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Summary. The monoid of functions yielding elements of a group is introduced. The
monoid of multisets over a set is constructed as such monoid where the target group is the
group of natural numbers with addition. Moreover, the generalization of group operation onto
the operation on subsets is present. That generalization is used to introduce the group 2G of
subsets of a groupG.
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The articles [17], [10], [21], [20], [2], [22], [8], [5], [4], [9], [7], [14], [16], [12], [19], [6], [11], [1],
[18], [3], [13], and [15] provide the notation and terminology for this paper.

1. UPDATING

We use the following convention:x, y, X, Y, Z denote sets andn denotes a natural number.
Let D1, D2, D be non empty sets. A binary function fromD1, D2 into D is a function from[:D1,

D2 :] into D.
Let f be a function and letx1, x2, y be sets. The functorf (x1,x2)(y) is defined by:

(Def. 1) f (x1,x2)(y) = f (〈〈x1, x2〉〉)(y).

The following proposition is true

(1) For all functionsf , g and for all setsx1, x2, x such that〈〈x1, x2〉〉 ∈ dom f andg = f (x1, x2)
andx∈ domg holds f (x1,x2)(x) = g(x).

Let A, D1, D2, D be non empty sets, letf be a binary function fromD1, D2 into DA, let x1 be
an element ofD1, let x2 be an element ofD2, and letx be an element ofA. Then f (x1,x2)(x) is an
element ofD.

Let A be a set, letD1, D2, D be non empty sets, letf be a binary function fromD1, D2 into D,
let g1 be a function fromA into D1, and letg2 be a function fromA into D2. Then f ◦(g1, g2) is an
element ofDA.

Let A be a non empty set, letn be a natural number, and letx be an element ofA. Thenn 7→ x is
a finite sequence of elements ofA. We introducen7−→. x as a synonym ofn 7→ x.

Let D be a non empty set, letA be a set, and letd be an element ofD. ThenA 7−→ d is an
element ofDA.

Let A be a set, letD1, D2, D be non empty sets, letf be a binary function fromD1, D2 into D,
let d be an element ofD1, and letg be a function fromA into D2. Then f ◦(d,g) is an element of
DA.

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol4/monoid_1.html


MONOID OF MULTISETS AND SUBSETS 2

Let A be a set, letD1, D2, D be non empty sets, letf be a binary function fromD1, D2 into D,
let g be a function fromA into D1, and letd be an element ofD2. Then f ◦(g,d) is an element of
DA.

One can prove the following proposition

(2) For all functionsf , g and for every setX holds( f �X) ·g = f · (X�g).

The schemeNonUniqFuncDExdeals with a setA , a non empty setB, and a binary predicateP ,
and states that:

There exists a functionf from A into B such that for everyx such thatx∈ A holds
P [x, f (x)]

provided the parameters satisfy the following condition:
• For everyx such thatx∈ A there exists an elementy of B such thatP [x,y].

2. MONOID OF FUNCTIONS INTO A SEMIGROUP

Let D1, D2, D be non empty sets, letf be a binary function fromD1, D2 into D, and letA be a set.
The functorf ◦A yielding a binary function fromD1

A, D2
A into DA is defined as follows:

(Def. 2) For every elementf1 of D1
A and for every elementf2 of D2

A holds( f ◦A)( f1, f2) = f ◦( f1,
f2).

Next we state the proposition

(3) Let D1, D2, D be non empty sets,f be a binary function fromD1, D2 into D, A be a set,
f1 be a function fromA into D1, f2 be a function fromA into D2, and givenx. If x∈ A, then
( f ◦A)( f1, f2)(x) = f ( f1(x), f2(x)).

For simplicity, we adopt the following convention:A is a set,D is a non empty set,a is an
element ofD, o, o′ are binary operations onD, and f , g, h are functions fromA into D.

The following propositions are true:

(4) If o is commutative, theno◦( f , g) = o◦(g, f ).

(5) If o is associative, theno◦(o◦( f , g), h) = o◦( f , o◦(g, h)).

(6) If a is a unity w.r.t.o, theno◦(a, f ) = f ando◦( f ,a) = f .

(7) If o is idempotent, theno◦( f , f ) = f .

(8) If o is commutative, theno◦A is commutative.

(9) If o is associative, theno◦A is associative.

(10) If a is a unity w.r.t.o, thenA 7−→ a is a unity w.r.t.o◦A.

(11) If o has a unity, then1o◦A
= A 7−→ 1o ando◦A has a unity.

(12) If o is idempotent, theno◦A is idempotent.

(13) If o is invertible, theno◦A is invertible.

(14) If o is cancelable, theno◦A is cancelable.

(15) If o has uniquely decomposable unity, theno◦A has uniquely decomposable unity.

(16) If o absorbso′, theno◦A absorbso′◦A .

(17) LetD1, D2, D, E1, E2, E be non empty sets,o1 be a binary function fromD1, D2 into D,
ando2 be a binary function fromE1, E2 into E. If o1 ≤ o2, theno1

◦
A ≤ o2

◦
A.

Let G be a non empty groupoid and letA be a set. The functorGA yields a groupoid and is
defined by:
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(Def. 3) GA =
{

〈(the carrier ofG)A, (the multiplication ofG)◦A,A 7−→ 1the multiplication ofG〉, if Gis unital,
〈(the carrier ofG)A, (the multiplication ofG)◦A〉, otherwise.

Let G be a non empty groupoid and letA be a set. One can check thatGA is non empty.
In the sequelG is a non empty groupoid.
We now state two propositions:

(18)(i) The carrier ofGX = (the carrier ofG)X, and

(ii) the multiplication ofGX = (the multiplication ofG)◦X.

(19) x is an element ofGX iff x is a function fromX into the carrier ofG.

Let G be a non empty groupoid and letA be a set. Observe thatGA is constituted functions.
We now state two propositions:

(20) For every elementf of GX holds domf = X and rngf ⊆ the carrier ofG.

(21) For all elementsf , g of GX such that for everyx such thatx∈ X holds f (x) = g(x) holds
f = g.

Let G be a non empty groupoid, letA be a non empty set, and letf be an element ofGA. Observe
that rngf is non empty. Leta be an element ofA. Then f (a) is an element ofG.

We now state the proposition

(22) For all elementsf1, f2 of GD and for every elementa of D holds( f1 · f2)(a) = f1(a) · f2(a).

Let G be a unital non empty groupoid and letA be a set. ThenGA is a well unital constituted
functions strict non empty multiplicative loop structure.

We now state four propositions:

(23) For every unital non empty groupoidG holds the unity ofGX = X 7−→ 1the multiplication ofG .

(24) LetG be a non empty groupoid andA be a set. Then

(i) if G is commutative, thenGA is commutative,

(ii) if G is associative, thenGA is associative,

(iii) if G is idempotent, thenGA is idempotent,

(iv) if G is invertible, thenGA is invertible,

(v) if G is cancelable, thenGA is cancelable, and

(vi) if G has uniquely decomposable unity, thenGA has uniquely decomposable unity.

(25) For every non empty subsystemH of G holdsHX is a subsystem ofGX.

(26) Let G be a unital non empty groupoid andH be a non empty subsystem ofG. Suppose
1the multiplication ofG ∈ the carrier ofH. ThenHX is a monoidal subsystem ofGX.

Let G be a unital associative commutative cancelable non empty groupoid with uniquely decom-
posable unity and letA be a set. ThenGA is a commutative cancelable constituted functions strict
monoid with uniquely decomposable unity.

3. MONOID OF MULTISETS OVER A SET

Let A be a set. The functorA⊗ω yields a commutative cancelable constituted functions strict monoid
with uniquely decomposable unity and is defined as follows:

(Def. 4) A⊗ω = 〈N,+,0〉A.

We now state the proposition
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(27) The carrier ofX⊗
ω = NX and the multiplication ofX⊗

ω = (+N)◦X and the unity ofX⊗
ω =

X 7−→ 0.

Let A be a set. A multiset overA is an element ofA⊗ω .
Next we state two propositions:

(28) x is a multiset overX iff x is a function fromX into N.

(29) For every multisetmoverX holds domm= X and rngm⊆ N.

Let A be a non empty set and letmbe a multiset overA. Then rngm is a non empty subset ofN.
Let a be an element ofA. Thenm(a) is a natural number.

The following two propositions are true:

(30) For all multisetsm1, m2 overD and for every elementa of D holds(m1⊗m2)(a) = m1(a)+
m2(a).

(31) χY,X is a multiset overX.

Let us considerY, X. ThenχY,X is a multiset overX.
Let us considerX and letn be a natural number. ThenX 7−→ n is a multiset overX.
Let A be a non empty set and leta be an element ofA. The functorχa yielding a multiset over

A is defined by:

(Def. 5) χa = χ{a},A.

The following proposition is true

(32) For every non empty setA and for all elementsa, b of A holds(χa)(a) = 1 and ifb 6= a,
then(χa)(b) = 0.

For simplicity, we use the following convention:A denotes a non empty set,a denotes an ele-
ment ofA, p denotes a finite sequence of elements ofA, andm1, m2 denote multisets overA.

We now state the proposition

(33) If for everya holdsm1(a) = m2(a), thenm1 = m2.

Let A be a set. The functorA⊗ yielding a strict non empty monoidal subsystem ofA⊗ω is defined
by:

(Def. 6) For every multisetf overA holds f ∈ the carrier ofA⊗ iff f−1(N\{0}) is finite.

Next we state three propositions:

(34) χa is an element ofA⊗.

(35) dom({x}�(pa 〈x〉)) = dom({x}�p)∪{lenp+1}.

(36) If x 6= y, then dom({x}�(pa 〈y〉)) = dom({x}�p).

Let A be a set and letF be a finite binary relation. Note thatA�F is finite.
Let A be a non empty set and letp be a finite sequence of elements ofA. The functor|p| yields

a multiset overA and is defined by:

(Def. 7) For every elementa of A holds|p|(a) = carddom({a}�p).

The following three propositions are true:

(37) |εA|(a) = 0.

(38) |εA|= A 7−→ 0.

(39) |〈a〉|= χa.
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In the sequelp, q denote finite sequences of elements ofA.
One can prove the following propositions:

(40) |pa 〈a〉|= |p|⊗χa.

(41) |pa q|= |p|⊗ |q|.

(42) |n7−→. a|(a) = n and for every elementb of A such thatb 6= a holds|n7−→. a|(b) = 0.

(43) |p| is an element ofA⊗.

(44) If x is an element ofA⊗, then there existsp such thatx = |p|.

4. MONOID OF SUBSETS OF A SEMIGROUP

In the sequela denotes an element ofD.
Let D1, D2, D be non empty sets and letf be a binary function fromD1, D2 into D. The functor

◦ f yields a binary function from 2D1, 2D2 into 2D and is defined as follows:

(Def. 8) For every elementx of [:2D1, 2D2 :] holds(◦ f )(x) = f ◦[:x1, x2 :].

One can prove the following propositions:

(45) LetD1, D2, D be non empty sets,f be a binary function fromD1, D2 into D, X1 be a subset
of D1, andX2 be a subset ofD2. Then(◦ f )(X1, X2) = f ◦[:X1, X2 :].

(46) Let D1, D2, D be non empty sets,f be a binary function fromD1, D2 into D, X1 be a
subset ofD1, X2 be a subset ofD2, andx1, x2 be sets. Ifx1 ∈ X1 andx2 ∈ X2, then f (x1,
x2) ∈ (◦ f )(X1, X2).

(47) LetD1, D2, D be non empty sets,f be a binary function fromD1, D2 into D, X1 be a subset
of D1, andX2 be a subset ofD2. Then(◦ f )(X1, X2) = { f (a, b);a ranges over elements ofD1,
b ranges over elements ofD2: a∈ X1 ∧ b∈ X2}.

(48) If o is commutative, theno◦[:X, Y :] = o◦[:Y, X :].

(49) If o is associative, theno◦[:o◦[:X, Y :], Z :] = o◦[:X, o◦[:Y, Z :] :].

(50) If o is commutative, then◦o is commutative.

(51) If o is associative, then◦o is associative.

(52) If a is a unity w.r.t.o, theno◦[:{a}, X :] = D∩X ando◦[:X, {a} :] = D∩X.

(53) If a is a unity w.r.t.o, then{a} is a unity w.r.t.◦o and◦o has a unity and1◦o = {a}.

(54) If o has a unity, then◦o has a unity and{1o} is a unity w.r.t.◦o and1◦o = {1o}.

(55) If o has uniquely decomposable unity, then◦o has uniquely decomposable unity.

Let G be a non empty groupoid. The functor 2G yields a groupoid and is defined by:

(Def. 9) 2G =
{

〈2the carrier ofG,◦(the multiplication ofG),{1the multiplication ofG}〉, if Gis unital,
〈2the carrier ofG,◦(the multiplication ofG)〉, otherwise.

Let G be a non empty groupoid. One can check that 2G is non empty.
Let G be a unital non empty groupoid. Then 2G is a well unital strict non empty multiplicative

loop structure.
We now state three propositions:

(56) The carrier of 2G = 2the carrier ofG and the multiplication of 2G = ◦(the multiplication ofG).

(57) For every unital non empty groupoidG holds the unity of 2G = {1the multiplication ofG}.
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(58) LetG be a non empty groupoid. Then

(i) if G is commutative, then 2G is commutative,

(ii) if G is associative, then 2G is associative, and

(iii) if G has uniquely decomposable unity, then 2G has uniquely decomposable unity.
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[6] Czesław Bylínski. Basic functions and operations on functions.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/
JFM/Vol1/funct_3.html.
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