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The articles[[10],[16],[[1B],[[14],[[41,[15],[12],19], [¥], [15], [[3], [[8], [[1], [11], and [12] provide the
notation and terminology for this paper.

1. AUXILIARY FACTS ABOUT MANY SORTED SETS

In this papeix denotes a set.

The scheméambdaBdeals with a non empty set and a unary functof yielding a set, and
states that:

There exists a functiofi such that donfi = 4 and for every elemerd of 4 holds
f(d) = 7(d)
for all values of the parameters.
Letl be a set, leK be a many sorted set indexed lhyand lety be a non-empty many sorted set
indexed byl. One can check thatUY is non-empty and U X is non-empty.
The following proposition is true

(ZH Let!| be a non empty seX, Y be many sorted sets indexed lhyandi be an element df*.
Then]((XNY)-i) = (X-1)N QY -1).

Let| be a set and le¥l be a many sorted set indexed byA many sorted set indexed lyis
said to be a many sorted subset indexedvbiy.

(Def. 1) ItC M.

Let| be a set and lé¥l be a non-empty many sorted set indexed b@ne can verify that there
exists a many sorted subset indexedvbyvhich is non-empty.

2. CONSTANTS OF AMANY SORTED ALGEBRA

We follow the rules:Sis a non void non empty many sorted signaturées an operation symbol of
S andUg, Uy, U, are algebras oves.

Let Sbe a non empty many sorted signature antlighhe an algebra oves. A subset ofJg is a
many sorted subset indexed by the sortdgf

Let Sbe a non empty many sorted signature andlée a sort symbol o& We say that; has
constants if and only if:

1 The proposition (1) has been removed.
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(Def. 2) There exists an operation symbaif Ssuch that (the arity 08)(0) = 0 and (the result sort
of §)(0) =1;.

LetI; be a non empty many sorted signature. We saylthiaés constant operations if and only
if:

(Def. 3) Every sort symbol df; has constants.

Let Abe a non empty set, IBtbe a set, le be a function fronB into A*, and letr be a function
from B into A. One can check thd#\ B, a, r) is non empty.
Let us mention that there exists a non empty many sorted signature which is non void and strict
and has constant operations.
Let Sbe a non void non empty many sorted signaturelJigbe an algebra oves, and lets be
a sort symbol oS The functor Constan{§p, s) yielding a subset of (the sorts B%)(s) is defined
by:

(Def. 4)(i) There exists a non empty gesuch thatA = (the sorts ofJp)(s) and Constanttlp,s) =
{a;aranges over elements 8f /. operation symbol os ((the arity ofS)(0) = 0 A (the result
sort ofS)(0) =s A ac rngDer(o,Up))} if (the sorts ofUg)(s) # 0,

(i) Constant$Uo,s) = 0, otherwise.

Let Sbe a non void non empty many sorted signature antldebe an algebra ove®. The
functor Constan{d)y) yields a subset dfl and is defined by:

(Def. 5) For every sort symbalof Sholds(ConstantéJp))(s) = ConstantdJo,s).

Let S be a non void non empty many sorted signature with constant operatiody het a
non-empty algebra oves, and lets be a sort symbol o0& Observe that Constatit,s) is non
empty.

Let Sbe a non void non empty many sorted signature with constant operations ahdbeta
non-empty algebra ov&d One can verify that Constarts) is non-empty.

3. SUBALGEBRAS OF AMANY SORTED ALGEBRA

Let Sbe a non void non empty many sorted signatureUlgbe an algebra oves, let o be an
operation symbol 0§, and letA be a subset dfly. We say that is closed oro if and only if:

(Def. 6) rngDen(o,Up) [ (A -the arity ofS)(0)) C (A-the result sort 08)(0).

Let Sbe a non void non empty many sorted signatureUlebe an algebra oves, and letA be
a subset obly. We say that is operations closed if and only if:

(Def. 7) For every operation symbolof SholdsA is closed oro.

Next we state the proposition

(3) LetSbe a non void non empty many sorted signaturdéye an operation symbol @&,
Up be an algebra ove8, andBgy, By be subsets of)y. If By C By, then (Bo#-the arity of
S)(0) C (By*-the arity ofS)(0).

Let Sbe a non void hon empty many sorted signaturellebe an algebra oves, let o be an
operation symbol 0§, and letA be a subset dfly. Let us assume thatis closed oro. The functor
oa yielding a function from(A# - the arity ofS)(0) into (A-the result sort 08)(o) is defined by:

(Def. 8) o0a = Den(o,Up)[(A*-the arity ofS)(0).

Let Sbe a non void non empty many sorted signaturelJigbe an algebra oves, and letA be
a subset obg. The functor OperidJo, A) yields a many sorted function froh’ - the arity ofSinto
A-the result sort o6and is defined as follows:

(Def. 9) For every operation symbolof Sholds(OpergUp, A))(0) = Oa.
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We now state two propositions:

(4) LetUg be an algebra ove3andB be a subset dfly. SupposeB = the sorts ofJy. ThenB
is operations closed and for evesyoldsog = Den(o,Uyp).

(5) For every subse® of Uy such thaB = the sorts ofJy holds OperéJy, B) = the character-
istics ofUp.

Let Sbe a non void non empty many sorted signature andgéte an algebra ove3. An algebra
overSis called a subalgebra bk if it satisfies the conditions (Def. 10).

(Def. 10)()) The sorts of it are a subsetldf, and

(i) for every subseB of Uy such thaB = the sorts of it hold® is operations closed and the
characteristics of i= OpergUo, B).

Let Sbhe a non void non empty many sorted signature andddde an algebra ove3. Observe
that there exists a subalgebra&f which is strict.

Let Sbe a non void non empty many sorted signature anddéte a non-empty algebra ov8r
Observe thatthe sorts ofJy, the characteristics &fp) is non-empty.

Let Sbe a non void non empty many sorted signature andddte a non-empty algebra ov8r
Note that there exists a subalgebrdJgfwhich is non-empty and strict.

One can prove the following propositions:

(6) Up is a subalgebra dafp.
(7) If Ugis a subalgebra df; andU; is a subalgebra df,, thenUy is a subalgebra df,.
(8) If Uy is a strict subalgebra &f, andUs is a strict subalgebra &f1, thenU; = Us.

(9) For all subalgebrald;, U, of Ug such that the sorts &d; C the sorts olJ, holdsU; is a
subalgebra of);.

(10) For all strict subalgebrdd;, U, of Up such that the sorts df; = the sorts ofU, holds
Uy =Us.

(11) LetSbe a non void non empty many sorted signatukgbe an algebra oves, andU; be
a subalgebra dfly. Then Constanttlp) is a subset of);.

(12) LetSbe a non void non empty many sorted signature with constant operdatlpie a
non-empty algebra ov&, andU; be a non-empty subalgebrald§. Then Constanttlp) is a
non-empty subset df;.

(13) LetSbe a non void non empty many sorted signature with constant operdtlpie a
non-empty algebra ove8, andUs, U, be non-empty subalgebrasd§. Then (the sorts of
U1) N (the sorts ofJ,) is non-empty.

4, MANY SORTED SUBSETS OFMANY SORTED ALGEBRA

Let Sbe a non void non empty many sorted signatureUlebe an algebra ove$, and letA be a
subset ofJg. The functor SubSorf#\) yielding a set is defined by the condition (Def. 11).

(Def. 11) Letx be a set. Ther € SubSort§A) if and only if the following conditions are satisfied:
(i) X € (ZU (the sorts OIUO))the carrier ofS
(i) xis asubset ofly, and

(iiiy  for every subseB of Ug such thaB = x holdsB is operations closed and Constglks) C B
andA C B.
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Let Sbe a non void non empty many sorted signaturellgbe an algebra oves, and letA be
a subset oblp. Note that SubSor{#\) is non empty.

Let Sbe a non void non empty many sorted signature antldebe an algebra ove8. The
functor SubSortdJp) yielding a set is defined by the condition (Def. 12).

(Def. 12) Letx be a set. Ther € SubSortdJp) if and only if the following conditions are satisfied:
(i) xe (2U(the sorts o) the carrier ofS

(i) xis asubset of)y, and
(iii)  for every subseB of Uy such thaB = x holdsB is operations closed.

Let Sbe a non void non empty many sorted signature andddde an algebra ove3. One can
verify that SubSortdJg) is non empty.

Let Sbe a non void non empty many sorted signatureUtebe an algebra oves, and lete be
an element of SubSof(tdp). The functor@eyields a subset dfp and is defined as follows:

(Def. 13) @e=e.
The following two propositions are true:

(14) For all subsetsA, B of Uy holds B € SubSortéA) iff B is operations closed and
ConstantdJy) C BandA C B.

(15) For every subs@& of Ug holdsB € SubSortéUp) iff B is operations closed.

Let Sbe a non void non empty many sorted signatureUtebe an algebra oves, let A be a
subset olJp, and lets be a sort symbol 08. The functor SubSofA, s) yielding a set is defined as
follows:

(Def. 14) For every sex holdsx € SubSortA,s) iff there exists a subsd® of Uy such thatB €
SubSortgA) andx = B(s).

Let Sbe a non void non empty many sorted signatureUlebe an algebra oves, let A be a
subset ofJg, and letsbe a sort symbol ob. Note that SubSof#, s) is non empty.

Let Sbe a non void non empty many sorted signaturellgbe an algebra oves, and letA be
a subset oblg. The functor MSSubSof&) yielding a subset dfy is defined as follows:

(Def. 15) For every sort symbslof Sholds(MSSubSorfA))(s) = (N SubSortA, s).

Next we state several propositions:

(16) For every subset of Uy holds Constanttly) UA C MSSubSortA).

(17) For every subse$ of Up such that Constanidy) UA is non-empty holds MSSubS¢&) is
non-empty.

(18) Let A be a subset olUp and B be a subset olp. If B € SubSortéA), then
((MSSubSortA))# - the arity ofS)(0) C (B*- the arity ofS)(0).

(19) LetAbe asubsetdfyandB be a subset dfy. Suppos® € SubSortéA). Then rngDen(o,
Uo) [ ((MSSubSortA))# - the arity ofS)(0)) C (B- the result sort 08)(0).

(20) For every subseh of Uy holds rndDen(o,Up) [ ((MSSubSortA))# - the arity ofS)(0)) C
(MSSubSortA) - the result sort 05)(0).

(21) For every subsétof Ug holds MSSubSof#) is operations closed afdC MSSubSortA).



SUBALGEBRAS OF MANY SORTED ALGEBRA ... 5

5. OPERATIONS ONMANY SORTED ALGEBRA AND ITS SUBALGEBRAS

Let Sbe a non void non empty many sorted signatureUlebe an algebra oves, and letA be a
subset ofJy. Let us assume thétis operations closed. The funcidg|A yields a strict subalgebra
of Up and is defined by:

(Def. 16) UplA = (A, (OpergUp, A) qua many sorted function frord* - the arity of S into A - the
result sort ofS)).

Let Sbe a non void non empty many sorted signatureUlebe an algebra ove®, and letU;,
U, be subalgebras afy. The functolU; NU, yields a strict subalgebra &f and is defined by the
conditions (Def. 17).

(Def. 17)()) The sorts o) NU, = (the sorts ofJ1) N (the sorts ofJ,), and

(i)  for every subseB of Uy such thatB = the sorts olJ; NU, holdsB is operations closed
and the characteristics bfy "U, = OpergUo, B).

Let Sbe a non void non empty many sorted signaturellgbe an algebra oves, and letA be
a subset obJy. The functor Ge(A) yielding a strict subalgebra afy is defined by the conditions
(Def. 18).

(Def. 18)()) Alis a subset of GER), and

(i) for every subalgebré); of Up such thatA is a subset o)1 holds GeljA) is a subalgebra
of Uq.

Let Sbe a non void non empty many sorted signaturdidbe a non-empty algebra ov8rand
let A be a non-empty subset 0f. Observe that G&®\) is non-empty.
We now state three propositions:

(22) LetSbe a non void non empty many sorted signatukebe a strict algebra oves, andB
be a subset dl. If B = the sorts ofJg, then GeliB) = Up.

(23) LetSbe a non void non empty many sorted signatlfgpe an algebra ove®, U; be a
strict subalgebra dflp, andB be a subset dfly. If B = the sorts ofJ;, then GeiiB) = U;.

(24) LetSbe a non void non empty many sorted signatukgbe a non-empty algebra ovey
andU; be a subalgebra &fg. Then GefiConstantdly)) NU; = GenConstantfJp)).

Let Sbe a non void non empty many sorted signaturdJgdbe a non-empty algebra ov8rand
let Uy, Uz be subalgebras ady. The functorU; LIU» yielding a strict subalgebra &fq is defined
by:

(Def. 19) For every subsétof Uy such thatA = (the sorts ofJ;) U (the sorts ofJ,) holdsU; LU, =
GenA).
Next we state several propositions:

(25) LetSbe a non void non empty many sorted signatlufg be a non-empty algebra over
S, U; be a subalgebra dfy, andA, B be subsets dflg. If B = Authe sorts ofU;, then
Gen(A) LUy = Gen(B).

(26) LetSbe a non void non empty many sorted signatlukgbe a non-empty algebra over
U; be a subalgebra &fp, andB be a subset dfl. If B = the sorts ofJy, then GeiB) LU; =
GenB).

(27) LetSbe a non void non empty many sorted signatlukgbe a non-empty algebra over
andU4, U, be subalgebras &fy. ThenU; LU, = U LIU;.

(28) LetSbe a non void non empty many sorted signatlkgbe a non-empty algebra over
andU, U, be strict subalgebras tf. ThenU1 N (U LIU,) = Us.

(29) LetSbe a non void non empty many sorted signatlukgbe a non-empty algebra ov8r
andU1, U be strict subalgebras tf. ThenU; NUo LU, = Us.
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6. LATTICE OF SUBALGEBRAS OFMANY SORTED ALGEBRA

Let Sbe a non void non empty many sorted signature andddie an algebra ove3. The functor
Subalgebrad)p) yielding a set is defined as follows:

(Def. 20) For every holdsx € Subalgebrad)p) iff xis a strict subalgebra &fp.

Let She a non void non empty many sorted signature andddie an algebra oves. Observe
that Subalgebrdbp) is non empty.

Let Sbe a non void non empty many sorted signature anddéte a non-empty algebra ov8r
The functor MSAIgJoi(Up) yields a binary operation on Subalgelitds) and is defined as follows:

(Def. 21) For all elementg, y of Subalgebrad)g) and for all strict subalgebradd;, U, of Up such
thatx = U; andy = U, holds(MSAIlgJoinUp)) (X, y) = U1 LIU>.

Let Sbe a non void non empty many sorted signature antdddie a non-empty algebra over
S. The functor MSAIgMe€&lJp) yields a binary operation on Subalgekitds) and is defined as
follows:

(Def. 22) For all elementg, y of Subalgebrad)y) and for all strict subalgebrdd;, U, of Uy such
thatx = U1 andy = U, holds(MSAIlgMeetUp)) (X, y) = U1 NU>.

In the sequelly denotes a non-empty algebra o%er
The following four propositions are true:

(30) MSAIgJoir(Up) is commutative.
(31) MSAIgJoir(Up) is associative.

(32) For every non void non empty many sorted signatiesd for every non-empty algebra
Uo overSholds MSAlgMeefUop) is commutative.

(33) For every non void non empty many sorted signatieed for every non-empty algebra
Uo overSholds MSAIgMeetUp) is associative.

Let Sbe a non void non empty many sorted signature andddte a non-empty algebra ov8r
The lattice of subalgebras b yields a strict lattice and is defined by:

(Def. 23) The lattice of subalgebras\df = (Subalgebrad)y), MSAlgJoin(Up), MSAlgMeetUp)).

The following proposition is true

(34) LetSbe a non void non empty many sorted signaturedgtle a non-empty algebra over
S. Then the lattice of subalgebrasldj is bounded.

Let Sbe a non void non empty many sorted signature andddte a non-empty algebra ov8r
Observe that the lattice of subalgebratJgfis bounded.
One can prove the following propositions:

(35) LetShbe a non void non empty many sorted signatureldgtle a non-empty algebra over
S Thenithe lattice of subalgebras &fg — Ger(Constant&Uo)).

(836) LetSbe a non void non empty many sorted signatlkgbe a non-empty algebra ovEr
andB be a subset dflg. If B = the sorts ofJg, thenTine latice of subalgebras &f, = GeNB).

(37) LetSbe a non void non empty many sorted signatureldgnbe a strict non-empty algebra
overS. ThenT e lattice of subalgebras tfy = Uo.

(38) LetSbhe a non void non empty many sorted signature @gthe an algebra ove8. Then
(the sorts ofJp, the characteristics &fo) is a subalgebra df,.

(39) LetSbe a non void non empty many sorted signatureldgtle a non-empty algebra over
S. Then(the sorts ofJp, the characteristics d&fp) is non-empty.
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(40) LetSbe a non void non empty many sorted signatuiebe an algebra oves, andA be a
subset ofJp. Then the sorts dily € SubSortéA).

(41) LetSbe a non void non empty many sorted signatuiebe an algebra oves, andA be a
subset ofJp. Then SubSor{#\) C SubSortéJo).
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