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In this papetX, x, zdenote sets.

Let Sbe a non empty non void many sorted signature and e a non empty algebra ovBr
Observe thalt] (the sorts ofA) is non empty.

Let Sbe a non empty non void many sorted signature and e a non empty algebra ovBr
An element ofA is an element of ) (the sorts ofd).

One can prove the following two propositions:

(1) For every functiorf such thaiX C domf andf is one-to-one hold$—1(f°X) = X.

(2) Letl be a setAbe a many sorted set indexedlhyandF be a many sorted function indexed
byl. If F is “1-1" andA C donk F(k), thenF ~1(F°A) = A.

Let Sbe a non void signature and Etbe a many sorted set indexed by the carrieBofrhe
functor Freg(X) yielding a strict algebra ove3is defined by:

(Def. ZE] There exists a subsét of FregX U ((the carrier ofS) — {0})) such that FregX) =
Gen(A) andA = (ReverséX U ((the carrier ofS) — {0})))~1(X).

The following propositions are true:

(3) LetShbe a non void signatures be a non-empty many sorted set indexed by the carrier
of S, ands be a sort symbol 0§ Then(x, s) € the carrier of DTConMSAX) if and only if
xe X(s).

(4) LetShbe a non void signaturé, be a non-empty many sorted set indexed by the carrier
of S X be a many sorted set indexed by the carriegadinds be a sort symbol 08 Then
x € X(s) andx € Y(s) if and only if the root tree ofx, s) € ((ReverséY))=1(X))(s).

(5) LetSbe a non void signature be a many sorted set indexed by the carriegainds be
a sort symbol of. If x € X(s), then the root tree ofx, s) € (the sorts of FregX))(s).

(6) LetShe a non void signature be a many sorted set indexed by the carrieGodndo
be an operation symbol & Suppose Arityo) = 0. Then the root tree ofo, the carrier of
S) € (the sorts of FregX))(the result sort 0b).

1 The definition (Def. 1) has been removed.
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Let Sbe a non void signature and létbe a non empty yielding many sorted set indexed by the
carrier ofS. Observe that Fre€X) is non empty.
Next we state three propositions:

(7) LetSbe a non void signature antlbe a non-empty many sorted set indexed by the carrier
of S. Thenxis an element of FréX) if and only if x is a term ofSoverX.

(8) LetSbe a non void signature be a non-empty many sorted set indexed by the carrier of
S, sbe a sort symbol 08, andx be a term ofSover X. Thenx € (the sorts of FregX))(s) if
and only if the sort ok = s.

(9) LetSbe a non void signature arnXl be a non empty yielding many sorted set indexed
by the carrier ofS. Then every element of FrgfX) is a term ofS over X U ((the carrier of
S) — {0}).

Let She a non empty non void many sorted signature an¥ le¢ a non empty yielding many
sorted set indexed by the carrier®fOne can verify that every element of F&€¥) is relation-like
and function-like.

Let Sbe a non empty non void many sorted signature an¥ leé a non empty yielding many
sorted set indexed by the carrier & One can check that every element of 5@ is finite and
decorated tree-like.

Let Sbe a non empty non void many sorted signature an leé a non empty yielding many
sorted set indexed by the carrier & One can verify that every element of Fg€¥) is finite-
branching.

Let us note that every decorated tree is non empty.

Let Sbe a many sorted signature andtldte a non empty binary relation. The functor ¥ar
yielding a many sorted set indexed by the carrie&f defined as follows:

(Def. 3) For every sedsuch thas € the carrier ofSholds(Varst)(s) = {a;;aranges over elements
of rngt : ap = s}.

Let Sbe a many sorted signature, }¥te a many sorted set indexed by the carrieg,aind let
t be a non empty binary relation. The functor ¥ayields a many sorted subset indexed>»wand
is defined as follows:

(Def. 4) Vaxt = XnVarst.
We now state several propositions:

(10) LetSbe a many sorted signatuve be a many sorted set indexed by the carrie afbe a
non empty binary relation, and be a many sorted subset indexedhyThenV = Varxt if
and only if for every se$ such thas € the carrier ofSholdsV(s) = X(s) N {a;;aranges over
elements of rng: a, = s}.

(11) LetSbe a many sorted signature asc be sets. Then

(i) if sethe carrier ofS, then(Vars(the root tree ofx, s)))(s) = {x}, and
(i) for every sets such thats’ # s or s ¢ the carrier ofS holds (Vars(the root tree of(x,

s))(s) =0.

(12) LetSbe a many sorted signature astbe a set. Supposee the carrier ofS. Let p be
a decorated tree yielding finite sequence. Then(Vars({z, the carrier ofS)-treg(p)))(s) if
and only if there exists a decorated ttemich that € rngp andx € (Varst)(s).

(13) LetSbe a many sorted signatubé be a many sorted set indexed by the carrieg afnds,
x be sets. Then
() if xe X(s), then(Varx (the root tree ofx, s)))(s) = {x}, and
(i) for every sets such that £ sorx ¢ X(s) holds(Varx (the root tree ofx, s)))(s) = 0.
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(14) LetSbe a many sorted signatupé be a many sorted set indexed by the carrie®,ainds
be a set. Suppose= the carrier ofS Let p be a decorated tree yielding finite sequence. Then
x € (Varx ({z, the carrier ofS)-tregp)))(s) if and only if there exists a decorated trieguch
thatt € rngp andx € (Varxt)(s).

(15) LetSbe a non void signatur& be a non-empty many sorted set indexed by the carrier of
S, andt be aterm ofSoverX. Then Vagt C X.

Let Sbe a non void signature, [t be a non-empty many sorted set indexed by the carrigy of
and lett be a term ofS over X. The functor Vayyields a many sorted subset indexedXgand is
defined by:

(Def. 5) Vag = Varst.
We now state the proposition

(16) LetSbe a non void signature& be a non-empty many sorted set indexed by the carrier of
S andt be a term ofSoverX. Then Vay = Varxt.

Let Sbe a non void signature, |&t be a non-empty many sorted set indexed by the carrier of
S and letX be a many sorted set indexed by the carrieg.oThe functorS-Terms (X) yielding a
subset of Fre@) is defined by:

(Def. 6) For every sort symbalof Sholds(S-Terms (X))(s) = {t;t ranges over terms &overY:
the sort ot =s A Var C X}.

One can prove the following propositions:

(17) LetSbe a non void signaturey, be a non-empty many sorted set indexed by the carrier
of S, X be a many sorted set indexed by the carrieGoénds be a sort symbol o&. If
x € (S-Terms (X))(s), thenx is a term ofSoveryY.

(18) LetSbe a non void signatur®, be a non-empty many sorted set indexed by the carrier of
S X be a many sorted set indexed by the carriegdfbe a term ofSoverY, andsbe a sort
symbol ofS. If t € (S-Terms (X))(s), then the sort of = sand Vag C X.

(19) LetSbe a non void signatur®, be a non-empty many sorted set indexed by the carrier of
S, X be a many sorted set indexed by the carrieg,ainds be a sort symbol 06 Then the
root tree of(x, s) € (S-Terms (X))(s) if and only if x € X(s) andx € Y(s).

(20) LetSbe a non void signatur®, be a non-empty many sorted set indexed by the carrier of
S, X be a many sorted set indexed by the carriegad be an operation symbol & andp
be an argument sequence of SyY). Then Synfo,Y)-tregp) € (S-Terms (X))(the result
sort ofo) if and only if rngp C |J(S-Terms (X)).

(21) LetSbe a non void signature& be a non-empty many sorted set indexed by the carrier of
S, andA be a subset of FréX). ThenA is operations closed if and only if for every operation
symbolo of Sand for every argument sequengef Sym(o, X) such that rngp C [ JA holds
Sym(o, X)-treg(p) € A(the result sort 0b).

(22) LetSbe a non void signatur®, be a non-empty many sorted set indexed by the carrier of
S andX be a many sorted set indexed by the carrieBoThenS-Terms'(X) is operations
closed.

(23) LetSbe a non void signature;, be a non-empty many sorted set indexed by the carrier
of S, andX be a many sorted set indexed by the carrieGofThen (ReversgY))~1(X) C
S-Terms (X).

(24) LetSbe a non void signatureX be a many sorted set indexed by the carrierSpft
be a term ofS over X U ((the carrier ofS) — {0}), and s be a sort symbol o If
t € (S-TermgU((the carrier ofS)—{0}) (x()) (s), thent e (the sorts of FregX))(s).
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(25) LetSbe a non void signature antibe a many sorted set indexed by the carrieg.cfhen
the sorts of FregX) = S-TermgV((the carrier ofS)—{0}) ()

(26) LetSbe a non void signature antibe a many sorted set indexed by the carrieg.cfhen
FregX U ((the carrier ofS) — {0})) [ (S-TermgV((the carrier ofS)—{0}) (x(}) — Fregy(X).

(27) LetSbe a non void signature, Y be non-empty many sorted sets indexed by the carrier
of S, A be a subalgebra of Fre¢), andB be a subalgebra of Fréé). Suppose the sorts of
A = the sorts oB. Then the algebra ok = the algebra oB.

(28) LetSbe a non void signatureX be a non empty yielding many sorted set indexed by
the carrier ofS, Y be a many sorted set indexed by the carrieSoandt be an element of
Freey(X). Then Vagt C X.

(29) LetSbe a non void signaturé& be a non-empty many sorted set indexed by the carrier of
S, andt be a term ofSoverX. Then Vay C X.

(30) LetSbe a non void signatureX, Y be non-empty many sorted sets indexed by the carrier
of S t1 be aterm oSoverX, andt, be aterm ofSoverY. If t; =t,, then the sort of; = the
sort ofts.

(31) LetSbe a non void signaturé&, Y be non-empty many sorted sets indexed by the carrier
of S andt be aterm ofSoverY. If Var; C X, thent is a term ofSoverX.

(32) LetSbe a non void signature antbe a non-empty many sorted set indexed by the carrier
of S. Then Freg(X) = FregX).

(33) LetSbe a non void signatur®, be a non-empty many sorted set indexed by the carrier of
S t be aterm ofSoverY, andp be an element of domThen Vay;, C Var.

(34) LetSbe a non void signatur& be a non empty yielding many sorted set indexed by the
carrier ofS t be an element of FrgéX), andp be an element of domThent | pis an element
of Freey(X).

(35) LetSbe a non void signaturé& be a non-empty many sorted set indexed by the carrier of
S t be aterm ofSoverX, anda be an element of rrig Thena = (&, a2).

(36) LetSbe a non void signature be a non empty yielding many sorted set indexed by the
carrier ofS, t be an element of FrgéX), ands be a sort symbol o6. Then
() if xe (Varst)(s), then(x, s) € rngt, and
(i) if (x,s) € rngt, thenx € (Varst)(s) andx € X(s).
(87) LetSbe a non void signature andl be a many sorted set indexed by the carrieSof

Suppose that for every sort symtzadf Ssuch thaiX(s) = 0 there exists an operation symbol
o of Ssuch that the result sort of= sand Arity(o) = 0. Then Freg(X) is non-empty.

(38) LetSbe a non void non empty many sorted signatukege an algebra oved, B be a
subalgebra oA, ando be an operation symbol & Then Arggo, B) C Args(o,A).

(39) For every non void signatu®and for every feasible algebfaover S holds every subal-
gebra ofA is feasible.

Let Sbe a non void signature and latbe a feasible algebra ov&r Note that every subalgebra
of Ais feasible.
We now state the proposition

(40) LetShe a non void signature antibe a many sorted set indexed by the carries.cfhen
Free;(X) is feasible and free.

Let Sbe a non void signature and [¥tbe a many sorted set indexed by the carrieBoOne
can check that FreéeX) is feasible and free.
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