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Summary. This article introduces the construction of a many sorted quotient algebra.
A few preliminary notions such as a many sorted relation, a many sorted equivalence relation, a
many sorted congruence and the set of all classes of a many sorted relation are also formulated.
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The articles([10],[[14],[[15],[8],.[16],[[5],[[01,[4],12],[[1],[[13],[[11],[[V],[[12],[6], and |8] provide
the notation and terminology for this paper.

1. MANY SORTED RELATION

In this paperSdenotes a non void non empty many sorted signatiyeenotes an algebra over
o denotes an operation symbol&fands denotes a sort symbol &

Let 1, be a function. We say th#f is binary relation yielding if and only if:
(Def. 1) For every set such thai € domly holdsli(x) is a binary relation.
Let| be a set. Observe that there exists a many sorted set indexealtbgh is binary relation
yielding.
Let| be a set. A many sorted relation indexedibg a binary relation yielding many sorted set
indexed byl.

Let| be a set and leA, B be many sorted sets indexed byA many sorted set indexed thyis
said to be a many sorted relation betwéeandB if:

(Def. 2) For every satsuch thaf € | holds if(i) is a relation betweeA(i) andB(i).

Let| be a set and leA, B be many sorted sets indexed hyObserve that every many sorted
relation betwee\ andB is binary relation yielding.

Let| be a set and leh be a many sorted set indexed byA many sorted relation indexed By
is a many sorted relation betweArandA.

Let | be a set, lefA be a many sorted set indexed hyand letl; be a many sorted relation
indexed byA. We say that, is equivalence if and only if the condition (Def. 3) is satisfied.

(Def. 3) Leti be a set andR be a binary relation od\(i). If i €| andly(i) = R, thenR is an
equivalence relation oi(i).

Let | be a non empty set, |&&, B be many sorted sets indexed hylet F be a many sorted
relation betweer andB, and leti be an element df. ThenF (i) is a relation betweeA(i) andB(i).

Let Sbe a nhon empty many sorted signature andlebe an algebra ove®. A many sorted
relation indexed byJ; is a many sorted relation indexed by the sortbof

Let Sbe a non empty many sorted signature Ugtbe an algebra ove®, and letl; be a many
sorted relation indexed By,. We say that; is equivalence if and only if:
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(Def. 5ff] 11 is equivalence.

Let Sbe a non void non empty many sorted signature and{die an algebra ove3. One can
check that there exists a many sorted relation indexddybyhich is equivalence.
The following proposition is true

(1) LetRbe an equivalence many sorted relation indexethyThenR(s) is an equivalence
relation of (the sorts dfl;)(s).

Let Sbe a non void non empty many sorted signaturd/Jidbe a non-empty algebra ov8rand
let Rbe an equivalence many sorted relation indexedhye say thaR is MSCongruence-like if
and only if the condition (Def. 6) is satisfied.

(Def. 6) Leto be an operation symbol & andx, y be elements of Arg®e,U1). Suppose that for
every natural numbersuch thah € domx holds{x(n), y(n)) € R(Arity (0)). Then{(Den(o,
U1))(x), (Den(o,U1))(y)) € R(the result sort 0b).

Let She a non void non empty many sorted signature antd{die a non-empty algebra over
S. One can check that there exists an equivalence many sorted relation indeledaych is
MSCongruence-like.

Let Sbe a non void non empty many sorted signature andiléte a non-empty algebra ov8r
A congruence olJ; is a MSCongruence-like equivalence many sorted relation indexed.by

Let Sbe a non void non empty many sorted signaturellebe an algebra oves, let R be
an equivalence many sorted relation indexedJgyand leti be an element 08 ThenR(i) is an
equivalence relation of (the sortsdf)(i).

Let Sbe a non void non empty many sorted signaturellebe an algebra oves, let R be an
equivalence many sorted relation indexed.hyleti be an element d§, and letx be an element of
(the sorts ofJ1)(i). The functor{X|g yielding a subset of (the sorts 0f)(i) is defined as follows:

(Def. 7) X = X -

Let us consideB, letU; be a non-empty algebra ov8rand letR be a congruence d&f;. The
functor ClasseR yielding a non-empty many sorted set indexed by the carri&isflefined by:

(Def. 8) For every elemergtof Sholds(ClasseR)(s) = Classe(s).

2. MANY SORTED QUOTIENT ALGEBRA

Let us consides, let M1, M be many sorted sets indexed by the operation symbdsslet F be
a many sorted function frori; into My, and leto be an operation symbol & ThenF (o) is a
function fromMj(0) into Mz(0).

Let| be a non empty set, lgt be a finite sequence of elementsl pand letX be a non-empty
many sorted set indexed by ThenX - pis a non-empty many sorted set indexed by gom

Let us consides, o, let A be a non-empty algebra ovEr let R be a congruence &, and let
x be an element of Arde, A). The functorR#x yields an element off](ClasseR- Arity (0)) and is
defined by:

(Def. 9)  For every natural numbarsuch than € domArity(o) holds (Rix) (n) = [X(N)]rarity (o)) -

Let us considesS, o, let A be a non-empty algebra ov&r and letR be a congruence oA
The functor QuotR€®, 0) yielding a function from((the sorts ofA) - (the result sort 05))(0) into
(ClasseR- the result sort 05)(0) is defined by:

(Def. 10) For every elementof (the sorts ofA) (the result sort 06) holds(QuotRe$R 0))(X) = [X|r.

The functor QuotArg&R, 0) yields a function from((the sorts ofA)* - the arity of S)(0) into
((Classe®)* - the arity ofS)(0) and is defined as follows:

(Def. 11) For every elementof Args(o,A) holds(QuotArggR,0))(x) = Réx.

1 The definition (Def. 4) has been removed.
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Let us considef5, let A be a non-empty algebra ov&r and letR be a congruence d&. The
functor QuotRegR) yielding a many sorted function from (the sortsAf (the result sort of) into
Classe®-the result sort o6is defined as follows:

(Def. 12) For every operation symbolbf Sholds(QuotRe$R))(0) = QuotRe$R, 0).

The functor QuotArg&R) yields a many sorted function from (the sortsA)f - the arity of Sinto
(Classe®)* - the arity ofSand is defined by:

(Def. 13) For every operation symbobf Sholds(QuotArggR))(0) = QuotArggR, 0).

Next we state the proposition

(2) LetA be a non-empty algebra ovE€r R be a congruence o, andx be a set. Suppose
x € ((Classe®)” - the arity ofS)(0). Then there exists an elemembf Args(o,A) such that
x = R#a.

Let us consides, o, let A be a non-empty algebra ovBrand letR be a congruence &. The
functor QuotChara¢R o) yields a function from((Classe®)* - the arity ofS)(0) into (ClasseR-
the result sort 06)(0) and is defined by:

(Def. 14)  For every elemerat of Args(o,A) such thatR#a € ((Classe®)* - the arity ofS)(0) holds
(QuotCharadR,0))(R#a) = (QuotRe$R, 0) - Den(0,A))(a).

Let us conside§, let A be a non-empty algebra ovBrand letR be a congruence & The func-
tor QuotCharadR) yields a many sorted function frof€lasse®)” - the arity ofSinto ClasseR-the
result sort ofSand is defined as follows:

(Def. 15) For every operation symbobf Sholds(QuotCharadiR))(0) = QuotCharadR, o).

Let us consides, letU; be a non-empty algebra ov8rand letR be a congruence d&f;. The
functorU; /Ryields an algebra ove3and is defined as follows:

(Def. 16) U1/R= (Classe& QuotCharadR)).

Let us consides, letU; be a non-empty algebra ovBrand letR be a congruence &f;. One
can verify thatJ; /R s strict and non-empty.

Let us conside§, letU; be a non-empty algebra ov8rlet R be a congruence &f;, and letsbe
a sort symbol os. The functor MSNatHorfU1, R, s) yielding a function from (the sorts &f1)(s)
into (ClasseR)(s) is defined by:

(Def. 17)  For every setsuch thak € (the sorts oty )(s) holds(MSNatHomUy, R s))(x) = [X]g(

S)*
Let us consides, letU; be a non-empty algebra ov8rand letR be a congruence &f;. The
functor MSNatHoniU4, R) yielding a many sorted function froly into U1 /Ris defined as follows:
(Def. 18) For every sort symbslof Sholds(MSNatHon{U1,R))(s) = MSNatHomU1, R, s).

One can prove the following proposition

(3) For every non-empty algebrd; over S and for every congruenc® of U; holds
MSNatHom{U1, R) is an epimorphism df; ontoU; /R.

Let us conside§, letU1, U, be non-empty algebras ov8rlet F be a many sorted function from
U into Uy, and lets be a sort symbol 08. The functor CongruencE, s) yielding an equivalence
relation of (the sorts dfl1)(s) is defined by:

(Def. 19) For all elements, y of (the sorts olJ1)(s) holds (x, y) € Congruencé,s) iff F(s)(x) =
F(S)(y)-

Let us consides, letU;, U2 be non-empty algebras ov8y and letF be a many sorted func-
tion from U; into U,. Let us assume thdt is a homomorphism ob; into U,. The functor
Congruencér) yields a congruence &f; and is defined as follows:
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(Def. 20) For every sort symbslof Sholds(Congruencé))(s) = CongruencfF,s).

Let us conside§, letU1, U, be non-empty algebras ov8rlet F be a many sorted function from
U; into Uy, and lets be a sort symbol o6 Let us assume thd&t is a homomorphism df; into
U,. The functor MSHomQUGE, s) yields a function from (the sorts &f; / Congruencé))(s) into
(the sorts ofJ,)(s) and is defined as follows:

(Def. 21) For every elementof (the sorts ofJ;)(s) holds(MSHomQuotF,s))([X]
F(s)(x).

Let us considelS, let U1, U, be non-empty algebras ov& and letF be a many sorted
function fromU; into U,. The functor MSHomQudF) yields a many sorted function from
U,/ CongruencéF) into U, and is defined by:

CongruenceF,s))

(Def. 22) For every sort symbslof Sholds(MSHomQuotF))(s) = MSHomQuotF, s).

We now state three propositions:

(4) LetU1, Uz be non-empty algebras ovBandF be a many sorted function frobly into Us.
Supposd- is a homomorphism dfi; into U,. Then MSHomQud#F ) is a monomorphism of
Ui/ CongruencéF) into Us.

(5) LetU1, U be non-empty algebras ovBandF be a many sorted function frobly into Us.
Supposé- is an epimorphism of); ontoU,. Then MSHomQudF ) is an isomorphism of
U1/ Congruencé-) andUs,.

(6) LetU1, U, be non-empty algebras ovBandF be a many sorted function frobly into U,.
If F is an epimorphism dfl; ontoUy, thenU;/ Congruencé~) andU, are isomorphic.
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