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Summary. The monoid of functions yielding elements of a group is introduced. The
monoid of multisets over a set is constructed as such monoid where the target group is the
group of natural numbers with addition. Moreover, the generalization of group operation onto
the operation on subsets is present. That generalization is used to introduce theQafup 2
subsets of a grou@.
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The articles[[17],[[10],[[21],120]/12],122] [18],[[5] [141,[1°],[[7],[[14],[[16],.[12] [ [19], I6], 111] [ T1],
[18], [3], [13], and [15] provide the notation and terminology for this paper.

1. UPDATING

We use the following conventiorx y, X, Y, Z denote sets analdenotes a natural number.

Let D1, D2, D be non empty sets. A binary function frdn, D, into D is a function from[: Dy,
D2 ] into D.

Let f be a function and let, X, y be sets. The functoir(xy, x2)(y) is defined by:

(Def. 1) f(x1,%2)(y) = f({X1, %)) (¥)-

The following proposition is true

(1) For all functionsf, g and for all setxg, X2, X such that(x;, x2) € domf andg = f(x1, X2)
andx € domg holds f (x1,%2)(X) = g(X).

Let A, D1, D,, D be non empty sets, Idtbe a binary function fronD1, D, into DA, let x; be
an element oDy, let x2 be an element dD,, and letx be an element cA. Thenf(xq,x2)(X) is an
element oD.

Let A be a set, leD;, D2, D be non empty sets, Idtbe a binary function fronD1, D, into D,
let g1 be a function fromA into D1, and letg, be a function fromA into D,. Thenf°(gs, g2) is an
element oDA.

Let Abe a non empty set, letbe a natural number, and bebe an element oA. Thenn— xis
a finite sequence of elementsAfWe introducen——x as a synonym afi — x.

Let D be a non empty set, I& be a set, and led be an element ob. ThenA+—— d is an
element oDA.

Let A be a set, leD;, D2, D be non empty sets, Idtbe a binary function fronD1, D, into D,
letd be an element 0D;, and letg be a function fromA into D,. Thenf°(d,g) is an element of
DA,
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Let A be a set, leD;, D2, D be non empty sets, Idtbe a binary function fronD1, D, into D,
let g be a function fromA into D1, and letd be an element db,. Thenf°(g,d) is an element of
DA.

One can prove the following proposition

(2) For all functionsf, g and for every seX holds(f[X)-g= f-(X|g).

The schem@&lonUnigFuncDExdeals with a sefl, a non empty seB, and a binary predicat@,
and states that:
There exists a functiom from 4 into B such that for everx such thaix € 4 holds
P[x, f(X)]
provided the parameters satisfy the following condition:
e For everyx such tha € 4 there exists an elemepbf B such thatP[x, y].

2. MONOID OF FUNCTIONS INTO A SEMIGROUP

Let D1, D2, D be non empty sets, ldtbe a binary function fronD;, D; into D, and letA be a set.
The functorfy, yielding a binary function fronD;#, D2 into D is defined as follows:

(Def. 2) For every elemenfy of D, and for every element, of D2 holds(fg)(f1, f2) = f°(fy,
).

Next we state the proposition

(3) LetDq, Dy, D be non empty setd, be a binary function fronD;, D, into D, A be a set,
f1 be a function fromA into D;, 2 be a function fromA into D», and giverx. If x € A, then

(fR)(f1, 2) (%) = F(f1(x), f2(x)).

For simplicity, we adopt the following conventior is a set,D is a hon empty sefa is an
element oD, o, o’ are binary operations dp, andf, g, h are functions fronA into D.
The following propositions are true:

(4) If ois commutative, theo®(f, g) = 0°(g, f).
(5) If ois associative, thea®(0°(f, g), h) = 0°(f, 0°(g, h)).
(6) If ais aunity w.r.t.o, theno°(a, f) = f ando°(f,a) = f.
(7) If oisidempotent, thep°(f, f) = f.
(8) If ois commutative, theny is commutative.
(9) If ois associative, thea, is associative.
(10) Ifais a unity w.r.t.o, thenA+— ais a unity w.r.t.o,.
(11) Ifohas aunity, thedg = A— 1, andoy has a unity.
(12) If ois idempotent, theoy is idempotent.
(13) If oisinvertible, theroy is invertible.
(14) If ois cancelable, thea, is cancelable.
(15) If o has uniquely decomposable unity, tr@nhas uniquely decomposable unity.
(16) If o absorbsy, thenoy absorby.

(17) LetDy, Dy, D, E;, E2, E be non empty setsy be a binary function fron1, D> into D,
andoy be a binary function fronky, E; into E. If 01 < 0p, thenoip < 023.

Let G be a non empty groupoid and latbe a set. The functa®” yields a groupoid and is
defined by:
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((the carrier ofG)A, (the multiplication 0fG)2, A — lthe multiplication ofG), if Gis unital

A_
(Def. 3) G*= { ((the carrier ofG)A, (the multiplication ofG)3), otherwise.

Let G be a non empty groupoid and ltbe a set. One can check i@ is non empty.
In the sequeG is a non empty groupoid.
We now state two propositions:
(18)(i) The carrier of* = (the carrier ofG)*, and
(i)  the multiplication ofG* = (the multiplication ofG)5.

(19) xis an element o&* iff x is a function fromX into the carrier ofG.

Let G be a non empty groupoid and l&tbe a set. Observe thét* is constituted functions.
We now state two propositions:

(20) For every element of GX holds domf = X and rngf C the carrier ofG.

(21) For all elements, g of G* such that for everx such thaix € X holds f (x) = g(x) holds
f=g

Let G be a non empty groupoid, |&tbe a non empty set, and lebe an element d&”. Observe
that rngf is non empty. Letibe an element oA. Thenf (a) is an element o6.
We now state the proposition

(22) For all elements;, f, of GP and for every elemeratof D holds(f; - fo)(a) = f1(a)- f2(a).

Let G be a unital non empty groupoid and ktbe a set. The®” is a well unital constituted
functions strict non empty multiplicative loop structure.
We now state four propositions:

(23) For every unital non empty groupd@iholds the unity of* = X — 1¢e multiplication ofG -

(24) LetG be a non empty groupoid adbe a set. Then
() if Gis commutative, the®” is commutative,
(i) if Gis associative, the@" is associative,
(i) if Gisidempotent, the@” is idempotent,
(iv) if Gis invertible, therGA is invertible,
(v) if Gis cancelable, theG” is cancelable, and
(vi) if G has uniquely decomposable unity, theéh has uniquely decomposable unity.

(25) For every non empty subsystétof G holdsHX is a subsystem oBX.

(26) LetG be a unital non empty groupoid amtl be a non empty subsystem Gf Suppose
Lthe multiplication of € the carrier oH. ThenH* is a monoidal subsystem &*.

Let G be a unital associative commutative cancelable non empty groupoid with uniquely decom-
posable unity and leA be a set. TheG” is a commutative cancelable constituted functions strict
monoid with uniquely decomposable unity.

3. MONOID OF MULTISETS OVER A SET

Let A be a set. The functok; yields a commutative cancelable constituted functions strict monoid
with uniquely decomposable unity and is defined as follows:

(Def. 4) AY = (N, +,0)A.

We now state the proposition
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(27) The carrier ofXS = N* and the multiplication oX? = (+x)% and the unity ofX$ =
X+—0.

Let Abe a set. A multiset ovekis an element oA.
Next we state two propositions:

(28) xis a multiset oveKX iff xis a function fromX into N.
(29) For every multisetn overX holds domm = X and rngn C N.

Let Abe a non empty set and letbe a multiset oveA. Then rngnis a non empty subset &f.
Leta be an element of. Thenm(a) is a natural number.
The following two propositions are true:

(30) For all multisetsny, mp overD and for every elemergtof D holds(m; @ mp)(a) = my(a) +
m(a).

(31) Xvx is amultiset oveiX.

Let us consideY, X. ThenXy x is a multiset oveiX.
Let us consideKX and letn be a natural number. Thei— nis a multiset oveKX.
Let A be a non empty set and latbe an element oA. The functorXa yielding a multiset over

Ais defined by:
(Def.5) Xa= X{a},A-
The following proposition is true

(32) For every non empty sétand for all elements, b of A holds(Xa)(a) =1 and ifb # a,
then(Xa)(b) = 0.

For simplicity, we use the following conventiork denotes a non empty setdenotes an ele-
ment ofA, p denotes a finite sequence of elementéadindm, M, denote multisets ovek.
We now state the proposition

(33) If for everya holdsmy (a) = mp(a), thenmg = mp.
Let Abe a set. The functdk® yielding a strict non empty monoidal subsystenAgfis defined
by:
(Def. 6) For every multisef overA holdsf < the carrier ofA® iff f=1(N\ {0}) is finite.
Next we state three propositions:
(34) Xais an element oA”.
(35) don({x}[(p~ (x))) = dom({x}|p)U{lenp+1}.
(36) Ifx7#y, then dont{x}[(p~ (y))) = dom({x} p).

Let A be a set and IgE be a finite binary relation. Note thAfF is finite.
Let A be a non empty set and Iptbe a finite sequence of elementsfofThe functor| p| yields

a multiset oveA and is defined by:
(Def. 7) For every elemerat of A holds|p|(a) = carddont{a} [p).
The following three propositions are true:
(37) |eal(a) =0.
(38) |ea| =A— 0.
(39) |(a) =Xa
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In the sequep, q denote finite sequences of element#\of
One can prove the following propositions:

(40) [p~ (&) =[pl®Xa

(41) [p~d =Ipl®ld

(42) |n—a|(a) = nand for every elemerit of A such thab # a holds|n——a]|(b) = 0.
(43) |p|is an element oA®.

(44) If xis an element oA®, then there existp such that = |p|.

4. MONOID OF SUBSETS OF A SEMIGROUP

In the sequea denotes an element BX.
Let D4, D2, D be non empty sets and létbe a binary function fronb4, D, into D. The functor
°f yields a binary function from2, 2P2 into 2° and is defined as follows:

(Def. 8) For every elementof [: 2P1, 2P2 ] holds(°f)(x) = f°[xq, X2 ].
One can prove the following propositions:

(45) LetD1, D, D be non empty setd, be a binary function fronD1, D2 into D, X; be a subset
of D1, andX; be a subset dD,. Then(° f)(Xy, X2) = f°[ Xq, X2].

(46) LetDq, Dy, D be non empty setsf be a binary function fronD;, D, into D, X; be a
subset ofD1, Xy be a subset oD», andxs, x» be sets. Ifx; € X3 andxy € Xp, then f(xy,
X2) € (°F) (X1, X2).

(47) LetD1, D2, D be non empty setd, be a binary function fronD;, D, into D, X; be a subset
of D1, andX; be a subset db,. Then(° f)(X1, X2) = { f(a, b); aranges over elements bBf,
branges over elements Bb: a€ X; A be Xp}.

(48) If ois commutative, then°: X,Y ] =0°[Y, X .

(49) If ois associative, theo’[0°[ X,Y],Z]=0°[ X, 0°[Y, Z]].

(50) If ois commutative, thefio is commutative.

(51) If ois associative, theto is associative.

(52) Ifaisaunity w.r.t.o, theno’{a}, X]=DnXando’[ X, {a}]=DnX.

(53) Ifais aunity w.r.t.o, then{a} is a unity w.r.t.°0 and°o has a unity and-, = {a}.

(54) If ohas a unity, thefio has a unity and1,} is a unity w.r.t.°o0 and1.o = {10}

(55) If o has uniquely decomposable unity, ttferhas uniquely decomposable unity.
Let G be a non empty groupoid. The functdt gields a groupoid and is defined by:

(Def.9) £ (2the carrier ofG o (the multiplication ofG),{1ine mutipiication oG }), if Gis unital
: (2the carrier ofG ©(the multiplication ofG)), otherwise.

Let G be a non empty groupoid. One can check tifat2non empty.

Let G be a unital non empty groupoid. Thefi & a well unital strict non empty multiplicative
loop structure.

We now state three propositions:

(56) The carrier of & = 2the carrier ofG gnd the multiplication of ¢ = °(the multiplication ofG).

(57) For every unital non empty groupc@&holds the unity of & = {1ithe muttiplication ofG }-
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(58) LetG be a non empty groupoid. Then
() if Gis commutative, thenQis commutative,
(i) if Gis associative, then®is associative, and
(i) if G has uniquely decomposable unity, théhtas uniquely decomposable unity.
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