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Summary. In this article basic properties of midpoint algebras are proved. We define
a congruence relatios on bound vectors and free vectors as the equivalence classes of

MML Identifier: MIDSP_1.
WWW: http://mizar.org/JFM/Voll/midsp_1.html

The articles|[5], [[4], [[8], [[1], 7], [6], [2], and[IB] provide the notation and terminology for this

paper.
We consider midpoint algebra structures as extensions of 1-sorted structure as systems

( a carrier, a midpoint operation
where the carrier is a set and the midpoint operation is a binary operation on the carrier.
Let us note that there exists a midpoint algebra structure which is non empty.
In the sequeM1 is a non empty midpoint algebra structure ant are elements dfl;.
Let us consideM4, a, b. The functora®@b yields an element df1; and is defined by:

(Def. 1) a@b= (the midpoint operation d¥l;)(a, b).
(Def. 2) op is a binary operation of0}.
The midpoint algebra structure EX is defined by:

(Def. 3) EX= ({0},0p,).

Let us observe that EX is strict and non empty.
We now state several propositions:

(5] The carrier of EX) = {0}.

(6) The midpoint operation fEX) = op, .

(7) For every elemerd of EX holdsa = 0.

(8) For all elements, b of EX holdsa@b = op,(a, b).

(10f] Leta b, ¢, d be elements of EX. Thea®a=aanda®b=b@aand(a@b)@(c@d) =
a@c@(b@d) and there exists an elementf EX such thak@a=b.

Let I, be a non empty midpoint algebra structure. We saylthatmidpoint algebra-like if and
only if the condition (Def. 4) is satisfied.

1 The propositions (1)—(4) have been removed.
2 The proposition (9) has been removed.
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Leta, b, ¢, d be elements of;. Thena@a=aanda®b=b@aand(a®b)®@(c@d) =

a@c@(b@d) and there exists an elementf I; such thak@a = b.

One can verify that there exists a non empty midpoint algebra structure which is strict and
midpoint algebra-like.

A midpoint algebra is a midpoint algebra-like non empty midpoint algebra structure.

Let M be a midpoint algebra and latb be elements of1. Let us notice that the functar® b
is commutative.

We adopt the following conventioMd denotes a midpoint algebra aad, ¢, d, &, b/, ¢/, d’, x,
y, X denote elements dfl.

Next we state several propositions:

15f] (@@b)@c=a@c@(h@c).

(16)
17)
(18)
(19)

a@((b%c)=(a%b)@(a®c).
Ifa@b=a,thena=h.
Ifx@a=x@a, thenx=X.

Ifa@x=a®@x, thenx=Xx.

Let us consideM, a, b, ¢, d. The predicate, b = c,d is defined as follows:

(Def. 5)

a@d=h%c.

Next we state several propositions:

(1f] a,a=h,b.

(22) Ifa,b=c,d, thenc,d=a,b.

(23) Ifa,a=b,c,thenb=c.

(24) Ifab=c,c thena=h.

(25) a,b=a,h.

(26) There existsl such that, b= c,d.

(27) Ifa,b=c,danda,b=c,d, thend=d'.

(28) Ifx,y=a,bandx,y=c,d, thena,b=c,d.
(29) Ifa,b=4,b andb,c=b,c,thena,c=4d,c.

In the sequep, g, r denote elements difthe carrier oM, the carrier oM .
Let us consideM, p. Thenp; is an element oM.

Let us consideM, p. Thenp, is an element oM.

Let us consideM, p, g. The predicatg = q is defined by:

(Def. 6)

P1, P2 = 1, Q2.

Let us notice that the predicape= g is reflexive and symmetric.
Let us consideM, a, b. Then(a, b} is an element of the carrier oMM, the carrier oM ].
One can prove the following propositions:

(31f] 1f a,b=c,d, then(a, b) = (c, d).

(32)

If (a, b) = (c, d), thena,b=c,d.

3 The propositions (11)-(14) have been removed.
4 The proposition (20) has been removed.
5 The proposition (30) has been removed.
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(35@ If p=qgandp=r,theng=r.

(36) If p=randg=r,thenp=aq.

(37) Ifp=qgandg=r,thenp=r.

(38) If p=q,thenr =piff r=q.

(39) Foreverypholds{qg: g= p} is a non empty subset pthe carrier oM, the carrier oM 1.

Let us consideM, p. The functorp™ yields a subset dfthe carrier oM, the carrier oM ] and
is defined as follows:

(Def.7) p~={q:q=p}.

Let us consideM, p. Observe thap™ is hon empty.
Next we state several propositions:

(41 For everyp holdsr € p~ iff r = p.
(42) Ifp=gq,thenp”=q~.

(43) Ifp”=q7,thenp=aq.

(44) If (a,b)~ = (c,d)~, thena®d =Db®@c.
(45) pep-.

Let us consideM. A non empty subset dfthe carrier ofM, the carrier ofM ] is said to be a
vector ofM if:

(Def. 8) There existp such that it= p~.

In the sequell, v, w, W are vectors oM.
Let us consideM, p. Thenp~ is a vector ofM.
Next we state the proposition

(48 There exista) such that for every holdsp € uiff p; = po.
Let us consideM. The functor |y yielding a vector oM is defined by:
(Def.9) Iw={p: pr=p2}.
Next we state three propositions:
(50F] 1w = (b, b)~.
(51) There exist, p, q such thau= p~ andv=q~ andp, = q; andw = {p1, 02} ™.

(52) Suppose there exipt g such thau = p~ andv =g~ andp, = g; andw = (ps, gz)~ and
there existp, g such thau = p~ andv=q~ andp; = g, andw = (p1, g2) . Thenw=w'.

Let us consideM, u, v. The functoru+ v yields a vector oM and is defined by:
(Def. 10) There exisp, g such thau = p~ andv=qg~ andp, = g1 andu+v = (p1, g2) .

The following proposition is true

(53) There existd such thau = (a, b)~.

6 The propositions (33) and (34) have been removed.
" The proposition (40) has been removed.
8 The propositions (46) and (47) have been removed.
9 The proposition (49) has been removed.
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Let us consideM, a, b. The functor@ yields a vector oM and is defined as follows:
(Def. 11) [a,b] = (a, b)™.
We now state a number of propositions:
(55@ There existd such thau = m.
(56) If (a, b) = {c, d), then[a,b] = [c,d].
(57) If[a,b] =[c,d], thena@d =b@c.
(58) Im = [b,b].
(59) If{a,b] = [a,c], thenb=vc.
(60) [a.b]+[b,d =[ad.

(61) (a,a@b) = (a®b,b).

(62) [a,a®b]+[a,a®b]=[a,b].

(63) (u+Vv)+w=u+(Vv+w).

(64) u+ly=u.

(65) There existy such thau+v = ly.

(66) u+v=v+u.

(67) Ifu+v=u+w,thenv=w.

Let us consideM, u. The functor—u yields a vector oM and is defined by:

(Def. 12) u+—-u=In.

In the sequekX is an element of [he carrier oM, the carrier ofM |
Let us consideM. The functor setvedl yielding a set is defined by:

(Def. 13) setvedyl = {X: X is a vector oM }.

In the sequek is a set.
One can prove the following proposition

(71 xis a vector oM iff x € setvecM.

Let us consideM. Observe that setvelgt is non empty.
In the sequeliy, v, wi, W, Wy, W, T denote elements of setvddt
Let us consideM, uy, v;1. The functoru; + v; yields an element of setvedtand is defined by:

(Def. 14) For allu, v such thati; = uandvy; = v holdsu; +v; = u+v.
We now state two propositions:
(74 U; +Vvi=Vvy+Uus.
(75) (U +v1)+wr = up+ (v1+Wwp).

Let us consideM. The functor addved yields a binary operation on setvéttand is defined
as follows:

10 The proposition (54) has been removed.
11 The propositions (68)—(70) have been removed.
12 The propositions (72) and (73) have been removed.
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(Def. 15) For allug, v1 holds(addvecM)(uy, vi) = ug +vs.
One can prove the following two propositions:
(770 For everyw there existd such thatW + T = Iy.
(78) For allwW, Wy, W5 such thatV +Wy = Iy andW +Ws = Iy holdsWy = Ws.

Let us consideM. The functor complved¥l yields a unary operation on setvétend is defined
by:
(Def. 16) For everyV holdsW + (complvectM)(W) = Iy.

Let us consideM. The functor zerove® yielding an element of setveldt is defined as fol-
lows:

(Def. 17) zeroved?l = ly.
Let us consideM. The functor vectgroul! yielding a loop structure is defined as follows:
(Def. 18) vectgrouM = (setvecM,addvecM,zerovecM).

Let us consideM. One can verify that vectgroly is strict and non empty.
One can prove the following propositions:

(SZE] The carrier of vectgroulgl = setvecM.
(83) The addition of vectgroud = addvecM.
(SSE The zero of vectgroull = zeroveciM.

(86) vectgroup/ is add-associative, right zeroed, right complementable, and Abelian.
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13 The proposition (76) has been removed.
14 The propositions (79)—(81) have been removed.
15 The proposition (84) has been removed.
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