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and terminology for this paper.

In this paperX, x, z denote sets.
Let Sbe a non empty non void many sorted signature and letA be a non empty algebra overS.

Observe that
⋃

(the sorts ofA) is non empty.
Let Sbe a non empty non void many sorted signature and letA be a non empty algebra overS.

An element ofA is an element of
⋃

(the sorts ofA).
One can prove the following two propositions:

(1) For every functionf such thatX ⊆ dom f and f is one-to-one holdsf−1( f ◦X) = X.

(2) Let I be a set,A be a many sorted set indexed byI , andF be a many sorted function indexed
by I . If F is “1-1” andA⊆ domκ F(κ), thenF−1(F ◦ A) = A.

Let S be a non void signature and letX be a many sorted set indexed by the carrier ofS. The
functor FreeS(X) yielding a strict algebra overS is defined by:

(Def. 2)1 There exists a subsetA of Free(X ∪ ((the carrier ofS) 7−→ {0})) such that FreeS(X) =
Gen(A) andA = (Reverse(X∪ ((the carrier ofS) 7−→ {0})))−1(X).

The following propositions are true:

(3) Let S be a non void signature,X be a non-empty many sorted set indexed by the carrier
of S, ands be a sort symbol ofS. Then〈〈x, s〉〉 ∈ the carrier of DTConMSA(X) if and only if
x∈ X(s).

(4) Let S be a non void signature,Y be a non-empty many sorted set indexed by the carrier
of S, X be a many sorted set indexed by the carrier ofS, ands be a sort symbol ofS. Then
x∈ X(s) andx∈Y(s) if and only if the root tree of〈〈x, s〉〉 ∈ ((Reverse(Y))−1(X))(s).

(5) Let Sbe a non void signature,X be a many sorted set indexed by the carrier ofS, ands be
a sort symbol ofS. If x∈ X(s), then the root tree of〈〈x, s〉〉 ∈ (the sorts of FreeS(X))(s).

(6) Let S be a non void signature,X be a many sorted set indexed by the carrier ofS, ando
be an operation symbol ofS. Suppose Arity(o) = /0. Then the root tree of〈〈o, the carrier of
S〉〉 ∈ (the sorts of FreeS(X))(the result sort ofo).

1 The definition (Def. 1) has been removed.
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Let Sbe a non void signature and letX be a non empty yielding many sorted set indexed by the
carrier ofS. Observe that FreeS(X) is non empty.

Next we state three propositions:

(7) LetSbe a non void signature andX be a non-empty many sorted set indexed by the carrier
of S. Thenx is an element of Free(X) if and only if x is a term ofSoverX.

(8) Let Sbe a non void signature,X be a non-empty many sorted set indexed by the carrier of
S, s be a sort symbol ofS, andx be a term ofSoverX. Thenx∈ (the sorts of Free(X))(s) if
and only if the sort ofx = s.

(9) Let S be a non void signature andX be a non empty yielding many sorted set indexed
by the carrier ofS. Then every element of FreeS(X) is a term ofS overX∪ ((the carrier of
S) 7−→ {0}).

Let Sbe a non empty non void many sorted signature and letX be a non empty yielding many
sorted set indexed by the carrier ofS. One can verify that every element of FreeS(X) is relation-like
and function-like.

Let Sbe a non empty non void many sorted signature and letX be a non empty yielding many
sorted set indexed by the carrier ofS. One can check that every element of FreeS(X) is finite and
decorated tree-like.

Let Sbe a non empty non void many sorted signature and letX be a non empty yielding many
sorted set indexed by the carrier ofS. One can verify that every element of FreeS(X) is finite-
branching.

Let us note that every decorated tree is non empty.
Let S be a many sorted signature and lett be a non empty binary relation. The functor VarSt

yielding a many sorted set indexed by the carrier ofS is defined as follows:

(Def. 3) For every setssuch thats∈ the carrier ofSholds(VarSt)(s) = {a1;a ranges over elements
of rngt : a2 = s}.

Let Sbe a many sorted signature, letX be a many sorted set indexed by the carrier ofS, and let
t be a non empty binary relation. The functor VarX t yields a many sorted subset indexed byX and
is defined as follows:

(Def. 4) VarX t = X∩VarSt.

We now state several propositions:

(10) LetSbe a many sorted signature,X be a many sorted set indexed by the carrier ofS, t be a
non empty binary relation, andV be a many sorted subset indexed byX. ThenV = VarX t if
and only if for every setssuch thats∈ the carrier ofSholdsV(s) = X(s)∩{a1;a ranges over
elements of rngt : a2 = s}.

(11) LetSbe a many sorted signature ands, x be sets. Then

(i) if s∈ the carrier ofS, then(VarS(the root tree of〈〈x, s〉〉))(s) = {x}, and

(ii) for every sets′ such thats′ 6= s or s /∈ the carrier ofS holds (VarS(the root tree of〈〈x,
s〉〉))(s′) = /0.

(12) Let S be a many sorted signature ands be a set. Supposes∈ the carrier ofS. Let p be
a decorated tree yielding finite sequence. Thenx∈ (VarS(〈〈z, the carrier ofS〉〉-tree(p)))(s) if
and only if there exists a decorated treet such thatt ∈ rngp andx∈ (VarSt)(s).

(13) LetSbe a many sorted signature,X be a many sorted set indexed by the carrier ofS, ands,
x be sets. Then

(i) if x∈ X(s), then(VarX (the root tree of〈〈x, s〉〉))(s) = {x}, and

(ii) for every sets′ such thats′ 6= s or x /∈ X(s) holds(VarX (the root tree of〈〈x, s〉〉))(s′) = /0.
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(14) LetSbe a many sorted signature,X be a many sorted set indexed by the carrier ofS, ands
be a set. Supposes∈ the carrier ofS. Let p be a decorated tree yielding finite sequence. Then
x∈ (VarX(〈〈z, the carrier ofS〉〉-tree(p)))(s) if and only if there exists a decorated treet such
thatt ∈ rngp andx∈ (VarX t)(s).

(15) LetSbe a non void signature,X be a non-empty many sorted set indexed by the carrier of
S, andt be a term ofSoverX. Then VarSt ⊆ X.

Let Sbe a non void signature, letX be a non-empty many sorted set indexed by the carrier ofS,
and lett be a term ofSoverX. The functor Vart yields a many sorted subset indexed byX and is
defined by:

(Def. 5) Vart = VarSt.

We now state the proposition

(16) LetSbe a non void signature,X be a non-empty many sorted set indexed by the carrier of
S, andt be a term ofSoverX. Then Vart = VarX t.

Let S be a non void signature, letY be a non-empty many sorted set indexed by the carrier of
S, and letX be a many sorted set indexed by the carrier ofS. The functorS-TermsY(X) yielding a
subset of Free(Y) is defined by:

(Def. 6) For every sort symbolsof Sholds(S-TermsY(X))(s) = {t; t ranges over terms ofSoverY:
the sort oft = s ∧ Vart ⊆ X}.

One can prove the following propositions:

(17) Let S be a non void signature,Y be a non-empty many sorted set indexed by the carrier
of S, X be a many sorted set indexed by the carrier ofS, ands be a sort symbol ofS. If
x∈ (S-TermsY(X))(s), thenx is a term ofSoverY.

(18) LetSbe a non void signature,Y be a non-empty many sorted set indexed by the carrier of
S, X be a many sorted set indexed by the carrier ofS, t be a term ofSoverY, ands be a sort
symbol ofS. If t ∈ (S-TermsY(X))(s), then the sort oft = s and Vart ⊆ X.

(19) LetSbe a non void signature,Y be a non-empty many sorted set indexed by the carrier of
S, X be a many sorted set indexed by the carrier ofS, ands be a sort symbol ofS. Then the
root tree of〈〈x, s〉〉 ∈ (S-TermsY(X))(s) if and only if x∈ X(s) andx∈Y(s).

(20) LetSbe a non void signature,Y be a non-empty many sorted set indexed by the carrier of
S, X be a many sorted set indexed by the carrier ofS, o be an operation symbol ofS, andp
be an argument sequence of Sym(o,Y). Then Sym(o,Y)-tree(p) ∈ (S-TermsY(X))(the result
sort ofo) if and only if rngp⊆

⋃
(S-TermsY(X)).

(21) LetSbe a non void signature,X be a non-empty many sorted set indexed by the carrier of
S, andA be a subset of Free(X). ThenA is operations closed if and only if for every operation
symbolo of Sand for every argument sequencep of Sym(o,X) such that rngp⊆

⋃
A holds

Sym(o,X)-tree(p) ∈ A(the result sort ofo).

(22) LetSbe a non void signature,Y be a non-empty many sorted set indexed by the carrier of
S, andX be a many sorted set indexed by the carrier ofS. ThenS-TermsY(X) is operations
closed.

(23) Let S be a non void signature,Y be a non-empty many sorted set indexed by the carrier
of S, andX be a many sorted set indexed by the carrier ofS. Then(Reverse(Y))−1(X) ⊆
S-TermsY(X).

(24) Let S be a non void signature,X be a many sorted set indexed by the carrier ofS, t
be a term ofS over X ∪ ((the carrier ofS) 7−→ {0}), and s be a sort symbol ofS. If
t ∈ (S-TermsX∪((the carrier ofS)7−→{0})(X))(s), thent ∈ (the sorts of FreeS(X))(s).
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(25) LetSbe a non void signature andX be a many sorted set indexed by the carrier ofS. Then
the sorts of FreeS(X) = S-TermsX∪((the carrier ofS)7−→{0})(X).

(26) LetSbe a non void signature andX be a many sorted set indexed by the carrier ofS. Then
Free(X∪ ((the carrier ofS) 7−→ {0}))�(S-TermsX∪((the carrier ofS)7−→{0})(X)) = FreeS(X).

(27) LetSbe a non void signature,X, Y be non-empty many sorted sets indexed by the carrier
of S, A be a subalgebra of Free(X), andB be a subalgebra of Free(Y). Suppose the sorts of
A = the sorts ofB. Then the algebra ofA = the algebra ofB.

(28) Let S be a non void signature,X be a non empty yielding many sorted set indexed by
the carrier ofS, Y be a many sorted set indexed by the carrier ofS, andt be an element of
FreeS(X). Then VarSt ⊆ X.

(29) LetSbe a non void signature,X be a non-empty many sorted set indexed by the carrier of
S, andt be a term ofSoverX. Then Vart ⊆ X.

(30) LetSbe a non void signature,X, Y be non-empty many sorted sets indexed by the carrier
of S, t1 be a term ofSoverX, andt2 be a term ofSoverY. If t1 = t2, then the sort oft1 = the
sort oft2.

(31) LetSbe a non void signature,X, Y be non-empty many sorted sets indexed by the carrier
of S, andt be a term ofSoverY. If Vart ⊆ X, thent is a term ofSoverX.

(32) LetSbe a non void signature andX be a non-empty many sorted set indexed by the carrier
of S. Then FreeS(X) = Free(X).

(33) LetSbe a non void signature,Y be a non-empty many sorted set indexed by the carrier of
S, t be a term ofSoverY, andp be an element of domt. Then Vart�p ⊆ Vart .

(34) LetSbe a non void signature,X be a non empty yielding many sorted set indexed by the
carrier ofS, t be an element of FreeS(X), andp be an element of domt. Thent�p is an element
of FreeS(X).

(35) LetSbe a non void signature,X be a non-empty many sorted set indexed by the carrier of
S, t be a term ofSoverX, anda be an element of rngt. Thena = 〈〈a1, a2〉〉.

(36) LetSbe a non void signature,X be a non empty yielding many sorted set indexed by the
carrier ofS, t be an element of FreeS(X), ands be a sort symbol ofS. Then

(i) if x∈ (VarSt)(s), then〈〈x, s〉〉 ∈ rngt, and

(ii) if 〈〈x, s〉〉 ∈ rngt, thenx∈ (VarSt)(s) andx∈ X(s).

(37) Let S be a non void signature andX be a many sorted set indexed by the carrier ofS.
Suppose that for every sort symbolsof Ssuch thatX(s) = /0 there exists an operation symbol
o of Ssuch that the result sort ofo = s and Arity(o) = /0. Then FreeS(X) is non-empty.

(38) Let S be a non void non empty many sorted signature,A be an algebra overS, B be a
subalgebra ofA, ando be an operation symbol ofS. Then Args(o,B)⊆ Args(o,A).

(39) For every non void signatureSand for every feasible algebraA overSholds every subal-
gebra ofA is feasible.

Let Sbe a non void signature and letA be a feasible algebra overS. Note that every subalgebra
of A is feasible.

We now state the proposition

(40) LetSbe a non void signature andX be a many sorted set indexed by the carrier ofS. Then
FreeS(X) is feasible and free.

Let S be a non void signature and letX be a many sorted set indexed by the carrier ofS. One
can check that FreeS(X) is feasible and free.
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