU1, and letsbe
a sort symbol ofS. The functor MSNatHom(U1,R,s) yielding a function from (the sorts ofU1)(s)
into (ClassesR)(s) is defined by:

(Def. 17) For every setx such thatx∈ (the sorts ofU1)(s) holds(MSNatHom(U1,R,s))(x) = [x]R(s).

Let us considerS, let U1 be a non-empty algebra overS, and letR be a congruence ofU1. The
functor MSNatHom(U1,R) yielding a many sorted function fromU1 intoU1/R is defined as follows:

(Def. 18) For every sort symbols of Sholds(MSNatHom(U1,R))(s) = MSNatHom(U1,R,s).

One can prove the following proposition

(3) For every non-empty algebraU1 over S and for every congruenceR of U1 holds
MSNatHom(U1,R) is an epimorphism ofU1 ontoU1/R.

Let us considerS, letU1, U2 be non-empty algebras overS, letF be a many sorted function from
U1 into U2, and lets be a sort symbol ofS. The functor Congruence(F,s) yielding an equivalence
relation of (the sorts ofU1)(s) is defined by:

(Def. 19) For all elementsx, y of (the sorts ofU1)(s) holds〈〈x, y〉〉 ∈ Congruence(F,s) iff F(s)(x) =
F(s)(y).

Let us considerS, let U1, U2 be non-empty algebras overS, and letF be a many sorted func-
tion from U1 into U2. Let us assume thatF is a homomorphism ofU1 into U2. The functor
Congruence(F) yields a congruence ofU1 and is defined as follows:
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(Def. 20) For every sort symbols of Sholds(Congruence(F))(s) = Congruence(F,s).

Let us considerS, letU1, U2 be non-empty algebras overS, letF be a many sorted function from
U1 into U2, and lets be a sort symbol ofS. Let us assume thatF is a homomorphism ofU1 into
U2. The functor MSHomQuot(F,s) yields a function from (the sorts ofU1/Congruence(F))(s) into
(the sorts ofU2)(s) and is defined as follows:

(Def. 21) For every elementx of (the sorts ofU1)(s) holds(MSHomQuot(F,s))([x]Congruence(F,s)) =
F(s)(x).

Let us considerS, let U1, U2 be non-empty algebras overS, and letF be a many sorted
function from U1 into U2. The functor MSHomQuot(F) yields a many sorted function from
U1/Congruence(F) into U2 and is defined by:

(Def. 22) For every sort symbols of Sholds(MSHomQuot(F))(s) = MSHomQuot(F,s).

We now state three propositions:

(4) LetU1, U2 be non-empty algebras overSandF be a many sorted function fromU1 intoU2.
SupposeF is a homomorphism ofU1 into U2. Then MSHomQuot(F) is a monomorphism of
U1/Congruence(F) into U2.

(5) LetU1, U2 be non-empty algebras overSandF be a many sorted function fromU1 intoU2.
SupposeF is an epimorphism ofU1 ontoU2. Then MSHomQuot(F) is an isomorphism of
U1/Congruence(F) andU2.

(6) LetU1, U2 be non-empty algebras overSandF be a many sorted function fromU1 intoU2.
If F is an epimorphism ofU1 ontoU2, thenU1/Congruence(F) andU2 are isomorphic.
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