Midpoint algebras

Michał Muzalewski Warsaw University Białystok

Summary. In this article basic properties of midpoint algebras are proved. We define a congruence relation \equiv on bound vectors and free vectors as the equivalence classes of \equiv .

MML Identifier: MIDSP_1.

WWW: http://mizar.org/JFM/Vol1/midsp_1.html

The articles [5], [4], [8], [1], [7], [6], [2], and [3] provide the notation and terminology for this paper.

We consider midpoint algebra structures as extensions of 1-sorted structure as systems \langle a carrier, a midpoint operation \rangle ,

where the carrier is a set and the midpoint operation is a binary operation on the carrier.

Let us note that there exists a midpoint algebra structure which is non empty.

In the sequel M_1 is a non empty midpoint algebra structure and a, b are elements of M_1 .

Let us consider M_1 , a, b. The functor $a^{@}b$ yields an element of M_1 and is defined by:

- (Def. 1) $a^{@}b =$ (the midpoint operation of M_1)(a, b).
- (Def. 2) op₂ is a binary operation on $\{\emptyset\}$.

The midpoint algebra structure EX is defined by:

(Def. 3)
$$EX = \langle \{\emptyset\}, op_2 \rangle$$
.

Let us observe that EX is strict and non empty.

We now state several propositions:

- (5)¹ The carrier of $(EX) = \{\emptyset\}$.
- (6) The midpoint operation of $(EX) = op_2$.
- (7) For every element a of EX holds $a = \emptyset$.
- (8) For all elements a, b of EX holds $a^{@}b = op_2(a, b)$.
- (10)² Let a, b, c, d be elements of EX. Then $a^@ a = a$ and $a^@ b = b^@ a$ and $(a^@ b)^@ (c^@ d) = a^@ c^@ (b^@ d)$ and there exists an element x of EX such that $x^@ a = b$.

Let I_1 be a non empty midpoint algebra structure. We say that I_1 is midpoint algebra-like if and only if the condition (Def. 4) is satisfied.

¹ The propositions (1)–(4) have been removed.

² The proposition (9) has been removed.

(Def. 4) Let a, b, c, d be elements of I_1 . Then $a^@ a = a$ and $a^@ b = b^@ a$ and $(a^@ b)^@ (c^@ d) = a^@ c^@ (b^@ d)$ and there exists an element x of I_1 such that $x^@ a = b$.

One can verify that there exists a non empty midpoint algebra structure which is strict and midpoint algebra-like.

A midpoint algebra is a midpoint algebra-like non empty midpoint algebra structure.

Let M be a midpoint algebra and let a, b be elements of M. Let us notice that the functor a $^{@}$ b is commutative.

We adopt the following convention: M denotes a midpoint algebra and a, b, c, d, a', b', c', d', x, y, x' denote elements of M.

Next we state several propositions:

$$(15)^3$$
 $(a^@ b)^@ c = a^@ c^@ (b^@ c).$

(16)
$$a^{@}(b^{@}c) = (a^{@}b)^{@}(a^{@}c).$$

(17) If
$$a^{@}b = a$$
, then $a = b$.

(18) If
$$x^{@} a = x'^{@} a$$
, then $x = x'$.

(19) If
$$a^{@} x = a^{@} x'$$
, then $x = x'$.

Let us consider M, a, b, c, d. The predicate a, $b \equiv c$, d is defined as follows:

(Def. 5)
$$a^{@} d = b^{@} c$$
.

Next we state several propositions:

$$(21)^4$$
 $a, a \equiv b, b.$

(22) If
$$a, b \equiv c, d$$
, then $c, d \equiv a, b$.

(23) If
$$a, a \equiv b, c$$
, then $b = c$.

(24) If
$$a, b \equiv c, c$$
, then $a = b$.

(25)
$$a, b \equiv a, b$$
.

- (26) There exists d such that $a, b \equiv c, d$.
- (27) If $a, b \equiv c, d$ and $a, b \equiv c, d'$, then d = d'.

(28) If
$$x, y \equiv a, b$$
 and $x, y \equiv c, d$, then $a, b \equiv c, d$.

(29) If
$$a, b \equiv a', b'$$
 and $b, c \equiv b', c'$, then $a, c \equiv a', c'$.

In the sequel p, q, r denote elements of [: the carrier of M, the carrier of M:].

Let us consider M, p. Then p_1 is an element of M.

Let us consider M, p. Then p_2 is an element of M.

Let us consider M, p, q. The predicate $p \equiv q$ is defined by:

(Def. 6)
$$p_1, p_2 \equiv q_1, q_2$$
.

Let us notice that the predicate $p \equiv q$ is reflexive and symmetric.

Let us consider M, a, b. Then $\langle a, b \rangle$ is an element of [: the carrier of M, the carrier of M:]. One can prove the following propositions:

$$(31)^5$$
 If $a, b \equiv c, d$, then $\langle a, b \rangle \equiv \langle c, d \rangle$.

(32) If
$$\langle a, b \rangle \equiv \langle c, d \rangle$$
, then $a, b \equiv c, d$.

³ The propositions (11)–(14) have been removed.

⁴ The proposition (20) has been removed.

⁵ The proposition (30) has been removed.

$$(35)^6$$
 If $p \equiv q$ and $p \equiv r$, then $q \equiv r$.

(36) If
$$p \equiv r$$
 and $q \equiv r$, then $p \equiv q$.

(37) If
$$p \equiv q$$
 and $q \equiv r$, then $p \equiv r$.

(38) If
$$p \equiv q$$
, then $r \equiv p$ iff $r \equiv q$.

(39) For every p holds $\{q: q \equiv p\}$ is a non empty subset of [: the carrier of M, the carrier of M:].

Let us consider M, p. The functor p^{\smile} yields a subset of [: the carrier of M, the carrier of M:] and is defined as follows:

(Def. 7)
$$p^{\smile} = \{q : q \equiv p\}.$$

Let us consider M, p. Observe that p^{\smile} is non empty.

Next we state several propositions:

$$(41)^7$$
 For every p holds $r \in p^{\smile}$ iff $r \equiv p$.

(42) If
$$p \equiv q$$
, then $p^{\smile} = q^{\smile}$.

(43) If
$$p = q$$
, then $p \equiv q$.

(44) If
$$\langle a, b \rangle^{\smile} = \langle c, d \rangle^{\smile}$$
, then $a^{\textcircled{@}} d = b^{\textcircled{@}} c$.

$$(45) \quad p \in p^{\smile}.$$

Let us consider M. A non empty subset of [the carrier of M, the carrier of M:] is said to be a vector of M if:

(Def. 8) There exists p such that it $= p^{\sim}$.

In the sequel u, v, w, w' are vectors of M.

Let us consider M, p. Then p^{\smile} is a vector of M.

Next we state the proposition

(48)⁸ There exists u such that for every p holds $p \in u$ iff $p_1 = p_2$.

Let us consider M. The functor I_M yielding a vector of M is defined by:

(Def. 9)
$$I_M = \{p : p_1 = p_2\}.$$

Next we state three propositions:

$$(50)^9$$
 $I_M = \langle b, b \rangle^{\smile}$.

- (51) There exist w, p, q such that $u = p^{\smile}$ and $v = q^{\smile}$ and $p_2 = q_1$ and $w = \langle p_1, q_2 \rangle^{\smile}$.
- (52) Suppose there exist p, q such that $u = p^{\smile}$ and $v = q^{\smile}$ and $p_2 = q_1$ and $w = \langle p_1, q_2 \rangle^{\smile}$ and there exist p, q such that $u = p^{\smile}$ and $v = q^{\smile}$ and $p_2 = q_1$ and $w' = \langle p_1, q_2 \rangle^{\smile}$. Then w = w'.

Let us consider M, u, v. The functor u + v yields a vector of M and is defined by:

(Def. 10) There exist
$$p$$
, q such that $u = p^{\smile}$ and $v = q^{\smile}$ and $p_2 = q_1$ and $u + v = \langle p_1, q_2 \rangle^{\smile}$.

The following proposition is true

(53) There exists b such that $u = \langle a, b \rangle^{\smile}$.

⁶ The propositions (33) and (34) have been removed.

⁷ The proposition (40) has been removed.

⁸ The propositions (46) and (47) have been removed.

⁹ The proposition (49) has been removed.

Let us consider M, a, b. The functor $\overline{[a,b]}$ yields a vector of M and is defined as follows:

(Def. 11)
$$\overline{[a,b]} = \langle a,b \rangle^{\sim}$$
.

We now state a number of propositions:

 $(55)^{10}$ There exists b such that u = [a,b].

(56) If
$$\langle a, b \rangle \equiv \langle c, d \rangle$$
, then $\overline{[a, b]} = \overline{[c, d]}$.

(57) If
$$\overline{[a,b]} = \overline{[c,d]}$$
, then $a^{@} d = b^{@} c$.

(58)
$$I_M = |\overrightarrow{b,b}|$$
.

(59) If
$$|\overrightarrow{a}, \overrightarrow{b}| = |\overrightarrow{a}, \overrightarrow{c}|$$
, then $b = c$.

(60)
$$\overline{[a,b]} + \overline{[b,c]} = \overline{[a,c]}$$
.

(61)
$$\langle a, a^@ b \rangle \equiv \langle a^@ b, b \rangle$$
.

(62)
$$\overrightarrow{[a,a^{@}b]} + \overrightarrow{[a,a^{@}b]} = \overrightarrow{[a,b]}.$$

(63)
$$(u+v)+w=u+(v+w)$$
.

(64)
$$u + I_M = u$$
.

(65) There exists v such that $u + v = I_M$.

(66)
$$u + v = v + u$$
.

(67) If
$$u + v = u + w$$
, then $v = w$.

Let us consider M, u. The functor -u yields a vector of M and is defined by:

(Def. 12)
$$u + -u = I_M$$
.

In the sequel X is an element of $2^{[the carrier of M, the carrier of M:]}$.

Let us consider M. The functor setvect M yielding a set is defined by:

(Def. 13) setvect
$$M = \{X : X \text{ is a vector of } M\}.$$

In the sequel *x* is a set.

One can prove the following proposition

$$(71)^{11}$$
 x is a vector of M iff $x \in \text{setvect} M$.

Let us consider M. Observe that setvect M is non empty.

In the sequel $u_1, v_1, w_1, W, W_1, W_2, T$ denote elements of setvect M.

Let us consider M, u_1 , v_1 . The functor $u_1 + v_1$ yields an element of setvect M and is defined by:

(Def. 14) For all
$$u$$
, v such that $u_1 = u$ and $v_1 = v$ holds $u_1 + v_1 = u + v$.

We now state two propositions:

$$(74)^{12}$$
 $u_1 + v_1 = v_1 + u_1$.

(75)
$$(u_1 + v_1) + w_1 = u_1 + (v_1 + w_1).$$

Let us consider M. The functor addvect M yields a binary operation on setvect M and is defined as follows:

¹⁰ The proposition (54) has been removed.

¹¹ The propositions (68)–(70) have been removed.

¹² The propositions (72) and (73) have been removed.

(Def. 15) For all u_1, v_1 holds $(addvect M)(u_1, v_1) = u_1 + v_1$.

One can prove the following two propositions:

- $(77)^{13}$ For every W there exists T such that $W + T = I_M$.
- (78) For all W, W_1 , W_2 such that $W + W_1 = I_M$ and $W + W_2 = I_M$ holds $W_1 = W_2$.

Let us consider M. The functor complexet M yields a unary operation on setvect M and is defined by:

(Def. 16) For every W holds $W + (complete M)(W) = I_M$.

Let us consider M. The functor zerovect M yielding an element of setvect M is defined as follows:

(Def. 17) $\operatorname{zerovect} M = I_M$.

Let us consider M. The functor vectgroup M yielding a loop structure is defined as follows:

(Def. 18) $\operatorname{vectgroup} M = \langle \operatorname{setvect} M, \operatorname{addvect} M, \operatorname{zerovect} M \rangle$.

Let us consider M. One can verify that vectgroup M is strict and non empty. One can prove the following propositions:

- $(82)^{14}$ The carrier of vectgroup M = setvect M.
- (83) The addition of vectgroup M = addvect M.
- $(85)^{15}$ The zero of vectgroup M = zerovect M.
- (86) vectgroup M is add-associative, right zeroed, right complementable, and Abelian.

REFERENCES

- $[1] \begin{tabular}{ll} \textbf{Czesław Byliński. Binary operations. } \textit{Journal of Formalized Mathematics}, 1, 1989. $$ $$ \texttt{http://mizar.org/JFM/Vol1/binop_1.html.} $$ $$$
- [2] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [4] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_1.html.
- [5] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [6] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/mcart_1.html.
- [7] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- $[8] \begin{tabular}{ll} Zinaida\ Trybulec.\ Properties\ of\ subsets.\ {\it Journal\ of\ Formalized\ Mathematics},1,1989.\ \verb|http://mizar.org/JFM/Vol1/subset_1.html|.\\ \end{tabular}$

Received November 26, 1989

Published January 2, 2004

¹³ The proposition (76) has been removed.

¹⁴ The propositions (79)–(81) have been removed.

¹⁵ The proposition (84) has been removed.