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Summary. In this article basic properties of midpoint algebras are proved. We define
a congruence relation≡ on bound vectors and free vectors as the equivalence classes of≡.
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The articles [5], [4], [8], [1], [7], [6], [2], and [3] provide the notation and terminology for this
paper.

We consider midpoint algebra structures as extensions of 1-sorted structure as systems
〈 a carrier, a midpoint operation〉,

where the carrier is a set and the midpoint operation is a binary operation on the carrier.
Let us note that there exists a midpoint algebra structure which is non empty.
In the sequelM1 is a non empty midpoint algebra structure anda, b are elements ofM1.
Let us considerM1, a, b. The functora@b yields an element ofM1 and is defined by:

(Def. 1) a@b = (the midpoint operation ofM1)(a, b).

(Def. 2) op2 is a binary operation on{ /0}.

The midpoint algebra structure EX is defined by:

(Def. 3) EX= 〈{ /0},op2〉.

Let us observe that EX is strict and non empty.
We now state several propositions:

(5)1 The carrier of(EX) = { /0}.

(6) The midpoint operation of(EX) = op2 .

(7) For every elementa of EX holdsa = /0.

(8) For all elementsa, b of EX holdsa@b = op2(a, b).

(10)2 Let a, b, c, d be elements of EX. Thena@a = a anda@b = b@a and(a@b)@(c@d) =
a@c@ (b@d) and there exists an elementx of EX such thatx@a = b.

Let I1 be a non empty midpoint algebra structure. We say thatI1 is midpoint algebra-like if and
only if the condition (Def. 4) is satisfied.

1 The propositions (1)–(4) have been removed.
2 The proposition (9) has been removed.
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(Def. 4) Leta, b, c, d be elements ofI1. Thena@ a = a anda@ b = b@ a and(a@ b) @ (c@ d) =
a@c@ (b@d) and there exists an elementx of I1 such thatx@a = b.

One can verify that there exists a non empty midpoint algebra structure which is strict and
midpoint algebra-like.

A midpoint algebra is a midpoint algebra-like non empty midpoint algebra structure.
Let M be a midpoint algebra and leta, b be elements ofM. Let us notice that the functora@ b

is commutative.
We adopt the following convention:M denotes a midpoint algebra anda, b, c, d, a′, b′, c′, d′, x,

y, x′ denote elements ofM.
Next we state several propositions:

(15)3 (a@b) @c = a@c@ (b@c).

(16) a@ (b@c) = (a@b) @ (a@c).

(17) If a@b = a, thena = b.

(18) If x@a = x′ @a, thenx = x′.

(19) If a@x = a@x′, thenx = x′.

Let us considerM, a, b, c, d. The predicatea,b≡ c,d is defined as follows:

(Def. 5) a@d = b@c.

Next we state several propositions:

(21)4 a,a≡ b,b.

(22) If a,b≡ c,d, thenc,d≡ a,b.

(23) If a,a≡ b,c, thenb = c.

(24) If a,b≡ c,c, thena = b.

(25) a,b≡ a,b.

(26) There existsd such thata,b≡ c,d.

(27) If a,b≡ c,d anda,b≡ c,d′, thend = d′.

(28) If x,y≡ a,b andx,y≡ c,d, thena,b≡ c,d.

(29) If a,b≡ a′,b′ andb,c≡ b′,c′, thena,c≡ a′,c′.

In the sequelp, q, r denote elements of[: the carrier ofM, the carrier ofM :].
Let us considerM, p. Thenp1 is an element ofM.
Let us considerM, p. Thenp2 is an element ofM.
Let us considerM, p, q. The predicatep≡ q is defined by:

(Def. 6) p1, p2 ≡ q1,q2.

Let us notice that the predicatep≡ q is reflexive and symmetric.
Let us considerM, a, b. Then〈〈a, b〉〉 is an element of[: the carrier ofM, the carrier ofM :].
One can prove the following propositions:

(31)5 If a,b≡ c,d, then〈〈a, b〉〉 ≡ 〈〈c, d〉〉.

(32) If 〈〈a, b〉〉 ≡ 〈〈c, d〉〉, thena,b≡ c,d.

3 The propositions (11)–(14) have been removed.
4 The proposition (20) has been removed.
5 The proposition (30) has been removed.
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(35)6 If p≡ q andp≡ r, thenq≡ r.

(36) If p≡ r andq≡ r, thenp≡ q.

(37) If p≡ q andq≡ r, thenp≡ r.

(38) If p≡ q, thenr ≡ p iff r ≡ q.

(39) For everyp holds{q : q≡ p} is a non empty subset of[: the carrier ofM, the carrier ofM :].

Let us considerM, p. The functorp` yields a subset of[: the carrier ofM, the carrier ofM :] and
is defined as follows:

(Def. 7) p` = {q : q≡ p}.

Let us considerM, p. Observe thatp` is non empty.
Next we state several propositions:

(41)7 For everyp holdsr ∈ p` iff r ≡ p.

(42) If p≡ q, thenp` = q`.

(43) If p` = q`, thenp≡ q.

(44) If 〈〈a, b〉〉` = 〈〈c, d〉〉`, thena@d = b@c.

(45) p∈ p`.

Let us considerM. A non empty subset of[: the carrier ofM, the carrier ofM :] is said to be a
vector ofM if:

(Def. 8) There existsp such that it= p`.

In the sequelu, v, w, w′ are vectors ofM.
Let us considerM, p. Thenp` is a vector ofM.
Next we state the proposition

(48)8 There existsu such that for everyp holdsp∈ u iff p1 = p2.

Let us considerM. The functor IM yielding a vector ofM is defined by:

(Def. 9) IM = {p : p1 = p2}.

Next we state three propositions:

(50)9 IM = 〈〈b, b〉〉`.

(51) There existw, p, q such thatu = p` andv = q` andp2 = q1 andw = 〈〈p1, q2〉〉`.

(52) Suppose there existp, q such thatu = p` andv = q` andp2 = q1 andw = 〈〈p1, q2〉〉` and
there existp, q such thatu = p` andv = q` andp2 = q1 andw′ = 〈〈p1, q2〉〉`. Thenw = w′.

Let us considerM, u, v. The functoru+v yields a vector ofM and is defined by:

(Def. 10) There existp, q such thatu = p` andv = q` andp2 = q1 andu+v = 〈〈p1, q2〉〉`.

The following proposition is true

(53) There existsb such thatu = 〈〈a, b〉〉`.

6 The propositions (33) and (34) have been removed.
7 The proposition (40) has been removed.
8 The propositions (46) and (47) have been removed.
9 The proposition (49) has been removed.



MIDPOINT ALGEBRAS 4

Let us considerM, a, b. The functor
−−→
[a,b] yields a vector ofM and is defined as follows:

(Def. 11)
−−→
[a,b] = 〈〈a, b〉〉`.

We now state a number of propositions:

(55)10 There existsb such thatu =
−−→
[a,b].

(56) If 〈〈a, b〉〉 ≡ 〈〈c, d〉〉, then
−−→
[a,b] =

−−→
[c,d].

(57) If
−−→
[a,b] =

−−→
[c,d], thena@d = b@c.

(58) IM =
−−→
[b,b].

(59) If
−−→
[a,b] =

−−→
[a,c], thenb = c.

(60)
−−→
[a,b]+

−−→
[b,c] =

−−→
[a,c].

(61) 〈〈a, a@b〉〉 ≡ 〈〈a@b, b〉〉.

(62)
−−−−−→
[a,a@b]+

−−−−−→
[a,a@b] =

−−→
[a,b].

(63) (u+v)+w = u+(v+w).

(64) u+ IM = u.

(65) There existsv such thatu+v = IM.

(66) u+v = v+u.

(67) If u+v = u+w, thenv = w.

Let us considerM, u. The functor−u yields a vector ofM and is defined by:

(Def. 12) u+−u = IM.

In the sequelX is an element of 2[: the carrier ofM, the carrier ofM :].
Let us considerM. The functor setvectM yielding a set is defined by:

(Def. 13) setvectM = {X : X is a vector ofM}.

In the sequelx is a set.
One can prove the following proposition

(71)11 x is a vector ofM iff x∈ setvectM.

Let us considerM. Observe that setvectM is non empty.
In the sequelu1, v1, w1, W, W1, W2, T denote elements of setvectM.
Let us considerM, u1, v1. The functoru1 +v1 yields an element of setvectM and is defined by:

(Def. 14) For allu, v such thatu1 = u andv1 = v holdsu1 +v1 = u+v.

We now state two propositions:

(74)12 u1 +v1 = v1 +u1.

(75) (u1 +v1)+w1 = u1 +(v1 +w1).

Let us considerM. The functor addvectM yields a binary operation on setvectM and is defined
as follows:

10 The proposition (54) has been removed.
11 The propositions (68)–(70) have been removed.
12 The propositions (72) and (73) have been removed.
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(Def. 15) For allu1, v1 holds(addvectM)(u1, v1) = u1 +v1.

One can prove the following two propositions:

(77)13 For everyW there existsT such thatW+T = IM.

(78) For allW, W1, W2 such thatW+W1 = IM andW+W2 = IM holdsW1 = W2.

Let us considerM. The functor complvectM yields a unary operation on setvectM and is defined
by:

(Def. 16) For everyW holdsW+(complvectM)(W) = IM.

Let us considerM. The functor zerovectM yielding an element of setvectM is defined as fol-
lows:

(Def. 17) zerovectM = IM.

Let us considerM. The functor vectgroupM yielding a loop structure is defined as follows:

(Def. 18) vectgroupM = 〈setvectM,addvectM,zerovectM〉.

Let us considerM. One can verify that vectgroupM is strict and non empty.
One can prove the following propositions:

(82)14 The carrier of vectgroupM = setvectM.

(83) The addition of vectgroupM = addvectM.

(85)15 The zero of vectgroupM = zerovectM.

(86) vectgroupM is add-associative, right zeroed, right complementable, and Abelian.
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13 The proposition (76) has been removed.
14 The propositions (79)–(81) have been removed.
15 The proposition (84) has been removed.
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